Chromatically Unique Multibridge Graphs

F.M. Dong

Mathematics and Mathematics Education, National Institute of Education Nanyang Technological University, Singapore 637616 fmdong@nie.edu.sg

K.L. Teo, C.H.C. Little, M. Hendy

Institute of Fundamental Sciences PN461, Massey University Palmerston North, New Zealand k.l.teo@massey.ac.nz, c.little@massey.ac.nz, m.hendy@massey.ac.nz

K.M. Koh

Department of Mathematics, National University of Singapore Singapore 117543 matkohkm@nus.edu.sg

Submitted: Jul 28, 2003; Accepted: Dec 13, 2003; Published: Jan 23, 2004 MR Subject Classification: 05C15

Abstract

Let $\theta(a_1, a_2, \dots, a_k)$ denote the graph obtained by connecting two distinct vertices with k independent paths of lengths a_1, a_2, \dots, a_k respectively. Assume that $2 \leq a_1 \leq a_2 \leq \dots \leq a_k$. We prove that the graph $\theta(a_1, a_2, \dots, a_k)$ is chromatically unique if $a_k < a_1 + a_2$, and find examples showing that $\theta(a_1, a_2, \dots, a_k)$ may not be chromatically unique if $a_k = a_1 + a_2$.

Keywords: Chromatic polynomials, χ -unique, χ -closed, polygon-tree

1 Introduction

All graphs considered here are simple graphs. For a graph G, let V(G), E(G), v(G), e(G), g(G), $P(G, \lambda)$ respectively be the vertex set, edge set, order, size, girth and chromatic polynomial of G. Two graphs G and H are chromatically equivalent (or simply χ -equivalent),

^{*}Corresponding author.

The electronic journal of combinatorics 11 (2004), #R12

symbolically denoted by $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. Note that if $H \sim G$, then v(H) = v(G) and e(H) = e(G). The chromatic equivalence class of G, denoted by [G], is the set of graphs H such that $H \sim G$. A graph G is chromatically unique (or simply χ -unique) if $[G] = \{G\}$. Whenever we talk about the chromaticity of a graph G, we are referring to questions about the chromatic equivalence class of G.

Let k be an integer with $k \ge 2$ and let a_1, a_2, \dots, a_k be positive integers with $a_i + a_j \ge 3$ for all i, j with $1 \le i < j \le k$. Let $\theta(a_1, a_2, \dots, a_k)$ denote the graph obtained by connecting two distinct vertices with k independent (internally disjoint) paths of lengths a_1, a_2, \dots, a_k respectively. The graph $\theta(a_1, a_2, \dots, a_k)$ is called a *multibridge* (more specifically k-bridge) graph (see Figure 1).

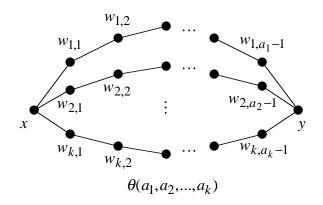


Figure 1

Given positive integers a_1, a_2, \dots, a_k , where $k \ge 2$, what is a necessary and sufficient condition on a_1, a_2, \dots, a_k for $\theta(a_1, a_2, \dots, a_k)$ to be chromatically unique? Many papers [2, 4, 10, 6, 11, 12, 13, 14] have been published on this problem, but it is still far from being completely solved [8, 9]. In this paper, we shall solve this problem under the condition that $\max_{1\le i\le k} a_i \le \min_{1\le i< j\le k} (a_i + a_j)$.

2 Known results

For two non-empty graphs G and H, an *edge-gluing* of G and H is a graph obtained from G and H by identifying one edge of G with one edge of H. For example, the graph $K_4 - e$ (obtained from K_4 by deleting one edge) is an edge-gluing of K_3 and K_3 . There are many edge-gluings of G and H. Let $\mathcal{G}_2(G, H)$ denote the family of all edge-gluings of G and H. Zykov [15] showed that any member of $\mathcal{G}_2(G, H)$ has chromatic polynomial

$$P(G,\lambda)P(H,\lambda)/(\lambda(\lambda-1)).$$
(1)

Thus any two members in $\mathcal{G}_2(G, H)$ are χ -equivalent.

