Nowhere-zero 3 -flows in squares of graphs

Rui Xu and Cun-Quan Zhang*
Department of Mathematics
West Virginia University, West Virginia, USA
xu@math.wvu.edu, cqzhang@math.wvu.edu

Submitted: May 31, 2002; Accepted: Jan 15, 2003; Published: Jan 22, 2003
MR Subject Classifications: 05C15, 05C20, 05C70, 05C75, 90B10

Abstract

It was conjectured by Tutte that every 4-edge-connected graph admits a nowherezero 3 -flow. In this paper, we give a complete characterization of graphs whose squares admit nowhere-zero 3 -flows and thus confirm Tutte's 3 -flow conjecture for the family of squares of graphs.

1 Introduction

All graphs considered in this paper are simple. Let $G=(V, E)$ be a graph with vertex set V and edge set E. For any $v \in V(G)$, we use $d_{G}(v), N_{G}(v)$ to denote the degree and the neighbor set of v in G, respectively. The minimal degree of a vertex of G is denoted by $\delta(G)$. We use K_{m} for a complete graph on m vertices, P_{t} for a path of length t and W_{4} for a graph obtained from a 4-circuit by adding a new vertex x and edges joining x to all the vertices on the circuit. We call x the center of this W_{4} and each edge with x as one end is called a center edge. Let D be an orientation of G. Then the set of all edges with tails (or heads) at a vertex v is denoted by $E^{+}(v)$ (or $E^{-}(v)$). If an edge $u v$ is oriented from u to v under D, then we say $D(u v)=u \rightarrow v$. The square of G, denoted by G^{2}, is the graph obtained from G by adding all the edges that join distance 2 vertices in G. We refer the reader to [1] for terminology not defined in this paper.

Definition 1.1 Let D be an orientation of G and f be a function: $E(G) \mapsto Z$. Then
(1). The ordered pair (D, f) is called a k-flow of G if $-k+1 \leq f(e) \leq k-1$ for every edge $e \in E(G)$ and $\sum_{e \in E^{+}(v)} f(e)=\sum_{e \in E^{-}(v)} f(e)$ for every $v \in V(G)$.
(2). The ordered pair (D, f) is called a Modular k-flow of G if for every $v \in V(G)$, $\sum_{e \in E^{+}(v)} f(e) \equiv \sum_{e \in E^{-}(v)} f(e)(\bmod k)$.

[^0]The support of a k-flow (Modular k-flow) (D, f) of G is the set of edges of G with $f(e) \neq 0(f(e) \not \equiv 0(\bmod k))$, and is denoted by $\operatorname{supp}(f)$. A k-flow (D, f) (Modular k-flow) of G is nowhere-zero if $\operatorname{supp}(f)=E(G)$.

For convenience, a nowhere-zero k-flow is abbreviated as a k-NZF. The concept of integer-flow was introduced by $\operatorname{Tutte}([7,8]$ also see $[9,4])$ as a refinement and generalization of the face-coloring and edge-3-coloring problems. One of the most well known open problems in this subject is the following conjecture due to Tutte:

Conjecture 1.2 (Tutte, unsolved problem 48 in [1]) Every 4-edge-connected graph admits a 3-NZF.

Squares of graphs admitting 3-NZF's are to be characterized in this paper. The following families of graphs are the exceptions in the main theorem.

Definition $1.3 \mathcal{T}_{1,3}=\left\{T \mid T\right.$ is a tree and $d_{T}(v)=1$ or 3 for every $\left.v \in V(T)\right\}$
Definition 1.4 $\overline{\mathcal{T}}_{1,3}=\left\{T \mid T \in \mathcal{T}_{1,3}\right.$ or T is a 4-circuit or T can be obtained from some $T^{\prime} \in \mathcal{T}_{1,3}$ by adding some edges each of which joins a pair of distance 2 leaves of $\left.T^{\prime}\right\}$

The following is the main result of this paper.
Theorem 1.5 Let G be a connected simple graph. Then G^{2} admits a 3-NZF if and only if $G \notin \overline{\mathcal{T}}_{1,3}$.

An immediate corollary of Theorem 1.5 is the following partial result to Tutte's 3-flow conjecture (Conjecture 1.2).

Corollary 1.6 Let G be a graph. If $\delta\left(G^{2}\right) \geq 4$ then G^{2} admits a $3-N Z F$.
This research is motivated by Conjecture 1.2 and the following open problem:
Conjecture 1.7 (Zhang [11]) If every edge of a 4-edge-connected graph G is contained in a circuit of length at most 3 or 4 , then G admits a $3-N Z F$.

