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Abstract

In 1958, Richard Guy proved that the number of partitions of n into odd parts
greater than one equals the number of partitions of n into distinct parts with no
powers of 2 allowed, which is closely related to Euler’s famous theorem that the
number of partitions of n into odd parts equals the number of partitions of n into
distinct parts. We consider extensions of Guy’s result, which naturally lead to a
new algorithm for producing bijections between various equivalent partition ideals
of order 1, as well as to two new infinite families of parity results which follow from
Euler’s Pentagonal Number Theorem and a well-known series-product identity of
Jacobi.

1 Introduction

A partition λ of the integer n is a representation of n as a sum of positive integers wherein
the order of the summands is considered irrelevant. Accordingly, the summands can be
rearranged in any order that seems convenient. Often in the literature, the summands
are placed in nonincreasing order, but as we shall see, other canonical representations of
partitions are useful in various contexts. A summand in a partition is called a part of the
partition.

One of the most elegant partition identities known was discovered by Euler:
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Euler’s Partition Identity. The number of partitions of n into odd parts equals the
number of partitions of n into distinct parts.

Proofs of this result abound [3, p. 5], [9, p. 277].
In a brief note published in 1958, Richard Guy [8] gave a variety of proofs for a similar

result:

Guy’s Partition Identity. The number of partitions of n into odd parts greater than
one equals the number of partitions of n into distinct parts which are not powers of 2.

In 1971, M.V. Subbarao generalized the results of Euler and Guy as follows:

Subbarao’s Partition Identity. For any sets of positive integers S1 and S2, the number
of partitions of n into parts taken from S1 equals the number of partitions of n into parts
taken from S2 with no part repeated more than m − 1 times if and only if mS2 ⊆ S2 and
S1 = S2 − mS2.

Our goal in this paper is to naturally extend the results of Guy and Subbarao via
a 2-parameter generalization, which will in turn motivate some more general results.
A bijective proof of an extension of Guy’s result (Theorem 3.1), combined with P. A.
MacMahon’s “partitions of infinity”, will naturally suggest bijective proofs for an infinite
class of equivalent partition ideals of order 1, as defined by Andrews [2]. This rather
general result is given as Theorem 3.6. Note that the bijections produced are those of
Remmel [24], but the algorithm given for producing them here is direct and straight
forward, whereas Remmel’s method is based on the involution principle of Garsia and
Milne [5], and is therefore quite arduous. Gordon [6] and O’Hara [20] have supplied
accelerated algorithms for producing the Remmel bijections, but these still do not remove
the mystery of why Glaisher-type bijections arise from their application. We shall discuss
this further in Section 3.4. We will also prove a number of parity results for two special
cases of our 2-parameter generalization in Section 4. We shall begin by reviewing the
necessary background material in Section 2.

2 Background Material

2.1 Andrews’ Partition Ideals of Order 1

In [2], and again in [3, Chapter 8], Andrews demonstrated how to place a lattice theoretic
structure on certain sets of partitions, and derived some rather general results which
explain a large class of partition identities. In order to keep this present work relatively
self-contained, we shall informally review the material necessary for our present purposes.
The interested reader is strongly encouraged to consult [2] or [3] directly.

Many famous partition identities involve restricted sets of partitions C in which the
conditions on the parts are such that if one or more parts of a partition λ ∈ C are
removed, the resulting partition λ′ is also in C. For example, in Euler’s partition identity,
a partition which has only odd parts will still be a partition into only odd parts if one
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or more of its parts are removed. The same property holds for partitions into distinct
parts and to both classes of partitions mentioned in Guy’s partition identity. Such sets
of partitions are called partition ideals.

Any partition λ may be written in the form

f1 · 1 + f2 · 2 + f3 · 3 + f4 · 4 + · · · ,

or more briefly, as
{f1, f2, f3, f4, . . .},

where fi represents the number of times the positive integer i occurs as a part in the
partition.

For example, the partition

6 + 6 + 6 + 6 + 4 + 4 + 3 + 2 + 2 + 2 + 2 + 1 + 1

= 2 · 1 + 4 · 2 + 1 · 3 + 2 · 4 + 0 · 5 + 4 · 6 + 0 · 7 + 0 · 8 + 0 · 9 + · · ·
may be represented by the frequency sequence

{2, 4, 1, 2, 0, 4, 0, 0, 0, 0, 0, 0, . . .}.
Thus each sequence {fi}∞i=1, where each fi is a nonnegative integer and only finitely

many of the fi are nonzero, represents a partition of the integer
∑∞

i=1 fi · i. Let S denote
the set of all such sequences {fi}∞i=1.