For any integer $k \geq 2$ and non-empty graphs G_0, G_1, \dots, G_k , we can recursively define

$$\mathcal{G}_{2}(G_{0}, G_{1}, \cdots, G_{k}) = \bigcup_{\substack{0 \le i \le k \\ G' \in \mathcal{G}_{2}(G_{0}, \cdots, G_{i-1}, G_{i+1}, \cdots, G_{k})}} \mathcal{G}_{2}(G_{i}, G').$$
(2)

The electronic journal of combinatorics $\mathbf{11}$ (2004), $\#\mathrm{R12}$

Each graph in $\mathcal{G}_2(G_0, G_1, \dots, G_k)$ is also called an *edge-gluing* of G_0, G_1, \dots, G_k . By (1), any two graphs in $\mathcal{G}_2(G_0, G_1, \dots, G_k)$ are χ -equivalent.

Let C_p denote the cycle of order p. It was shown independently in [12] and [13] that if G is χ -equivalent to a graph in $\mathcal{G}_2(C_{i_0}, C_{i_1}, \dots, C_{i_k})$, then $G \in \mathcal{G}_2(C_{i_0}, C_{i_1}, \dots, C_{i_k})$. In other words, this family is a χ -equivalence class.

For k = 2, 3, the graph $\theta(a_1, a_2, \dots, a_k)$ is a cycle or a generalized θ -graph respectively, and it is χ -unique in both cases (see [10]). Assume therefore that $k \ge 4$. It is clear that if $a_i = 1$ for some i, say i = 1, then $\theta(a_1, a_2, \dots, a_k)$ is a member of $\mathcal{G}_2(C_{a_2+1}, C_{a_3+1}, \dots, C_{a_k+1})$ and thus $\theta(a_1, a_2, \dots, a_k)$ is not χ -unique. Assume therefore that $a_i \ge 2$ for all i. For k = 4, Chen, Bao and Ouyang [2] found that $\theta(a_1, a_2, a_3, a_4)$ may not be χ -unique.

Theorem 2.1 ([2]) (a) Let a_1, a_2, a_3, a_4 be integers with $2 \le a_1 \le a_2 \le a_3 \le a_4$. Then $\theta(a_1, a_2, a_3, a_4)$ is χ -unique if and only if $(a_1, a_2, a_3, a_4) \ne (2, b, b+1, b+2)$ for any integer $b \ge 2$.

(b) The χ -equivalence class of $\theta(2, b, b+1, b+2)$ is

$$\{\theta(2, b, b+1, b+2)\} \cup \mathcal{G}_2(\theta(3, b, b+1), C_{b+2}).$$

Thus the problem of the chromaticity of $\theta(a_1, a_2, \dots, a_k)$ has been completely settled for $k \leq 4$. For $k \geq 5$, we have

Theorem 2.2 ([14]) For $k \ge 5$, $\theta(a_1, a_2, \dots, a_k)$ is χ -unique if $a_i \ge k - 1$ for $i = 1, 2, \dots, k$.

Theorem 2.3 ([11]) Let $h \ge s+1 \ge 2$ or s = h+1. Then for $k \ge 5$, $\theta(a_1, a_2, \dots, a_k)$ is χ -unique if $a_2 - 1 = a_1 = h$, $a_j = h + s$ $(j = 3, \dots, k-1)$, $a_k \ge h + s$ and $a_k \notin \{2h, 2h + s, 2h + s - 1\}$.

Theorems 2.2 and 2.3 do not include the case where $a_1 = a_2 = \cdots = a_k < k - 1$.

Theorem 2.4 ([4], [6] and [13]) $\theta(a_1, a_2, \dots, a_k)$ is χ -unique if $k \ge 2$ and $a_1 = a_2 = \dots = a_k \ge 2$.