Theorem 1.5 and the following early results are partial results of the open problem above.

Theorem 1.8 (Catlin [2]) If every edge of a graph G is contained in a circuit of length at most 4, then G admits a 4-NZF.

Theorem 1.9 (Lai [5]) Every 2-edge-connected, locally 3-edge-connected graph admits a $3-N Z F$.

Theorem 1.10 (Imrich and Skrekovski [3]) Let G and H be two graphs. Then $G \times H$ admits a 3-NZF if both G and H are bipartite.

2 Splitting operation, flow extension and lemmas

Definition 2.1 (A special splitting operation) Let G be a graph and $e=x y \in E(G)$. The graph $G_{* e}$ is obtained from G by deleting the edge e and adding two new vertices x^{\prime} and y^{\prime} and adding two new edges, e_{x} and e_{y}, joining x and y^{\prime}, y and x^{\prime}, respectively.

Definition 2.2 Let G be a graph, let (D, f) be a 3-flow of G and let $F \subseteq E(G) \backslash \operatorname{supp}(f)$. A 3-flow $\left(D^{\prime}, f^{\prime}\right)$ of G is called an (F, f)-changer if $F \cup \operatorname{supp}(f) \subseteq \operatorname{supp}\left(f^{\prime}\right)$.

Lemma 2.3 ([7]) A graph G admits a k-flow $\left(D, f_{1}\right)$ if and only if G admits a Modular k-flow $\left(D, f_{2}\right)$ such that $f_{1}(e) \equiv f_{2}(e)(\bmod k)$ for each $e \in E(G)$.

An orientation of a graph G is called a modular 3-orientation if $\left|E^{+}(v)\right| \equiv\left|E^{-}(v)\right|(\bmod 3)$, for every $v \in V(G)$. The following result appears in $[4,6,9]$, but by Lemma 2.3, we can attribute it to Tutte.

Lemma 2.4 ([7]) Let G be a graph. Then G admits a 3-NZF if and only if G has a modular 3-orientation.

A partial 3-orientation D of G is an orientation of some edges of G satisfying $\left|E^{+}(v)\right| \equiv\left|E^{-}(v)\right|(\bmod 3)$, for any $v \in V(G)$. The support of D is the set of edges oriented under D and is denoted by $\operatorname{supp}(D)$. Clearly the partial orientation obtained by reversing every oriented edge of a partial 3 -orientation is also a partial 3-orientation.

Let D be a partial 3-orientation of G and let $C=v_{0} v_{1} \cdots v_{k-1} v_{0}$ be a circuit of G. A circuit-operation along C is defined as following: For $0 \leq i \leq k-1$, if $D\left(v_{i} v_{i+1}\right)=v_{i} \rightarrow$ $v_{i+1}(\bmod k)$, then reverse the direction of this edge; if $\left(v_{i} v_{i+1}\right)(\bmod k)$ is not oriented under D, then orient it as $v_{i} \rightarrow v_{i+1}$; if $D\left(v_{i} v_{i+1}\right)=v_{i+1} \rightarrow v_{i}(\bmod k)$ then $v_{i} v_{i+1}$ loses it's orientation.

Lemma 2.5 Let G be a graph, (D, f) be a 3-flow of G and H be a subgraph of G
(1). If $H \cong W_{4}$ and $e \in E(H) \backslash \operatorname{supp}(f)$ is a center edge, then an $(\{e\}, f)$-changer exists.
(2). If H is a circuit of length 3 with $E(H) \cap \operatorname{supp}(f)=\{e\}$, then an $(E(H) \backslash\{e\}, f)$ changer exists.

Proof. (1). Since $H \cong W_{4}$, let x be the center of H and let $u_{1} u_{2} u_{3} u_{4} u_{1}$ be the 4circuit $H \backslash x$. Since G has a 3-flow (D, f), then G has a partial 3-orientation D^{*} with $\operatorname{supp}\left(D^{*}\right)=\operatorname{supp}(f)$. We need only to find a partial 3-orientation D^{\prime} such that $\operatorname{supp}\left(D^{*}\right) \cup$ $\{e\} \subseteq \operatorname{supp}\left(D^{\prime}\right)$. Since e is a center edge, without loss of generality, assume that $e=x u_{1}$.