Andrews goes on to define the order of a partition ideal [2, p. 19, Definition 8].
Informally, the order of a partition ideal is the “width of the lens” necessary to determine
whether or not a given partition is a member of a given partition ideal. Each of the
partition ideals in the partition identities of Euler and Guy is of order 1 since one never
has to look at more than one fi at a time to determine whether a given partition is in the
partition ideal in question. For example, the partition ideal O of partitions into odd parts
contains all partitions whose frequency sequence representation has fi = 0 whenever i is
even. The partition ideal D of partitions into distinct parts contains all partitions whose
frequency sequence representation has fi ≤ 1 for all positive integers i.

In contrast, the partition ideal R of partitions into distinct, nonconsecutive parts is a
partition ideal of order greater than 1 because consideration of individual terms of {fi}∞i=1

is not always sufficient to determine whether or not a given partition is in R.
To formally define a partition ideal of order 1, we need to first define the auxilliary

sequence λ
(1)
k . If λ is a partition (thought of in terms of its frequency sequence represen-

tation {fi}∞i=1), then define λ
(1)
k to be the sequence obtained by changing every term of

{fi}∞i=1 to 0 except for the kth term, which is left unchanged. Thus,

λ
(1)
k := {0, 0, 0, 0, 0, . . . , 0, 0, fk, 0, 0, 0, 0, . . .},

where fk is the kth term of the sequence. A partition ideal C is of order 1 if and only if
for any partition λ which is not in C, there exists a corresponding λ

(1)
k such that λ

(1)
k is

also not in C.
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Andrews [1, p. 124, Theorem 8.1] proved that a partition ideal C is of order 1 if and
only if there exists a sequence {dj}∞j=1 such that

C =
{
{fi}∞i=1 ∈ S

∣∣∣ fi ≤ di for all i
}

where each di is a nonnegative integer or +∞. Since, for each positive integer j, it suffices
to take dj = sup{fi}∞i=1

fj, let us make the following definition:

Definition 2.1. For any partition ideal C of order 1, define its minimal bounding sequence,
denoted by {dC

j }∞j=1, by

dC
j = sup

{fi}∞i=1∈C

fj ,

for j = 1, 2, 3, . . . .

Thus, using the examples mentioned above, {dO
j }∞j=1 = {∞, 0,∞, 0,∞, 0, . . .} and

{dD
j }∞j=1 = {1, 1, 1, 1, 1, 1, . . .}.
Let p(C, n) denote the number of partitions of an integer n in the partition ideal

C. We say that two partition ideals C1 and C2 are equivalent, and write C1 ∼ C2,
if p(C1, n) = p(C2, n) for all integers n. (It is easily verified that ∼ is an equivalence
relation.) Thus Euler’s partition identity is merely the assertion that O ∼ D. Similarly,
Guy’s partition theorem asserts the equivalence of two partition ideals.

Finally, we make the following definition:

Definition 2.2. For any partition ideal C, define the multiset associated with C, M(C),
as follows:

M(C) := {j(dC
j + 1)

∣∣∣ j ∈ N and dC
j < ∞},

where N denotes the positive integers.

Andrews [2, p. 22, Theorem 3] classified all partition ideals of order 1 by proving that
C1 ∼ C2 if and only if M(C1) = M(C2).

2.2 MacMahon’s Partitions of Infinity

In a footnote [17, p. 119], and again in [18, p. 642], MacMahon defined a partition of
infinity to be a formal expression of the form

(g1 − 1) · 1 + (g2 − 1) · g1 + (g3 − 1) · (g1g2) + (g4 − 1) · (g1g2g3) + · · ·
where each gi is an integer larger than 1, or for some fixed K, g1, g2, g3, . . . , gK−1 are each
integers greater than 1, gK = ∞, and gi = 1 if i > K.

Note that a partition of infinity may be thought of as the partition ideal of order 1
with minimal bounding sequence given by

di =




g1 − 1, if i = 1

gk+1 − 1, if i =
∏k

j=1 gj for some k ∈ Z+

0, otherwise.
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An important special case of a partition of infinity occurs when gi = m for all i, where
m is a fixed integer greater than 1. This leads to the “base m expansion” of any integer.

All partitions of infinity have generating function 1/(1− q), and thus contain a unique
partition of each nonnegative integer.

3 Extending Guy’s Partition Identity

3.1 A first step

Fix an integer m > 1 and an integer j > 0 such that m - j. Let p1(n; m, j) be the number
of partitions of n with no parts divisible by m and no parts equal to j. Let p2(n; m, j) be
the number of partitions of n with no parts of the form mkj, k ≥ 0, and at most m − 1
copies of each part present. The following theorem then generalizes Guy’s result (which
is the case m = 2, j = 1 of Theorem 3.1).

Theorem 3.1. For all n, p1(n; m, j) = p2(n; m, j).

Remark 3.2. We note that Theorem 3.1 is a simple corollary of Andrews’ classification
theorem for partition ideals of order 1 [2, p. 22, Theorem 3], which was proved via gener-
ating functions. We provide a proof via a bijection between the two sets of partitions in
question. The idea behind this bijection appears to have been used first by Glaisher [7] in
a slightly different setting. We present it here to motivate several natural generalizations,
which will lead to bijections between a large number of pairs of equivalent partition ideals
of order 1 in Sections 3.2 and 3.3.