3 χ -closed families of g.p. trees

A k-polygon tree is a graph obtained by edge-gluing a collection of k cycles successively, i.e., a graph in $\mathcal{G}_2(C_{i_1}, C_{i_2}, \dots, C_{i_k})$ for some integers i_1, i_2, \dots, i_k with $i_j \geq 3$ for all $j = 1, 2, \dots, k$. A polygon-tree is a k-polygon tree for some integer k with $k \geq 1$. A graph is called a generalized polygon tree (g.p. tree) if it is a subdivision of some polygon tree. Let \mathcal{GP} denote the set of all g.p. trees. Dirac [3] and Duffin [5] proved independently that a 2-connected graph is a g.p. tree if and only if it contains no subdivision of K_4 .

A family S of graphs is said to be *chromatically closed* (or simply χ -closed) if $\bigcup_{G \in S} [G] = S$. By using Dirac's and Duffin's result, Chao and Zhao [1] obtained the following result. **Theorem 3.1 ([1])** The set \mathcal{GP} is χ -closed.

The family \mathcal{GP} can be partitioned further into χ -closed subfamilies. Let $G \in \mathcal{GP}$. A pair $\{x, y\}$ of non-adjacent vertices of G is called a *communication pair* if there are at least three independent x - y paths in G. Let c(G) denote the number of communication pairs in G. For any integer $r \geq 1$, let \mathcal{GP}_r be the family of all g.p. trees G with c(G) = r.

Theorem 3.2 ([13]) The family \mathcal{GP}_r is χ -closed for every integer $r \geq 1$.

Let G be a g.p. tree. We call a pair $\{x, y\}$ of vertices in G a pre-communication pair of G if there are at least three independent x-y paths in G. If x and y are non-adjacent, then $\{x, y\}$ is a communication pair. Assume that c(G) = 1. Then G is a subdivision of a k-polygon tree H for some $k \ge 2$. It is clear that G and H have the same pre-communication pairs. But not every pre-communication pair in H is a communication pair. Since c(G) = 1, only one pre-communication pair in H is transformed into a communication pair in G. If G has only one pre-communication pair, then G is a multibridge graph. Otherwise, G is an edge-gluing of a multibridge graph and some cycles. Therefore

$$\mathcal{GP}_{1} = \bigcup_{k \ge 3} \bigcup_{\substack{3 \le t \le k\\b_{1}, b_{2}, \cdots, b_{k} \ge 2}} \mathcal{G}_{2}(\theta(b_{1}, b_{2}, \cdots, b_{t}), C_{b_{t+1}+1}, \cdots, C_{b_{k}+1}).$$
(3)

Hence we have

Lemma 3.1 Let $a_i \geq 2$ for $i = 1, 2, \dots, k$, where $k \geq 3$. If $H \sim \theta(a_1, a_2, \dots, a_k)$, then H is either a k-bridge graph $\theta(b_1, \dots, b_k)$ with $b_i \geq 2$ for all i or an edge-gluing of a t-bridge graph $\theta(b_1, \dots, b_t)$ with $b_i \geq 2$ for all i and k - t cycles for some integer t with $3 \leq t \leq k - 1$.

Note that for
$$G \in \mathcal{G}_2(\theta(b_1, b_2, \dots, b_t), C_{b_{t+1}+1}, \dots, C_{b_k+1}),$$

$$e(G) = v(G) + k - 2.$$
(4)

4 A graph function

For any graph G and real number τ , write

$$\Psi(G,\tau) = (-1)^{1+e(G)} (1-\tau)^{e(G)-v(G)+1} P(G,1-\tau).$$
(5)

Observe that $\Psi(G,\tau) = \Psi(H,\tau)$ if $G \sim H$. However, the converse is not true. For example, $\Psi(G,\tau) = \Psi(G \cup mK_1,\tau)$ but $G \not\sim G \cup mK_1$ for any $m \geq 1$, where $G \cup mK_1$ is the graph obtained from G by adding m isolated vertices. However, we have

Lemma 4.1 For graphs G and H, if $G \sim H$, then $\Psi(G, \tau) = \Psi(H, \tau)$; if v(G) = v(H)and $\Psi(G, \tau) = \Psi(H, \tau)$, then $G \sim H$.