First we assume $E(H) \backslash\{e\} \subseteq \operatorname{supp}\left(D^{*}\right)$. Without loss of generality, assume $D^{*}\left(u_{1} u_{2}\right)=$ $u_{1} \rightarrow u_{2}$. Then $D^{*}\left(u_{2} x\right)=x \rightarrow u_{2}$. Otherwise, we do a circuit-operation along $u_{1} u_{2} x u_{1}$ and then get a needed partial 3 -orientation D^{\prime} of G. For the same reason, u_{4} must be the tail (or head) of both $u_{1} u_{4}$ and $x u_{4}$. By symmetry, we consider the following two cases.

Case 1. $D^{*}\left(u_{1} u_{4}\right)=u_{1} \rightarrow u_{4}$ and $D^{*}\left(x u_{4}\right)=x \rightarrow u_{4}$.

We may assume that u_{3} is the tail (or head) of all edges incident with it in H. Otherwise, there exists a directed 2 -path $x u_{3} u_{i}$ (or $u_{i} u_{3} x$) for some $i \in\{2,4\}$. Then we do circuit-operations along $x u_{3} u_{i} x$ (or $u_{i} u_{3} x u_{i}$) and along $u_{1} u_{i} x u_{1}$. Therefore, we get a needed partial 3 -orientation of D^{\prime} of G.

If all edges in H have u_{3} as a tail, then we do circuit-operations along $x u_{1} u_{4} x$, along $u_{4} x u_{3} u_{4}$, along $x u_{3} u_{2} x$ and along $u_{2} x u_{1} u_{2}$; If all edges in H have u_{3} as a head, then we do circuit-operations along $u_{1} u_{2} u_{3} x u_{1}$ and along $u_{3} x u_{4} u_{3}$. In both cases, we get a needed partial 3-orientation D^{\prime} of G.

Case 2. $D^{*}\left(u_{1} u_{4}\right)=u_{4} \rightarrow u_{1}$ and $D^{*}\left(x u_{4}\right)=u_{4} \rightarrow x$.
Similar to Case 1, we may assume u_{3} be the tail (or head) of all edges incident with it in H. If all edges in H have u_{3} as a tail, then we do circuit-operations along $x u_{1} u_{4} x$, along $u_{3} u_{4} u_{1} u_{2} u_{3}$ and along $u_{3} x u_{2} u_{3}$; If all edges in H have u_{3} as a head, then we do circuit-operations along $u_{1} x u_{2} u_{1}$, along $u_{4} u_{1} u_{2} u_{3} u_{4}$ and along $u_{4} x u_{3} u_{4}$. In both cases, we get a needed partial 3-orientation D^{\prime} of G.

If $\operatorname{supp}\left(D^{*}\right)$ misses some other edges of $E(H)$, say $e^{*}=a b \in E(H) \backslash \operatorname{supp}\left(D^{*}\right)$, then we define $D^{*}(a b)=a \rightarrow b$ or $b \rightarrow a$, by the proof of Case 1 and Case 2, we can find a needed D^{\prime} of G.
(2). it is trivial.

Lemma 2.6 For each $G \in \overline{\mathcal{T}}_{1,3}$ and each $e_{0} \in E(G)$, the graph G^{2} admits a 3-flow (D, f) such that $\operatorname{supp}(f)=E\left(G^{2}\right) \backslash\left\{e_{0}\right\}$

Proof. Induction on $|E(G)|$. It is obviously true for graphs G with $G^{2}=K_{4}$ (including $G=C_{4}$, the circuit of length 4). So, assume that $|V(G)| \geq 5$ and let D be any fixed orientation of G^{2}.

Let $e=x y$ with $d_{G}(x)=d_{G}(y)=3$. Then $G_{* e}$ consists of two components, say G_{1} and G_{2}. Clearly, $G_{1}, G_{2} \in \overline{\mathcal{T}}_{1,3}$. Without loss of generality, let $e_{0} \in E\left(G_{1}\right)$. By induction, G_{1}^{2} admits a 3 -flow $\left(D, f_{1}\right)$ such that $\operatorname{supp}\left(f_{1}\right)=E\left(G_{1}^{2}\right) \backslash\left\{e_{0}\right\}$ and G_{2}^{2} admits a 3-flow $\left(D, f_{2}\right)$ that $\operatorname{supp}\left(f_{2}\right)=E\left(G_{2}^{2}\right) \backslash\{e\}$.