Proof of Theorem 3.1. Consider a partition λ of n which is counted by p1(n; m, j). Then
we know that no part λi of λ is equal to j and no part λi is divisible by m. Thus,

n = fλ1λ1 + fλ2λ2 + · · · + fλsλs,

for some frequency values fλ1 , fλ2, . . . , fλs . To obtain a partition λ′ which is counted by
p2(n; m, j), we write each coefficient fλi

in base m notation. That is,

fλi
= aλi,km

k + aλi,k−1m
k−1 + · · ·+ aλi,1m + aλi,0

with 0 ≤ ai,j ≤ m − 1 for each i and j. Then we know

n = (aλ1,0 + aλ1,1m + aλ1,2m
2 + · · ·+ aλ1,km

k)λ1

+ (aλ2,0 + aλ2,1m + aλ2,2m
2 + · · ·+ aλ2,km

k)λ2

...

+ (aλs,0 + aλs,1m + aλs,2m
2 + · · ·+ aλs,km

k)λs.
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Distributing each of the λi over the base m expansion of fλi
, we obtain

n = aλ1,0(λ1) + aλ1,1(λ1m) + aλ1,2(λ1m
2) + · · · + aλ1,k(λ1m

k)

+ a2,0(λ2) + aλ2,1(λ2m) + aλ2,2(λ2m
2) + · · ·+ aλ2,k(λ2m

k)
...

+ aλs,0(λs) + aλs,1(λsm) + aλs,2(λsm
2) + · · · + aλs,k(λsm

k).

Since λi 6= j and m - λi for each i, 1 ≤ i ≤ s, we know that none of the parenthesized
terms of the form (mtλi) in the above are of the form (mlj) for some integer l. Thus, we
know that the above is a partition counted by p2(n; m, j) since each coefficient ai,j ≤ m−1
for each value of i and j.

The inverse of the map is more straightforward to write. We begin with a partition
λ′ = λ1 + λ2 + · · ·+ λr counted by p2(n; m, j). For each i, 1 ≤ i ≤ r, we write λi = mkiαi

with ki ≥ 0 and (m, αi) = 1. Then the corresponding partition λ counted by p1(n; m, j) is

n = mk1α1 + mk2α2 + · · ·+ mkrαr.

Note that m - αi for each i and that αi 6= j for any i (since no part λi is of the form mkj
for some k). Therefore, λ is indeed a partition counted by p1(n; m, j).

An example may prove beneficial at this time.

Example 3.3. Consider the partition

8 + 8 + 8 + 8 + 8 + 7 + 5 + 5 + 5 + 4 + 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

= (13)1 + (2)4 + (3)5 + (1)7 + (5)8

counted by p1(83; 3, 2). Writing the base 3 expansion of each of the parenthesized frequen-
cies, we have

83 = (1 · 1 +1 · 3 + 1 · 32 ) 1
+ (2 · 1 ) 4
+ ( +1 · 3 ) 5
+ (1 · 1 ) 7
+ (2 · 1 +1 · 3 ) 8,

and by distributing the λi over the expanded frequencies, we obtain

83 = 1(1) +1(3) + 1(9)
+ 2(4)
+ 1(15)
+ 1(7)
+ 2(8) +1(24).

This provides the partition

24 + 15 + 9 + 8 + 8 + 7 + 4 + 4 + 3 + 1
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counted by p2(83; 3, 2).
Similarly, we can write the parts of the partition

24 + 15 + 9 + 8 + 8 + 7 + 4 + 4 + 3 + 1

counted by p2(83; 3, 2) as

31 · 8 + 31 · 5 + 32 · 1 + 30 · 8 + 30 · 8 + 30 · 7 + 30 · 4 + 30 · 4 + 31 · 1 + 30 · 1
which yields the partition

8 + 8 + 8 + 8 + 8 + 7 + 5 + 5 + 5 + 4 + 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

rather quickly.

A comment is in order regarding another proof technique for Theorem 3.1. In 1969,
Andrews [1] defined an Euler pair as a pair of sets (S1, S2) such that, for all natural
numbers n, the number of partitions of n into parts taken from S1 equals the number
of partitions of n into distinct parts taken from S2. Two years later, M. V. Subbarao
[25] generalized Andrews’ idea by defining an Euler pair (S1, S2) of order m where the
number of partitions of n into parts taken from S1 equals the number of partitions of n
into parts taken from S2 with no part repeated more than m − 1 times in any partition.
He then proved that (S1, S2) is an Euler pair of order m if and only if mS2 ⊆ S2 and
S1 = S2 − mS2. We close this section by noting that Theorem 3.1 can be proved using
Subbarao’s result. The set of parts allowable in those partitions counted by p1(n; m, j) is
S1 = N−({j} ∪ {mi | i ∈ N}) , while the set of parts allowable in those partitions counted
by p2(n; m, j) is S2 = N−{mkj | k = 0, 1, 2, . . .}. It is a straightforward exercise to prove
that mS2 ⊆ S2 and S1 = S2 − mS2, yielding infinitely many (previously unpublished)
Euler pairs of order m.

