On the q-analogue of the sum of cubes

S. Ole Warnaar*
Department of Mathematics and Statistics, The University of Melbourne, VIC 3010, Australia
warnaar@ms.unimelb.edu.au

Submitted: Apr 7, 2004; Accepted: Aug 17, 2004; Published: August 23, 2004
2000 Mathematics Subject Classification: 05A19

Abstract

A simple q-analogue of the sum of cubes is given. This answers a question posed in this journal by Garrett and Hummel.

The sum of cubes and its q-analogues

It is well-known that the first n consecutive cubes can be summed in closed form as

$$
\sum_{k=1}^{n} k^{3}=\binom{n+1}{2}^{2}
$$

Recently, Garrett and Hummel discovered the following q-analogue of this result:

$$
\sum_{k=1}^{n} q^{k-1} \frac{\left(1-q^{k}\right)^{2}\left(2-q^{k-1}-q^{k+1}\right)}{(1-q)^{2}\left(1-q^{2}\right)}=\left[\begin{array}{c}
n+1 \tag{1}\\
2
\end{array}\right]^{2}
$$

where

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{\left(1-q^{n-k+1}\right)\left(1-q^{n-k+2}\right) \cdots\left(1-q^{n}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{k}\right)}
$$

is a q-binomial coefficient.
In their paper Garrett and Hummel commiserate the fact that (1) is not as simple as one might have hoped, and ask for a simpler sum of q-cubes. In response to this I propose the identity

$$
\sum_{k=1}^{n} q^{2 n-2 k} \frac{\left(1-q^{k}\right)^{2}\left(1-q^{2 k}\right)}{(1-q)^{2}\left(1-q^{2}\right)}=\left[\begin{array}{c}
n+1 \tag{2}\\
2
\end{array}\right]^{2}
$$

[^0]Proof. Since

$$
\left[\begin{array}{c}
n+1 \\
2
\end{array}\right]^{2}-q^{2}\left[\begin{array}{l}
n \\
2
\end{array}\right]^{2}=\frac{\left(1-q^{n}\right)^{2}\left(1-q^{2 n}\right)}{(1-q)^{2}\left(1-q^{2}\right)}
$$

equation (2) immediately follows by induction on n.
The form of (2) should not really come as a surprise in view of the fact that the q-analogue of the sum of squares

$$
\sum_{k=1}^{n} k^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

is given by

$$
\sum_{k=1}^{n} q^{2 n-2 k} \frac{\left(1-q^{k}\right)\left(1-q^{3 k}\right)}{(1-q)\left(1-q^{3}\right)}=\frac{\left(1-q^{n}\right)\left(1-q^{n+1}\right)\left(1-q^{2 n+1}\right)}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)}
$$

and the q-analogue of

$$
\sum_{k=1}^{n} k=\binom{n+1}{2}
$$

is

$$
\sum_{k=1}^{n} q^{2 n-2 k} \frac{\left(1-q^{k}\right)}{(1-q)}=\left[\begin{array}{c}
n+1 \\
2
\end{array}\right]
$$

References

[1] K. C. Garrett and K. Hummel, A combinatorial proof of the sum of q-cubes, Electron. J. Combin. 11 (2004), R9, 6pp.

[^0]: *Work supported by the Australian Research Council