Then, identifying the split vertices and edges, back to $G,\left(D, f_{1}+f_{2}\right)$ is a 3 -flow (D, f) with $\operatorname{supp}(f)=E\left(G^{2}\right) \backslash\left\{e_{0}\right\}$.

Lemma 2.7 (1). Let G be a k-path with $k \geq 2$ or an m-circuit with $m=3$ or $m \geq 5$. Then G^{2} admits a 3-NZF.
(2). Let G be a graph obtained from an r-circuit $x_{0} x_{1} \cdots x_{r-1} x_{0}$ by attaching an edge $x_{i} v_{i}$ at each x_{i} for $0 \leq i \leq r-1$, where $v_{i} \neq v_{j}$ if $i \neq j$. Then G^{2} admits a 3-NZF.
(3). Let G be a graph obtained from an m-circuit $x_{0} x_{1} \cdots x_{m-1} x_{0}$ by attaching an edge $x_{m-1} v$ at x_{m-1} alone, where $m \geq 5$. Then G^{2} admits a $3-N Z F$.

Proof. (1). If G is an m-circuit with $m=3$ or $m \geq 5$, then G^{2} is a cycle (every vertex is of even degree) and G^{2} admits 2-NZF. If G is a k-path with $k \geq 2$, by induction on k and using Lemma 2.5-(2), G^{2} admits a 3 -NZF.
(2). For $r \geq 5$ (or $r=3$): let D be an orientation such that $v_{i}(0 \leq i \leq r-1)$ is the tail of every edge of G^{2} incident with it and all the other edges are oriented as
$x_{i} \rightarrow x_{i+1}, x_{i} \rightarrow x_{i+2}(\bmod r)\left(\right.$ or $x_{i} \rightarrow x_{i+1}(\bmod 3)$ only for $\left.r=3\right)$. Obviously, D is a modular 3-orientation of G^{2}.

For $r=4$: let D be the orientation such that v_{0} and v_{2} be the tail of every edge of G^{2} incident with it, v_{1} and v_{3} be the head of every edge of G^{2} incident with it, $x_{0} x_{1} x_{3} x_{2} x_{0}$ as a directed circuit and other edges are oriented as $x_{3} \rightarrow x_{0}, x_{1} \rightarrow x_{2}$. Obviously, D is a modular 3-orientation of G^{2}.
(3). Orient all the edges as $x_{i} \rightarrow x_{i+1}, x_{i} \rightarrow x_{i+2}(\bmod m)$ for $0 \leq i \leq m-1$ and let v be the tail of every edge of G^{2} incident with it. Then reverse the direction of the following edges: $x_{0} x_{m-1}, x_{0} x_{m-2}$. Clearly, this orientation is a modular 3-orientation of G^{2}.

3 Proof of the main theorem

Proof. \Longrightarrow By contradiction. Suppose $G \in \overline{\mathcal{T}}_{1,3}$. Let G be a counterexample with $|V(G)|+|E(G)|$ as small as possible. Clearly $|V(G)| \geq 5$ and G contains no circuits. So $G \in \mathcal{T}_{1,3}$. Let $v \in V(G)$ be a degree 3 vertex such that $N_{G}(v)=\left\{v_{1}, v_{2}, v_{3}\right\}, d_{G}\left(v_{1}\right)=$ $d_{G}\left(v_{2}\right)=1$. Clearly, $G_{1}=G \backslash\left\{v_{1}, v_{2}\right\} \in \mathcal{T}_{1,3}$. Since G^{2} has a modular 3-orientation D and both v_{1} and v_{2} are degree 3 vertices in G^{2}, then this orientation restricted to the edge set of G_{1}^{2} will generate a modular 3 -orientation of G_{1}^{2}. Therefore, G_{1}^{2} admits a 3 -NZF, a contradiction.
\Longleftarrow Let G be a counterexample to the theorem such that
(i). $|E(G)|-|V(G)|$ is as small as possible,
(ii). subject to (i), $|E(G)|$ is as small as possible.

Note that $|E(G)|-|V(G)|+1$ is the rank of the cycle space of G.
Claim 1. Let $e_{0}=x y \in E(G)$. If $d_{G}(x) \geq 3$ and $d_{G}(y) \geq 2$, then $x y$ is not a cut edge of G.