3.2 Further generalization

Let us now define p1(n; m, J) where n is an integer, m is a positive integer and J is a set
of positive integers, none of which is a multiple of m, to be the number of partitions of n
into nonmultiples of m where no element of the set J appears as a part. A bijective map
between the partitions enumerated by p1(n; m, J) and another class of partitions can be
found by a generalization of the method given in the proof of Theorem 3.1.

The idea is as follows: For any valid m and J , the partitions enumerated by p1(n; m, J)
come from a partition ideal of order 1 whose minimal bounding sequence contains only
zeros and infinities. In Theorem 3.1, the bijection was created by taking the base m
expansion of each fi. But, the base m expansion is simply a special case of MacMahon’s
partitions of infinity. So by expanding the fi by various different partitions of infinity, we
can map the partitions enumerated by p1(n; m, J) to any other partition ideal of order 1
which is in the same equivalence class.

Note also that the set of equivalence classes which contain a partition ideal whose
minimial bounding sequence consists only of zeros and infinities is precisely the equivalence
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class of order 1 partition ideals C whose associated multiset M(C) contains no repeated
elements.

Also, we acknowledge that while the use of two parameters m and J provides a con-
venient way to generalize the Euler and Guy identities, the m is actually superfluous in
the following sense: once we allow J to be a set of forbidden parts, we have the freedom
to allow J to contain all multiples of some fixed m, or not, as we see fit.

Let now us consider the following example.

Example 3.4. We will give a bijective proof of the fact that the number of partitions of
n into parts not equal to 2, 5, 6, 9, 10, 12, 18 or 20 is equal to the number of partitions
of n where 5 and 6 do not appear as parts, 1, 9, and 10 may appear at most once, 3
and 4 may appear at most twice, 2 may appear at most four times, and all other positive
integers may appear without restriction. The former set of partitions C is a partition
ideal of order 1 whose minimal bounding sequence has a zero for terms 2, 5, 6, 9, 10,
12, 18, and 20, and ∞ for all other terms. The latter set of partitions C ′ has minimal
bounding sequence

{dC′
j }∞j=1 = {1, 4, 2, 2, 0, 0,∞,∞, 1, 1,∞,∞,∞,∞,∞,∞, . . .}.

Any partition of n in C can be written in the form

n = f1 · 1 + f3 · 3 + f4 · 4 + f7 · 7 + f8 · 8 + f11 · 11 +
17∑

i=13

fi · i + f19 · 19 +
∞∑

i=21

fi · i,

where each fi is a nonnegative integer.

• Expand f1 by the partition of infinity defined by g1,1 = 2, g1,2 = 5, g1,3 = 2,
g1,4 = ∞, g1,k = 1 if k > 4.

• Expand f3 by the partition of infinity defined by g3,1 = 3, g3,2 = 2, g3,3 = ∞, g3,k = 1
if k > 3.

• Expand f4 by the partition of infinity defined by g4,1 = 3, g4,2 = ∞, g4,k = 1 if
k > 2.

Thus we have

n =
(
a1,0(1) + a1,1(2) + a1,2(2 · 5) + a1,4(2 · 5 · 2)

)
1

+
(
a3,0(1) + a3,1(3) + a3,2(3 · 2)

)
3

+
(
a4,0(1) + a4,1(3)

)
4

+
(
a7,0(1)

)
7 +

(
a8,0(1)

)
8 +

(
a11,0(1)

)
11 +

(
a13,0(1)

)
13 + · · ·

where 0 ≤ aj,k ≤ gj,k+1 − 1 = dC′
(j)(gj,1)(gj,2)...(gj,k). (Recall that every partition of infinity

contains a unique partition of each nonnegative integer n, so the preceeding decomposition
is uniquely determined.)
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Apply the distributive property to obtain

n = a1,0(1) + a1,1(2) + a1,2(10) + a1,4(20)

+ a2,0(3) + a2,1(9) + a2,2(18)

+ a4,0(4) + a4,1(12)

+ a7,0(7) + a8,0(8) + a11,0(11) + a13,0(13) + · · ·

It should be clear that the proposed partitions of infinity in the preceeding example
allow the construction of the desired bijection. But how can one find the appropriate
partitions of infinity necessary to map C to C ′? We propose the following algorithm for
generating the necessary partitions of infinity which give rise to a bijective map π : C →
C ′, where C is a partition ideal of order 1 whose minimal bounding sequence consists of
all zeros and infinities, and C ′ is any partition ideal of order 1 which is equivalent to C.