Proof. We need to prove only the second assertion. Observe from (5) that $\Psi(G, \tau)$ is a polynomial in τ with degree e(G) + 1. Thus e(G) = e(H). Since v(G) = v(H) and $\Psi(G, \tau) = \Psi(H, \tau)$, we have $P(G, 1 - \tau) = P(H, 1 - \tau)$. Therefore $G \sim H$. \Box

Thus, by Lemma 4.1, for any graph G, [G] is the set of graphs H such that v(H) = v(G)and $\Psi(H, \tau) = \Psi(G, \tau)$. In this paper, we shall use this property to study the chromaticity of $\theta(a_1, a_2, \dots, a_k)$. We first derive an expression for $\Psi(\theta(a_1, a_2, \dots, a_k), \tau)$.

The following lemma is true even if k = 1 or $a_i = 1$ for some *i*.

Lemma 4.2 For positive integers k, a_1, a_2, \cdots, a_k ,

$$\Psi(\theta(a_1, a_2, \cdots, a_k), \tau) = \tau \prod_{i=1}^k (\tau^{a_i} - 1) - \prod_{i=1}^k (\tau^{a_i} - \tau).$$
(6)

Proof. By the deletion-contraction formula for chromatic polynomials, it can be shown that

$$P(\theta(a_1, a_2, \cdots, a_k), \lambda) = \frac{1}{\lambda^{k-1}(\lambda - 1)^{k-1}} \prod_{i=1}^k \left((\lambda - 1)^{a_i + 1} + (-1)^{a_i + 1}(\lambda - 1) \right) + \frac{1}{\lambda^{k-1}} \prod_{i=1}^k \left((\lambda - 1)^{a_i} + (-1)^{a_i}(\lambda - 1) \right).$$

Let $\tau = 1 - \lambda$. Then

$$(-1)^{1+a_1+a_2+\dots+a_k}(1-\tau)^{k-1}P(\theta(a_1,a_2,\dots,a_k),1-\tau)$$

= $\tau \prod_{i=1}^k (\tau^{a_i}-1) - \prod_{i=1}^k (\tau^{a_i}-\tau).$

Since $v(G) = 2 - k + \sum_{i=1}^{k} a_i$ and $e(G) = \sum_{i=1}^{k} a_i$, by definition of $\Psi(G, \tau)$, (6) is obtained. \Box

Corollary 4.1 For positive integers k, a_1, a_2, \dots, a_k ,

$$\Psi(\theta(a_1, a_2, \cdots, a_k), \tau) = (-1)^k (\tau - \tau^k) + \sum_{\substack{1 \le r \le k \\ 1 \le i_1 < i_2 < \cdots < i_r \le k}} (-1)^{k-r} (\tau - \tau^{k-r}) \tau^{a_{i_1} + a_{i_2} + \cdots + a_{i_r}}.$$
 (7)

We are now going to find an expression for $\Psi(H,\tau)$ for any H in

$$\mathcal{G}_2(\theta(b_1, b_2, \cdots, b_t), C_{b_{t+1}+1}, \cdots, C_{b_k+1}).$$

Lemma 4.3 Let G and H be non-empty graphs, and $M \in \mathcal{G}_2(G, H)$. Then

$$\Psi(M,\tau) = \Psi(G,\tau)\Psi(H,\tau)/((-\tau)(1-\tau)).$$
(8)

Proof. Since v(M) = v(G) + v(H) - 2, e(M) = e(G) + e(H) - 1 and

$$P(M,\lambda) = P(G,\lambda)P(H,\lambda)/(\lambda(\lambda-1)),$$
(9)

by (5), (8) is obtained.

Lemma 4.4 Let $k, t, b_1, b_2, \dots, b_k$ be integers with $3 \le t < k$ and $b_i \ge 1$ for $i = 1, 2, \dots, k$. If $H \in \mathcal{G}_2(\theta(b_1, b_2, \dots, b_t), C_{b_{t+1}+1}, \dots, C_{b_k+1})$, then

$$\Psi(H,\tau) = \tau \prod_{i=1}^{k} (\tau^{b_i} - 1) - \prod_{i=1}^{t} (\tau^{b_i} - \tau) \prod_{i=t+1}^{k} (\tau^{b_i} - 1).$$
(10)

Proof. By (5), we have $\Psi(C_{b_i+1}, \tau) = (-\tau)(1-\tau)(\tau^{b_i}-1)$. Thus by (6) and (8), (10) is obtained.