If e_{0} is a cut-edge, then at least one component of $G_{* e_{0}}$ is not in $\overline{\mathcal{T}}_{1,3}$, say, G_{1} is not, while G_{2} might be. By induction, let $\left(D, f_{i}\right)$ be a 3 -flow of G_{i}^{2} for each $i=1,2$ such that f_{1} is nowhere-zero, f_{2} might miss only one edge e_{x} (that is a copy of e_{0}). Without loss of generality, assume that $f_{1}\left(e_{y}\right)+f_{2}\left(e_{x}\right) \not \equiv 0(\bmod (3))$. Then, identifying the split vertices and edges, back to $G,\left(D, f_{1}+f_{2}\right)$ is a nowhere-zero Modular 3-flow of G^{2}. By Lemma 2.3, G^{2} admits a $3-\mathrm{NZF}$, a contradiction.

Claim 2. $d_{G}(x) \leq 3$ for any $x \in V(G)$.
Otherwise, assume that $d_{G}(x) \geq 4$ for some vertex $x \in V(G)$. Clearly $G \not \approx K_{1, m}$ for $m \geq 4$ since $K_{1, m}$ is not a counterexample. So there exists $e_{0}=x y \in E(G)$ with $d_{G}(y) \geq 2$. By Claim 1, e_{0} is not a cut edge of G and $G_{1}=G_{* e_{0}} \notin \overline{\mathcal{T}}_{1,3}$. Then by (i), G_{1}^{2} admits a $3-$ NZF.

In G_{1}^{2}, identify x and x^{\prime}, y and y^{\prime}, and use one edge to replace two parallel edges, by Lemma 2.3, we will get G^{2} and a Modular 3-flow (D, f) of G^{2} such that $E\left(G^{2}\right) \backslash \operatorname{supp}(f) \subseteq$ $\left\{x v\right.$ or $\left.y w \mid v \in N_{G}(y), w \in N_{G}(x)\right\}$. Let $C(x)=G^{2}\left[N_{G}(x) \cup\{x\}\right]$. Then $C(x)$ is a clique of order at least 5 . We are to adjust (D, f) so that the resulting Modular 3-flow (D, f^{\prime})
of G^{2} misses only edges of $\{u v \mid u, v \in V(C(x))\}$. For each edge $x v$ which is missed by $\operatorname{supp}(f)$ and $x v \notin E(C(x))$, xyvx must be a circuit of G^{2}, so let $\left(D, f_{x v}\right)$ be a 3 -flow of G^{2} with $\operatorname{supp}\left(f_{x v}\right)=\{x y, y v, x v\}$ and $f_{x v}(y v)+f(y v) \not \equiv 0(\bmod 3)$. Now $\left(D, f+f_{x v}\right)$ is a Modular 3 -flow of G^{2} whose support contains $x v, y v$, but may miss $x y$. Repeat this adjustment and do the similar adjustment for the edges $y w$ not in the support until we get a Modular 3-flow $\left(D, f^{\prime}\right)$ of G^{2} such that $E\left(G^{2}\right) \backslash \operatorname{supp}\left(f^{\prime}\right) \subseteq E(C(x))$. Since each edge in $C(x)$ is contained in some K_{5} and thus is a center edge in some W_{4}, by Lemma 2.3 and Lemma 2.5-(1), G^{2} admits a $3-\mathrm{NZF}$, a contradiction.

Claim 3. No degree 2 vertex is contained in a 3-circuit.
By contradiction. Assume $x y z x$ is a circuit of G with $d_{G}(x)=2$. If $d_{G}(y)=2$, then we must have $d_{G}(z)=3$. Therefore $G_{1}=G \backslash\{x y\} \notin \overline{\mathcal{T}}_{1,3}$ and $G_{1}^{2}=G^{2}$, contradicting (ii). So $d_{G}(y)=d_{G}(z)=3$.

Let $N_{G}(y)=\left\{x, y^{\prime}, z\right\}$ and $N_{G}(z)=\left\{x, y, z^{\prime}\right\}$. Let $G_{1}=G-\{x\}$. Since $\left(N_{G}(y) \cap\right.$ $\left.N_{G}(z)\right) \backslash\{x\}=\emptyset$ (otherwise, let $G_{2}=G \backslash\{y z\}$, then $G_{2}^{2}=G^{2}, G_{2} \notin \overline{\mathcal{T}}_{1,3}$, contradicting (ii)) and $d_{G_{1}}(y)=2$, then $G_{1} \notin \overline{\mathcal{T}}_{1,3}$. So G_{1}^{2} admits a 3-NZF. Since $E\left(G^{2}\right) \backslash E\left(G_{1}^{2}\right)=$ $\left\{x y, x y^{\prime}, x z, x z^{\prime}\right\}$, by Lemma 2.5-(2), G^{2} admits a $3-\mathrm{NZF}$, a contradiction.