Algorithm 3.5. Input: The respective minimal bounding sequences {dC
j }∞j=1 and {dC′

j }∞j=1,
for two equivalent partition ideals C and C ′ where for all j, dC

j = 0 or ∞.
Output : For each j in {dC

j }∞j=1 such that dC
j = ∞, a corresponding partition of infinity as

indicated by the sequence {gj,k}∞k=1 .

1. Set j := 1.

2. If dC
j = ∞, then go to step 5, otherwise go to step 3.

3. Increment j.

4. Go to step 2.

5. gj,1 := dC′
j + 1.

6. If gj,1 = ∞, then go to step 7, otherwise go to step 10.

7. gj,k := 1 for all k > 1.

8. Increment j.

9. Go to step 2.

10. Set k = 2.

11. gj,k := dC′
(j)(gj,1)(gj,2)(gj,3)...(gj,k−1)

+ 1.

12. If gj,k = ∞, then go to step 13, otherwise go to step 16.

13. gi,L := 1 for all L > k.

14. Increment j.
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15. Go to step 2.

16. Increment k.

17. Go to step 11.

Proof of the correctness of Algorithm 3.5. Let S = {j∣∣dC
j 6= 0} and S ′ = {j∣∣dC′

j 6= 0}.
1. Claim: No element of S ′ is generated more than once by the algorithm.

Proof of First Claim. Suppose not. Then there exists i, I, l and L with i 6= l such
that igi,1gi,2 . . . gi,I = lgl,1gl,2 . . . gl,L. Without loss of generality, suppose that i < l
and that of all such coincident products, this is the least.

• If I = L = 0, then i = l, a contradiction.

• If I = 0 and L > 0, then i > l, a contradiction.

• If I > 0 and L = 0, then igi,1gi2 . . . gi,I = l. Since dC
l = ∞, it must be

the case that l 6∈ M(C). Also, dC′
(i)(gi,1)(gi2

)...(gi,I−1) = gi,I − 1. So the value of

j(dC′
j + 1), when j = (i)(gi,1)(gi,2) . . . (gi,I−1), is (igi,1gi2 . . . gi,I−1)(gi,I) = l.

Thus l ∈ M(C ′). But we already saw that l 6∈ M(C). Thus C 6∼ C ′, a
contradiction.

• If I > 0 and L > 0, then

igi,1gi,2 . . . gi,I = lgl,1gl,2 . . . gl,L. (1)

Note that gi,I − 1 = dC′
(i)(gi,1)(gi,2)...(gi,I−1)

and gl,L − 1 = dC′
(l)(gl,1)(gl,2)...(gl,L−1)

.

Consider two values of j(dC′
j +1). First, if j = igi,1gi,2 . . . gi,I−1, then j(dC′

j +1) =

igi,1gi,2 . . . gi,I . Next, if j = lgl,1gl,2 . . . gl,L−1, then j(dC′
j + 1) = lgl,1gl,2 . . . gl,L.

(Note that igi,1gi,2 . . . gi,I−1 6= lgl,1gl,2 . . . gl,L−1, because this would contradict
the assumption that the coincident products in (1) are minimal.) Therefore,
by (1), two distinct j ∈ Z+ give rise to the same contribution to M(C ′). Thus
M(C ′) has a repeated element. But, since {dC

j }∞j=1 contains only zeros and
infinities, M(C) has no repeated elements. Thus M(C) 6= M(C ′). Therefore,
C 6∼ C ′, a contradiction.

2. Claim: Every element of S ′ arises as the result of multiplying some i ∈ S by a term
of some partition of infinity as determined by the algorithm. That is, if σ ∈ S ′, then
for some i ∈ S, and some nonnegative integer I, σ = i

∏I
l=1 gi,l, where

∏0
l=1 gi,l is

the empty product, which is taken to be 1.

Proof of Second Claim. We consider the two cases.
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• If σ ∈ S, then dC
σ = ∞. Expanding this ∞ by any partition of infinity yields(

(gσ,1 − 1) · 1 + . . .
)
σ,

thus σ is generated by i = σ, I = 0, and we are done.

• Next, consider the case where σ ∈ S ′ \ S.

We will show that the value of any finite-valued expression (j)(gj,1)(gj,2) . . . (gj,I)
with I ≥ 1 is an element of S ′ \S. Suppose that dC′

(j)(gj,1)(gj,2)...(gj,I) = 0. By step
11 of Algorithm 3.5, it follows that gi,I+1 = 1. But then gi,K = ∞ for some
K ≤ I, which contradicts the finiteness of the expression (j)(gj,1)(gj,2) . . . (gj,I).
Thus,

dC′
(j)(gj,1)(gj,2)...(gj,I ) 6= 0,

and so
(j)(gj,1)(gj,2) . . . (gj,I) ∈ S ′.