5 χ -unique multibridge graphs

By Lemma 4.2, we can prove that $\theta(a_1, a_2, \dots, a_k) \cong \theta(b_1, b_2, \dots, b_k)$ if $\theta(a_1, a_2, \dots, a_k) \sim \theta(b_1, b_2, \dots, b_k)$.

Lemma 5.1 Let a_i and b_i be integers with $1 \le a_1 \le a_2 \le \cdots \le a_k$ and $1 \le b_1 \le b_2 \le \cdots \le b_k$, where $k \ge 3$. If

$$\theta(a_1, a_2, \cdots, a_k) \sim \theta(b_1, b_2, \cdots, b_k), \tag{11}$$

then $b_i = a_i$ for $i = 1, 2, \dots, k$.

Proof. By Lemma 4.1 and Corollary 4.1, we have

$$= \sum_{\substack{1 \le r \le k \\ 1 \le i_1 < i_2 < \dots < i_r \le k} \\ 1 \le i_1 < i_2 < \dots < i_r \le k}} (-1)^{k-r} \left(\tau - \tau^{k-r}\right) \tau^{a_{i_1} + a_{i_2} + \dots + a_{i_r}}$$

$$= \sum_{\substack{1 \le r \le k \\ 1 \le i_1 < i_2 < \dots < i_r \le k}} (-1)^{k-r} \left(\tau - \tau^{k-r}\right) \tau^{b_{i_1} + b_{i_2} + \dots + b_{i_r}},$$
(12)

after we cancel the terms $(-1)^k(\tau - \tau^k)$ from both sides. The terms with lowest power in both sides have powers $1 + a_1$ and $1 + b_1$ respectively. Hence $a_1 = b_1$.

Suppose that $a_i = b_i$ for $i = 1, \dots, m$ but $a_{m+1} \neq b_{m+1}$ for some integer m with $1 \leq m \leq k-1$. Since $a_i = b_i$ for $i = 1, 2, \dots, m$, by (12), we have

$$= \sum_{\substack{1 \le r \le k \\ 1 \le i_1 < i_2 < \cdots < i_r \le k \\ i_r > m}} (-1)^{k-r} (\tau - \tau^{k-r}) \tau^{a_{i_1} + a_{i_2} + \cdots + a_{i_r}} \\ = \sum_{\substack{1 \le r \le k \\ 1 \le i_1 < i_2 < \cdots < i_r \le k \\ i_r > m}} (-1)^{k-r} (\tau - \tau^{k-r}) \tau^{b_{i_1} + b_{i_2} + \cdots + b_{i_r}}.$$
(13)

The terms with lowest power in both sides of (13) have powers $1 + a_{m+1}$ and $1 + b_{m+1}$ respectively. Hence $a_{m+1} = b_{m+1}$, a contradiction. Therefore $b_i = a_i$ for $i = 1, 2, \dots, k$. \Box

Let a_i be an integer with $a_i \ge 2$ for $i = 1, 2, \dots, k$ and suppose that $a_1 \le a_2 \le \dots \le a_k$. We shall show that $\theta(a_1, a_2, \dots, a_k)$ is χ -unique if $a_k < a_1 + a_2$. It is well known (see [8]) that

Lemma 5.2 If $G \sim H$, then g(G) = g(H).

Theorem 5.1 If $2 \le a_1 \le a_2 \le \cdots \le a_k < a_1 + a_2$, where $k \ge 3$, then $\theta(a_1, a_2, \cdots, a_k)$ is chromatically unique.

Proof. By Theorem 2.2, we may assume that $a_1 \leq k - 2$.