Claim 4. No degree 2 vertex of G is contained in a 4-circuit.
Assume $C=x u_{1} u_{2} u_{3} x$ is a 4 -circuit of G and $d_{G}(x)=2$. By Claim $3, u_{1} u_{3} \notin E(G)$. Let u_{i}^{\prime} be the adjacent vertex of u_{i} which is not in $V(C)$ if $d_{G}\left(u_{i}\right)=3$ for some $i \in\{1,2,3\}$. Let $G_{1}=G \backslash\{x\}$. We consider the following 3 cases.

Case 1. $d_{G}\left(u_{1}\right)=d_{G}\left(u_{3}\right)=2$.
Then $d_{G}\left(u_{2}\right)=3$ and $d_{G}\left(u_{2}^{\prime}\right) \geq 2$ (if $d_{G}\left(u_{2}^{\prime}\right)=1$, it's easy to show G^{2} admits a 3 -NZF). Clearly, $u_{2} u_{2}^{\prime}$ is a cut edge, contradicting Claim 1.

Case 2. Exactly one of u_{1}, u_{3} has degree 3.
Assume $d_{G}\left(u_{1}\right)=3$ and $d_{G}\left(u_{3}\right)=2$. Since $d_{G_{1}}\left(u_{1}\right)=2$, if $d_{G_{1}}\left(u_{1}^{\prime}\right)=2$ then u_{1}^{\prime} is not contained in a 3 -circuit in G (by Claim 3), and so $G_{1} \notin \overline{\mathcal{T}}_{1,3}$. By induction, G_{1}^{2} admits a 3-NZF. Since $E\left(G^{2}\right) \backslash E\left(G_{1}^{2}\right)=\left\{x u_{1}^{\prime}, x u_{1}, x u_{2}, x u_{3}\right\}$ and $G^{2}\left[V(C) \cup\left\{u_{1}^{\prime}\right\}\right]$ contains a W_{4} with x as its center, by Lemma 2.5-(1), G^{2} admits a $3-\mathrm{NZF}$, a contradiction.

Case 3. $d_{G}\left(u_{1}\right)=d_{G}\left(u_{3}\right)=3$.
If $u_{1}^{\prime}=u_{3}^{\prime}$, then $u_{1}^{\prime} u_{1} u_{2} u_{3}$ is a 3-path, otherwise $u_{1}^{\prime} u_{1} u_{2} u_{3} u_{3}^{\prime}$ is 4 -path. In both cases G_{1}^{2} admits a 3 -NZF. Since $E\left(G^{2}\right) \backslash E\left(G_{1}^{2}\right)=\left\{x u_{1}^{\prime}, x u_{1}, x u_{2}, x u_{3}, x u_{3}^{\prime}\right\}$ and each edge $x u_{i}$ or $x u_{j}^{\prime}$ is contained in some W_{4} in G^{2} as a center edge for $1 \leq i \leq 3$ and $j=1,3$, by Lemma 2.5-(1), G^{2} admits a $3-\mathrm{NZF}$. a contradiction.

Claim 5. For any $v \in V(G), d_{G}(v) \neq 2$.
Otherwise, if there exists $v \in V(G)$ such that $d_{G}(v)=2$, then by Claim 3-4, v is not contained in any circuits of length 3 or 4 . By Lemma 2.7-(1), G cannot be a k-path with $k \geq 2$ or an m-circuit with $m=3$ or $m \geq 5$. Let us consider the following cases.

Case 1. There exists a path $P_{m}=v_{1} v_{2} \cdots v_{m}$ such that $m \geq 3, v=v_{t}$ for some $2 \leq t \leq m-1, d_{G}\left(v_{k}\right)=2$ for $2 \leq k \leq m-1$ and $d_{G}\left(v_{1}\right) \neq 2, d_{G}\left(v_{m}\right) \neq 2$.