Also, since I ≥ 1, (j)(gj,1)(gj,2) . . . (gj,I) 6∈ S, so the set of all finite valued
expressions (j)(gj,1)(gj,2) . . . (gj,I) where I > 1 is contained in S \ S ′.
We will now show that there is a one-to-one correspondence between the ele-
ments of S ′ \ S and these (j)(gj,1)(gj,2) . . . (gj,I).

There is a one-to-one correspondence between each gj,k for which Algorithm 3.5
assigns a finite value of at least two and each dC′

(j)(gj,1)(gj,2)...(gj,k−1) whose value

is neither zero nor infinity (by steps 5 and 11 of Algorithm 3.5). Now the set
of all such d’s is, by definition, the set S ′ \ S. Map each gj,k which is assigned
a finite value of at least two to the value (j)(gj,1gj,2 . . . gj,k). By the first claim,
each such (j)(gj,1 . . . gj,k) is unique, so it corresponds to some value σ in S ′ \S.

The proof of the above two claims together comprises the proof of Algorithm 3.5.

A Maple implementation of Algorthm 3.5 is available for free download from the second
author’s web site http://www.math.rutgers.edu/~asills.

With Algorithm 3.5 in hand, we may now state the desired bijection:

Theorem 3.6. Given two equivalent partition ideals C and C ′, both of order 1, where
dC

j is either zero or infinity for all j, the following map π : C → C ′ is a bijection: Let
λ =

∑∞
i=1 fi · i be a partition of n in the partition ideal C. Let S = {j|dC

j 6= 0} and

S ′ = {j|dC′
j 6= 0}.

π(λ) =
∑
i∈S

(
(ai,0)(i) +

∞∑
k=1

ai,k

(
i

k∏
l=1

gi,l

))
,

where {gi,l}i∈S, l∈N is determined by Algorithm 3.5.
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Proof. We may write

n =
∞∑
i=1

fi · i, for some frequencies fi

=
∑
i∈S

fi · i

=
∑
i∈S

(
ai,0 +

∞∑
k=1

ai,k

(
k∏

l=1

gi,l

))
· i,

where ai,0 +
∑∞

k=1 ai,k

(∏k
l=1 gi,l

)
is the unique representation of the number fi in the

partition of infinity determined by {gi,k}∞k=1. Thus,

n =
∑
i∈S

(
ai,0(i) +

∞∑
k=1

ai,k

(
i

k∏
l=1

gi,l

))

=
∑
σ∈S′

ai,kσ, where σ = i
∏k

l=1 gi,l

for some i ∈ S and k ≥ 0 as determined by Algorithm 3.5.
The last line represents a partition in C ′. That the map π is well-defined and bijective

follows from the proof of the correctness of Algorithm 3.5.

3.3 More general bijections

Above we provide an algorthm for finding a bijective map π1 : C → C ′ where C is
a partition ideal of order 1 whose minimal bouding sequence contains only zeros and
infinities, C ′ ∼ C, and C ′ is also of order 1. If π2 is the analogous bijective map from
C to C ′′, (where C ∼ C ′′ and C ′′ is also of order 1), we can compose the maps π−1

1 ◦ π2

to obtain a bijection between any two partition ideals of order 1 which lie in the same
equivalence class as C. This provides bijections between all partition ideals C of order 1
whose associated multiset M(C) contains no repeated elements, an infinite subclass of all
partition ideals of order 1.

3.4 A comparison with Remmel’s bijections

In [24], Remmel provides a method for finding bijections between many equivalent par-
tition ideals, including any two equivalent partition ideals of order one. However, Rem-
mel [24, p. 279] admits that “the actual algorithm is torturously inefficient.” For example,
even in the simple case of Euler’s partition identity (page 1), to find the image of the par-
tition 1 + 1 + 3 + 3 + 5 + 5 of 18 (into odd parts), which is the partition 2 + 6 + 10
(with distinct parts), Remmel’s algorithm requires fourteen iterations. [24, p. 279, Table
1]. Furthermore, Remmel [24, p. 278] states that it “is remarkable that θ [the Glaisher
bijection] is exactly the bijection given by our general bijection of Theorem 2.” However,
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our methods here, inspired by the MacMahon partitions of infinity generalization of the
Glaisher-type bijection, provide the bijection in a direct and transparent manner, and
are arguably as elegant as Glaisher’s original bijection [7]. One referee noted that it is
possible to see that our bijections in fact recover those of Remmel via essentially the same
argument as Remmel used to show that his bijections recovered those of Glaisher [24, p.
278, Thm. 4].

It must be noted that Basil Gordon [6] and Kathy O’Hara [20] each published algo-
rithms for recovering the Remmel bijections in a more efficient manner. In [23], Peter
Paule demonstrated that the Garsia-Milne Involution Principle is in fact a direct conse-
quence of the Linkage Lemma of Ingleton and Piff [15, Lemma 3]. However, with these as
with Remmel’s algorithm, the fact that Glaisher-type bijections are found can be proved
but is far from obvious that this will be the case. With Algorithm 3.5, it is transparent
that the Glaisher bijections arise where applicable, and the nature of how they fit into
a more general setting (i.e. that a “base m” expansion of a number is a special type of
partition of infinity) is also clear.