By Lemmas 3.1 and 5.1, it suffices to show that $\theta(a_1, a_2, \dots, a_k) \not\sim H$ for any graph $H \in \mathcal{G}_2(\theta(b_1, b_2, \dots, b_t), C_{b_{t+1}+1}, \dots, C_{b_k+1})$, where t and b_i are integers with $3 \leq t < k$ and $b_i \geq 2$ for $i = 1, 2, \dots, k$. We may assume that $b_1 \leq b_2 \leq \dots \leq b_t$ and $b_{t+1} \leq \dots \leq b_k$. Suppose that $H \sim \theta(a_1, a_2, \dots, a_k)$. The girth of $\theta(a_1, a_2, \dots, a_k)$ is $a_1 + a_2$. Since

$$g(H) = \min\left\{\min_{1 \le i < j \le t} (b_i + b_j), \min_{t+1 \le i \le k} (b_i + 1)\right\},\tag{14}$$

by Lemma 5.2, we have $g(H) = a_1 + a_2$ and

$$\begin{cases} b_i + b_j \ge a_1 + a_2, & 1 \le i < j \le t, \\ b_i \ge a_1 + a_2 - 1, & t + 1 \le i \le k. \end{cases}$$
(15)

As $e(H) = e(\theta(a_1, a_2, \cdots, a_k))$, we have

$$a_1 + a_2 + \dots + a_k = b_1 + b_2 + \dots + b_k.$$
 (16)

By Lemma 4.1, (6) and (10), we have

$$\tau \prod_{i=1}^{k} (\tau^{a_i} - 1) - \prod_{i=1}^{k} (\tau^{a_i} - \tau) = \tau \prod_{i=1}^{k} (\tau^{b_i} - 1) - \prod_{i=1}^{t} (\tau^{b_i} - \tau) \prod_{i=t+1}^{k} (\tau^{b_i} - 1).$$
(17)

The electronic journal of combinatorics $\mathbf{11}$ (2004), $\#\mathrm{R12}$

We expand both sides of (17), delete $(-1)^k \tau$ from them and keep only the terms with powers at most $a_1 + a_2$. Since $a_i + a_j \ge a_1 + a_2$ and $b_i + b_j \ge a_1 + a_2$ for all i, j with $1 \le i < j \le k$, we have

$$(-1)^{k-1} \sum_{i=1}^{k} \tau^{a_i+1} + (-1)^{k-1} \tau^k + (-1)^k \sum_{i=1}^{k} \tau^{k-1+a_i}$$

$$\equiv (-1)^{k-1} \sum_{i=1}^{k} \tau^{b_i+1} + (-1)^{k-1} \tau^t + (-1)^k \sum_{i=1}^{t} \tau^{b_i+t-1} + (-1)^k \sum_{i=t+1}^{k} \tau^{b_i+t} \pmod{\tau^{a_1+a_2+1}}.$$
 (18)

Observe that $b_i + t > a_1 + a_2$ for $t + 1 \le i \le k$ and $k - 1 + a_i > a_1 + a_2$ for $2 \le i \le k$. Thus

$$(-1)^{k-1} \sum_{i=1}^{k} \tau^{a_i+1} + (-1)^{k-1} \tau^k + (-1)^k \tau^{k-1+a_1}$$

$$\equiv (-1)^{k-1} \sum_{i=1}^{k} \tau^{b_i+1} + (-1)^{k-1} \tau^t + (-1)^k \sum_{i=1}^{t} \tau^{b_i+t-1} \pmod{\tau^{a_1+a_2+1}}.$$

Hence

$$\sum_{i=1}^{k} \tau^{a_i+1} + \tau^k + \sum_{i=1}^{t} \tau^{b_i+t-1} \equiv \sum_{i=1}^{k} \tau^{b_i+1} + \tau^t + \tau^{k-1+a_1} \pmod{\tau^{a_1+a_2+1}}.$$
 (19)