Clearly, at least one of v_{1}, v_{m} has degree 3 . If $d_{G}\left(v_{i}\right)=3$ for $i=1$, or m, let $N_{G}\left(v_{i}\right) \backslash V\left(P_{m}\right)=\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}\right\}$. Clearly, $G_{1}=G \backslash\left\{v_{2}, v_{3}, \ldots, v_{m-1}\right\} \notin \mathcal{T}_{1,3}$ (because by

Claim 3, degree 2 vertices are not contained in any 3-circuits of G). By Claim 1, G_{1} is connected. So G_{1}^{2} admits a $3-\mathrm{NZF}\left(D, f_{1}\right)$. By Lemma 2.7-(1), P_{m}^{2} admits a $3-\mathrm{NZF}$ $\left(D, f_{2}\right)$. Then G^{2} admits a 3-flow (D, f) with $\operatorname{supp}(f)=\operatorname{supp}\left(f_{1}\right) \cup \operatorname{supp}\left(f_{2}\right)$. By Claim 3-4, $E\left(G^{2}\right) \backslash \operatorname{supp}(f)=\left\{v_{2} v_{1}^{\prime}, v_{2} v_{1}^{\prime \prime}, v_{m-1} v_{m}^{\prime}, v_{m-1} v_{m}^{\prime \prime}\right\}$, then by Lemma 2.5-(2), G^{2} admits a $3-\mathrm{NZF}$, a contradiction.

Case 2. There exists a m-circuit $C=v_{1} v_{2} \cdots v_{m} v_{1}$ with $m \geq 5, d_{G}\left(v_{i}\right)=2$ for $1 \leq i \leq m-1, d_{G}\left(v_{m}\right)=3$ and $v=v_{t}$ for some $1 \leq t \leq m-1$.

Suppose that $v_{0} \in N_{G}\left(v_{m}\right) \backslash V(C)$. By Claim 1, $d_{G}\left(v_{0}\right)=1$. So by Lemma 2.7-(3), G^{2} admits a $3-N Z F$, a contradiction.

Claim 6. Let $e=x y \in E(G)$ with $d_{G}(x)=d_{G}(y)=3$. Then e is contained in a circuit of length 3 or 4 .

By contradiction. Let G_{1} be the graph obtained from G by deleting the edge e and adding a new vertex y^{\prime} and a new edge $x y^{\prime}$. Since G contains no degree 2 vertices and $d_{G_{1}}(y)=2$, then $G_{1} \notin \overline{\mathcal{T}}_{1,3}$. By Claim $1, e$ is not a cut edge of G, then by (i), G_{1}^{2} admits a 3-NZF $\left(D, f_{1}\right)$. Identify y and y^{\prime}, the resulting 3 -flow $\left(D, f_{2}\right)$ in G^{2} misses only two edges $y_{1} x$ and $y_{2} x$ where $N(y)=\left\{y_{1}, y_{2}, x\right\}$ (since $x y$ is not contained a circuit of length 3 or 4). By Lemma 2.5-(2), G^{2} admits a $3-\mathrm{NZF}$, a contradiction.

Claim 7. For each $x \in V(G)$ with $d_{G}(x)=3,\left|N_{G}(x) \cap V_{3}\right| \leq 2$, where V_{3} is the set of all the degree 3 vertices of G.

By contradiction. Assume that $U=\left\{u_{1}, u_{2}, u_{3}\right\}=N_{G}(x) \cap V_{3}$. Let $G_{1}=G \backslash\{x\}$. By Claim 1, G_{1} is connected. Since G contains no degree 2 vertices, $G_{1} \notin \overline{\mathcal{T}}_{1,3}$ and G_{1}^{2} admits a 3 -NZF (D, f). By Claim 6 , each $x u_{i}(1 \leq i \leq 3)$ is contained a circuit of length at most 4. We consider the following 3 cases.

Case 1. $G[U]$ contains at least 2 edges.
Suppose that $u_{1} u_{2}, u_{2} u_{3} \in E(G)$. Let $u_{i}^{\prime} \in N_{G}\left(u_{i}\right) \backslash U$ for $i=1,3$. If $u_{1}^{\prime}=u_{3}^{\prime}$, then $G^{2}\left[U \cup\left\{u_{1}^{\prime}, x\right\}\right] \cong K_{5}$, by Lemma $2.5-(1)$, we can get a 3 -NZF of G^{2}, a contradiction. If $u_{1}^{\prime} \neq u_{3}^{\prime}$, then $G\left[u_{1}^{\prime} u_{1} u_{2} u_{3} u_{3}^{\prime}\right]$ is a 4 -path, by Lemma 2.5-(1) (similar to Case 3 of Claim 4), we can get a 3-NZF of G^{2}, a contradiction.