An excellent summary of the bijective work of Garsia-Milne, Gordon, and O’Hara is
presented by Wilf in [28, pp. 19–28].

Regarding Remmel’s application of their involution principle, Garsia and Milne [5, p.
329] remark:

In point of fact Remmel shows that a number of “ad hoc” bijections occuring
in the literature can be derived in a systematic way from the involution prin-
ciple. . . On the basis of what happens in the case of Euler’s theorem we should
be tempted to suspect that, forbidding as our bijection may look on the sur-
face, there may be a more direct underlying “number theoretical” description
for it in the style of the Glaisher bijection. Clearly this may be worth further
investigation.

We believe that our algorithm may be an important step in this further investigation.

4 Parity Results for p1(n; 2, J) and p1(n; 4, J)

A wide variety of parity results involving a number of different partition functions exist
in the literature. The interested reader is encouraged to see [4, 11, 12, 13, 14, 16, 19,
21, 26, 27]. Our goal in this section is to prove a set of parity results for p1(n; 2, J) and
p1(n; 4, J).

Lemma 4.1. Fix a prime p > 3 and an integer j. If r is an integer strictly between 0 and
p such that 24(r− j)+1 is a quadratic nonresidue modulo p, then pn+ r− j 6= 3

2
m2 − 1

2
m

for any integers m and n.
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Proof. Suppose that pn + r = 3
2
m2 − 1

2
m + j for some integers m and n. Then,

pn + r − j = 3
2
m2 − 1

2
m

=⇒ r − j ≡ 3
2
m2 − 1

2
m (mod p)

=⇒ 24(r − j) + 1 ≡ 36m2 − 12m + 1 (mod p)
≡ (6m − 1)2 (mod p).

Thus 24(r − j) + 1 is a quadratic residue mod p, a contradiction.

Lemma 4.2. Fix a prime p > 3 and an integer j. If r is an integer strictly between 0 and
p such that 8(r − j) + 1 is a quadratic nonresidue modulo p, then pn + r − j 6= 1

2
m2 + 1

2
m

for any integers m and n.

Proof. Suppose that pn + r = 1
2
m2 + 1

2
m + j for some integers m and n. Then,

pn + r − j = 1
2
m2 + 1

2
m

=⇒ r − j ≡ 1
2
m2 + 1

2
m (mod p)

=⇒ 8(r − j) + 1 ≡ 4m2 + 4m + 1 (mod p)
≡ (2m + 1)2 (mod p).

Thus 8(r − j) + 1 is a quadratic residue mod p, a contradiction.

We will also require two classical results:

Euler’s Pentagonal Number Theorem. If |q| < 1, then∏
k≥1

(1 − qk) =
∑
m∈Z

(−1)mq
3
2
m2− 1

2
m. (2)

Jacobi’s Identity. If |q| < 1, then∏
k≥1

(1 − qk)3 =
∑
m≥0

(−1)m(2m + 1)q
1
2
m2+ 1

2
m. (3)

Proposition 4.3. Fix a prime p > 3, an odd positive integer j, and an integer r strictly
between 0 and p such that 24(r − j) + 1 is a quadratic nonresidue modulo p. Then the
coefficient of qpn+r in the expansion of

qj
∏
k≥1

1

1 − q2k−1

is even.
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Proof.

qj
∏
k≥1

1

1 − q2k−1
= qj

∏
k≥1

1 − q2k

1 − qk

≡ qj
∏
k≥1

(1 − qk)2

(1 − qk)
(mod 2)

= qj
∏
k≥1

(1 − qk)

≡ qj
∑
m∈Z

q
3
2
m2− 1

2
m (mod 2) by (2)

=
∑
m∈Z

q
3
2
m2− 1

2
m+j.

Thus, we see that

qj
∏
k≥1

1

1 − q2k−1
≡
∑
m∈Z

q
3
2
m2− 1

2
m+j (mod 2). (4)

Now we compare the coefficients of qpn+r on either side of (4). By Lemma 4.1, pn + r can
never be represented as 3

2
m2 − 1

2
m + j. So the contribution to the coefficient of qpn+r on

the right-hand side of (4) must be zero. Thus, the coefficient of qpn+r in qj
∏

k≥1
1

1−q2k−1

is even for all integers n.

Definition 4.4. Let TJ be the set of all exponents which arise in the expansion of∏
j∈J

(1 − qj),

thus

TJ :=

{∑
e∈E

e : E ⊆ J

}
,

where the sum over the empty set is taken to be zero.