Since $t \ge 3$, we have $b_i + t - 1 > a_1 + a_2$ for $i \ge t + 1$. If $b_2 + t - 1 \le a_1 + a_2$, then since $k - 1 + a_1 > k$, the left side of (19) contains more terms with powers at most $a_1 + a_2$ than does the right side, a contradiction. Hence $b_i + t - 1 > a_1 + a_2$ for $2 \le i \le t$. Therefore

$$\sum_{i=1}^{k} \tau^{a_i+1} + \tau^k + \tau^{b_1+t-1} \equiv \sum_{i=1}^{k} \tau^{b_i+1} + \tau^t + \tau^{k-1+a_1} \pmod{\tau^{a_1+a_2+1}}.$$
 (20)

Note that $t \leq a_1 + a_2$; otherwise, since k > t and $a_1, b_1 \geq 2$, (20) becomes

$$\sum_{i=1}^{k} \tau^{a_i+1} = \sum_{i=1}^{k} \tau^{b_i+1},$$

which implies the equality of the multisets $\{a_1, a_2, \ldots, a_k\}$ and $\{b_1, b_2, \ldots, b_k\}$ in contradiction to (17).

Claim 1: There are no i, j such that

$$\{b_1, \cdots, b_{i-1}, b_{i+1}, \cdots, b_k\} = \{a_1, \cdots, a_{j-1}, a_{j+1}, \cdots, a_k\}$$

as multisets.

Otherwise, by (16), $\{b_1, \dots, b_k\} = \{a_1, \dots, a_k\}$ as multisets, which leads to a contradiction by (17).

Claim 2: $a_2 \ge k - 1$.

If $a_2 < k - 1$, then $a_1 + k - 1 > a_1 + a_2$. But $a_i + 1 \le a_1 + a_2$ for $1 \le i \le k$. So, by (20), the multiset $\{a_1, \dots, a_{j-1}, a_{j+1}, \dots, a_k\}$ is a subset of the multiset $\{b_1, \dots, b_k\}$ for some j with $1 \le j \le k$, which contradicts Claim 1.

Claim 3: $a_1 = t - 1$.

Since τ^t is a term of the right side of (20), the left side also contains τ^t . But k > t, $b_1 + t - 1 > t$ and, by Claim 2, $a_i + 1 \ge k > t$ for $i \ge 2$. Therefore $a_1 + 1 = t$.

By Claim 3, (20) is simplified to

$$\sum_{k=2}^{k} \tau^{a_i+1} + \tau^k + \tau^{b_1+t-1} \equiv \sum_{i=1}^{k} \tau^{b_i+1} + \tau^{k-1+a_1} \pmod{\tau^{a_1+a_2+1}}.$$
 (21)

Claim 4: $b_1 = k - 1$.

Note that $k < a_1 + a_2$, by Claim 2. As τ^k is a term of the left side of (21), the right side also contains this term. Thus $b_i + 1 = k$ for some *i*. If i > t, then by (15) and Claims 2 and 3, we

$$b_i \ge a_1 + a_2 - 1 \ge k + t - 3 \ge k,$$

a contradiction. Thus $i \leq t$ and $b_1 \leq b_i = k - 1$. If $b_1 \leq k - 2$, then the right side of (21) has a term with power at most k - 1. But the left side has no such term, a contradiction. Hence $b_1 = k - 1$.

By Claims 3 and 4, we have $\tau^{b_1+t-1} = \tau^{k-1+a_1}$. Thus (21) is further simplified to

$$\sum_{i=2}^{k} \tau^{a_i+1} + \tau^k \equiv \sum_{i=1}^{k} \tau^{b_i+1} \pmod{\tau^{a_1+a_2+1}}.$$
(22)

Therefore the multiset $\{a_2, a_3, \dots, a_k\}$ is a subset of the multiset $\{b_1, b_2, \dots, b_k\}$, in contradiction to Claim 1.