Case 2. $G[U]$ contains exactly 1 edge.
Assume that $u_{1} u_{2} \in E(G)$. By Claim 6, each edge $x u_{i}(i=1,2,3)$ is contained in a circuit of length 3 or 4 . So we may assume $z \in\left(N_{G}\left(u_{2}\right) \cap N_{G}\left(u_{3}\right)\right) \backslash\{x\}$. Clearly, $G^{*}=G^{2}[U \cup\{x, z\}] \cong K_{5}$. Let $u_{i}^{\prime} \in N_{G}\left(u_{i}\right) \backslash(U \cup\{z\})$ for $i=1,3$. Clearly, $E\left(G^{2}\right) \backslash$ $\operatorname{supp}(f) \subseteq E\left(G^{*}\right) \cup\left\{x u_{1}^{\prime}, x u_{3}^{\prime}\right\}$. Since $x u_{j} u_{j}^{\prime} x(j=1,3)$ is a circuit of G^{2}, we can get a 3-flow $\left(D, f_{1}\right)$ such that $E\left(G^{2}\right) \backslash \operatorname{supp}\left(f_{1}\right) \subseteq E\left(G^{*}\right)$. By Lemma 2.5-(1), we can get a 3-NZF of G^{2}, a contradiction.

Case 3. $G[U]$ contains no edges.
Assume that $z_{1} \in\left(N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right)\right) \backslash\{x\}$ and $z_{2} \in\left(N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{3}\right)\right) \backslash\{x\}$. Let $G_{2}=G \backslash\left\{x u_{1}\right\}$, then $G_{2} \notin \overline{\mathcal{T}}_{1,3}$ and G_{2}^{2} admits a 3-NZF $\left(D, f_{1}\right)$. Clearly, $E\left(G^{2}\right) \backslash$ $\operatorname{supp}\left(f_{1}\right)=\left\{x u_{1}\right\}$. Since $x u_{1}$ is contained in a W_{4} which is contained in the graph induced by $\left\{u_{1}, z_{1}, u_{2}, u_{3}, x\right\}$ in G^{2} with x as center, by Lemma 2.5-(1), we can get a 3 -NZF of G^{2}, a contradiction.

Final Step. By Claim 2, Claim 5 and Claim 7, all vertices of G have degree 1 or 3 and each degree 3 vertex is adjacent to at most 2 degree 3 vertices. So $G\left[V_{3}\right]$ is a path or a circuit, hence G must be a graph obtained from an r-circuit $x_{0} x_{1} \cdots x_{r-1} x_{0}$ by attaching an edge $x_{i} v_{i}$ at each x_{i} for $0 \leq i \leq r-1$, where $v_{i} \neq v_{j}$ if $i \neq j$, or a path $x_{0} x_{1} \cdots x_{p}$ by attaching an edge $v_{i} x_{i}(1 \leq i \leq p-1)$ at each x_{i}, where $v_{i} \neq v_{j}$ if $i \neq j$. Clearly the latter case is a graph in $\overline{\mathcal{T}}_{1,3}$. By Lemma 2.7-(2), G^{2} admits a $3-\mathrm{NZF}$, a contradiction.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. Macmillan, London, (1976).
[2] P. A. Catlin, Double cycle covers and the Petersen graph, J. Graph Theory, 13 (1989) 465-483.
[3] W. Imrich and R. Skrekovski, A theorem on integer flows on Cartesian product of graphs, J. Graph Theory, (to appear).
[4] F. Jaeger, Nowhere-zero flow problems, in: L. Beineke and R. Wilson, eds., Selected Topics in Graph Theory 3 (Wiley, New York, 1988)71-95.
[5] H.-J. Lai. Nowhere-zero 3-flows in locally connected graphs, J. Graph Theory, (to appear).
[6] R. Steinberg and D. H. Younger, Grötzsch's theorem for the projective plane, Ars Combin., 28, (1989)15-31.
[7] W. T. Tutte, On the embedding of linear graphs in surfaces, Proc. London Math. Soc., Ser. 2, 51 (1949)474-483.
[8] W. T. Tutte, A contribution on the theory of chromatic polynomial, Canad. J. Math., 6 (1954)80-91.
[9] D. H. Younger, Interger flows, J. Graph Theory, 7 (1983)349-357.
[10] C. Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, New York (1997).
[11] C. Q. Zhang, Integer Flows and Cycle Covers, Plenary lecture at Graph Theory Workshop, Nanjing Normal University, April, 1998.

[^0]: *Partially supported by the National Security Agency under Grant MDA904-01-1-0022.