Corollary 4.5. Fix a prime p > 3, an integer r strictly between 0 and p, and a set W of
odd positive integers. If 24(r − t) + 1 is a quadratic nonresidue mod p for every t ∈ TW ,
then

p1(pn + r, 2; W ) ≡ 0 (mod 2)

for all integers n.

Proof.

∑
n≥0

p1(n; 2, W )qn =
∏
ω∈W

(1 − qω)
∏
k≥1

1

(1 − q2k−1)
=
∑
t∈TW

qt
∏
k≥1

1

(1 − q2k−1)
.
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Thus, by |TW | applications of Proposition 4.3,

p1(pn + r; 2, W ) ≡ 0 (mod 2)

for all integers n.

Example 4.6. Take p = 5, W = {1}, r = 4. Then TW = {0, 1}. Note that 0 < r = 4 <
5 = p. Since 24(4 − 0) + 1 = 97 ≡ 2 (mod 5) and 24(4 − 1) + 1 = 73 ≡ 3 (mod 5), and
2 and 3 are quadratic nonresidues modulo 5, we know p1(5n + 4; 2, {1}) ≡ 0 (mod 2) for
all n.

Example 4.7. Take p = 17, W = {1, 3, 17}, r = 14. Then TW = {0, 1, 3, 4, 17, 18, 20, 21}.
Note that for each t ∈ TW , 24(14 − t) + 1 is congruent to 3, 7, 10, or 14 (mod 17), and
that 3, 7, 10, and 14 are all quadratic nonresidues modulo 17. Thus we know that

p1(17n + 14; 2, {1, 3, 17}) ≡ 0 (mod 2)

for all integers n.

Proposition 4.8. Fix a prime p > 3, a postive integer j which is not a multiple of 4,
and an integer r strictly between 0 and p such that 8(r − j) + 1 is a quadratic nonresidue
modulo p. Then the coefficient of qpn+r in the expansion of

qj
∏
k≥1

1 − q4k

1 − qk

is even.

Proof.

qj
∏
k≥1

1 − q4k

1 − qk
≡ qj

∏
k≥1

(1 − qk)4

(1 − qk)
(mod 2)

= qj
∏
k≥1

(1 − qk)3

≡ qj
∑
m≥0

q
1
2
m2+ 1

2
m (mod 2) by (3)

=
∑
m≥0

q
1
2
m2+ 1

2
m+j .

Thus, we see that

qj
∏
k≥1

1 − q4k

1 − qk
≡
∑
m≥0

q
1
2
m2+ 1

2
m+j (mod 2). (5)

Now we compare the coefficients of qpn+r on either side of (5). By Lemma 4.2, pn + r can
never be represented as 1

2
m2 + 1

2
m + j. So the contribution to the coefficient of qpn+r on

the right-hand side of (5) must be zero. Thus, the coefficient of qpn+r in qj
∏

k≥1
1−q4k

1−qk is
even for all integers n.
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Corollary 4.9. Fix a prime p > 3, an integer r strictly between 0 and p, and a set F
of positive integers which are not multiples of 4. If 8(r − t) + 1 is a quadratic nonresidue
mod p for every t ∈ TF , then

p1(pn + r, 4;F) ≡ 0 (mod 2)

for all integers n.

Proof.

∑
n≥0

p1(n; 4,F)qn =
∏
f∈F

(1 − qf)
∏
k≥1

1 − q4k

1 − qk
=
∑
t∈TF

qt
∏
k≥1

1 − q4k

1 − qk
.

Thus, by |TF | applications of Proposition 4.8,

p1(pn + r; 4,F) ≡ 0 (mod 2)

for all integers n.

5 Concluding Remarks

In this paper, we show how to efficiently construct generalized Glaisher-type bijections
between all partition ideals C of order 1 whose associated multiset M(C) contains no
repeated elements, an infinite subclass of all partition ideals of order 1. There are, however,
uncountably many partition ideals C of order 1 whose associated multiset M(C) does
contain one or more repeated elements. We hope that this paper is a first step towards
the loftier goal of finding a straightforward bijection between any two equivalent partition
ideals of order 1. Since Remmel’s application of the Garsia-Milne involution principle
automatically produces Glaisher’s bijections in the instances where Glaisher’s original
methods apply, it seems plausible that Remmel’s bijections may be the “natural” (i.e.
generalized Glaisher-type) ones, even in the instances where the methods of this paper
are not applicable. Accordingly, it may be that some natural extension of the methods
of this paper could be used to obtain Remmel’s bijections via a straightforward bijection.
This appears to merit further investigation.

The parity results stated in Section 4 use the fact that Euler’s Pentagonal Number
Theorem and Jacobi’s Identity have nice series representations for the infinite product∏

k≥1(1− qk)m−1 for m = 2 and m = 4 respectively. These in turn generate parity results

for p1(n; m, J). Using series expansions of
∏

k≥1(1 − qk)m−1 for values of m other than 2
and 4 could yield analogous results.
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