Therefore $H \not\sim \theta(a_1, a_2, \dots, a_k)$ and we conclude that $\theta(a_1, a_2, \dots, a_k)$ is χ -unique. \Box

6 χ -equivalent graphs

In Section 5, we proved that $\theta(a_1, a_2, \dots, a_k)$ is χ -unique if

$$\max_{1 \le i \le k} a_i < \min_{1 \le i < j \le k} (a_i + a_j).$$

$$\tag{23}$$

Lemma 6.1 shows that, for any non-negative integer n, there exist examples where the graph $\theta(a_1, a_2, \ldots, a_k)$ is not χ -unique and

$$\max_{1 \le i \le k} a_i - \min_{1 \le i < j \le k} (a_i + a_j) = n.$$
(24)

Lemma 6.1 (i) $\theta(2, 2, 2, 3, 4) \sim H$ for every $H \in \mathcal{G}_2(\theta(2, 2, 3), C_4, C_4)$.

(ii) For $k \ge 4$ and $a \ge 2$, $\theta(k-2, a, a+1, \dots, a+k-2) \sim H$ for every $H \in \mathcal{G}_2(\theta(k-1, a, a+1, \dots, a+k-3), C_{a+k-2}).$

(iii) For $k \geq 5$, $\theta(2, 3, \dots, k-1, k, k-3) \sim H$ for every graph H in $\mathcal{G}_2(\theta(2, 3, \dots, k-1), C_{k-1}, C_k)$.

It is straightforward to verify Lemma 6.1 by using Lemmas 4.1, 4.2 and 4.4.

It is natural to ask the following question: for which choices of (a_1, a_2, \ldots, a_k) satisfying $k \ge 5$ and

$$\max_{1 \le i \le k} a_i = \min_{1 \le i < j \le k} (a_i + a_j)$$

is the graph $\theta(a_1, a_2, \ldots, a_k)$ chromatically unique? If $\theta(a_1, a_2, \cdots, a_k)$ is not χ -unique, what is its χ -equivalence class? The solution to this question will be given in another paper.

References

- C.Y. Chao and L.C. Zhao, Chromatic polynomials of a family of graphs, Ars. Combin. 15 (1983) 111-129.
- [2] X.E. Chen, X.W. Bao and K.Z. Ouyang, Chromaticity of the graph $\theta(a, b, c, d)$, J. Shaanxi Normal Univ. **20** (1992) 75-79.
- [3] G.A. Dirac, A property of 4-chromatic graphs and some results on critical graphs, J. London Math. Soc. 27 (1952) 85-92.
- [4] F.M. Dong, On chromatic uniqueness of two infinite families of graphs, J. Graph Theory 17 (1993) 387-392.
- [5] R.J. Duffin, Topology of series-parallel networks, J. Math. Anal. Appl. 10 (1965) 303-318.
- [6] K.M. Koh and C.P. Teo, Some results on chromatically unique graphs, Proc. Asian Math. Conf. (World Scientific, Singapore, 1990) 258-262.
- [7] K.M. Koh and C.P. Teo, Chromaticity of series-parallel graphs, *Discrete Math.* 154 (1996) 289-295.
- [8] K.M. Koh and K.L. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259-285.
- [9] K.M. Koh and K.L. Teo, The search for chromatically unique graphs -II, Discrete Math. 172 (1997) 59-78.
- [10] B. Loerinc, Chromatic uniqueness of the generalized θ -graphs, *Discrete Math.* 23 (1978) 313-316.

- [11] Y.H. Peng, On the chromatic coefficients of a graph and chromatic uniqueness of certain *n*-partition graphs, in: Combinatorics, Graph Theory, Algorithms and Applications (Beijing, 1993) (World Scientific, River Edge, NJ, 1994) 307-316.
- [12] C.D. Wakelin and D.R. Woodall, Chromatic polynomials, polygon trees and outerplanar graphs, J. Graph Theory 16 (1992) 459-466.
- [13] S.J. Xu, Classes of chromatically equivalent graphs and polygon trees, *Discrete Math.* 133 (1994) 267-278.
- [14] S.J. Xu, J.J. Liu and Y.H. Peng, The chromaticity of s-bridge graphs and related graphs, *Discrete Math.* 135 (1994) 349-358.
- [15] A.A. Zykov, On some properties of linear complexes, Amer. Math. Soc. Transl. No. 79 (1952); translated from Math. Sb. 24(66) (1949) 163-188.