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Abstract

In this note we examine the connection between vertices of high eccentricity and
the existence of k-factors in regular graphs. This leads to new results in the case
that the radius of the graph is small (≤ 3), namely that a d-regular graph G has all
k-factors, for k|V (G)| even and k ≤ d, if it has at most 2d+2 vertices of eccentricity
> 3. In particular, each regular graph G of diameter ≤ 3 has every k-factor, for
k|V (G)| even and k ≤ d.

1 Introduction

All graphs considered are finite and simple. We use standard graph terminology. For
vertices u, v ∈ V (G) let d(u, v) be the number of edges in a shortest path from u to
v, called the distance between u and v. Let further e(v) := max{d(v, x) : x ∈ V (G)}
denote the eccentricity of x. The radius r(G) and the diameter dm(G) of a graph G are
the minimum and maximum eccentricity, respectively. If a graph G is disconnected, then
e(v) := ∞ for all vertices v in G.

The complete graph with n vertices is denoted by Kn. For a set S ⊆ V (G) let G[S]
be the subgraph induced by S. In an r-almost regular graph the degrees of any two
vertices differ by at most r. For b ≥ a > 0 we call a subgraph F of G an [a, b]-factor,
if V (F ) = V (G) and the degrees of all vertices in F are between a and b. We call a
[k, k]-factor simply a k-factor. If we do not say otherwise, we quietly assume that k < d
if G is a d-regular graph.

Many sufficient conditions for the existence of a k-factor in a regular graph are known
today. Good surveys can be found in Akiyama and Kano [1] as well as Volkmann [8].
As far as we know, none of these conditions have taken the eccentricity of vertices into
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account. It is an easy exercise to show that every regular graph G with dm(G) = 1 has
a k-factor if k|V (G)| is even. For dm(G) ≥ 2 the case becomes more involved. The main
result of this note is the following theorem, which provides a connection between vertices
x with e(x) > 3 and the existence of a k-factor.

Theorem 1.1 For d ≥ 3 let G be a connected d-regular graph. For an integer 1 ≤ k < d
with k|V (G)| even G has a k-factor if

• d and k are even;

• d is even, k is odd and G has at most (d + 1) · min{k + 1, d − k + 1} vertices of
eccentricity ≥ 4;

• d and k are odd and G has at most 1 + (d + 2)(k + 1) vertices of eccentricity ≥ 4;

• d is odd and k is even and G has at most 1+(d+2)(d−k+1) vertices of eccentricity
≥ 4.

Theorem 1.1 implies the following two results as corollaries.

Theorem 1.2 A connected d-regular graph, d ≥ 2, with at most 2d + 2 vertices of eccen-
tricity ≥ 4 has every k-factor for k|V (G)| even.

Theorem 1.3 A connected d-regular graph, d ≥ 2, with diameter ≤ 3 has every k-factor
for k|V (G)| even.

Theorem 1.1 is in the following way best possible: Let d be even and let k be odd with
d ≥ 2k + 4. Take k + 1 copies of Kd+1 − uv and a copy of Kd+1 − M , where M denotes
a matching of cardinality d−2(k+1)

2
, as well as a vertex x. Connect x to all vertices u, v of

degree d − 1. The resulting graph G is d-regular and has

(k + 1)(d − 1) + 2k + 3 = (d + 1)(k + 1) + 1

vertices of eccentricity 4. It further has no k-factor since ΘG({x}, ∅, k) = −2 (see Theo-
rem 2.1). Now let d and k be odd with d ≥ 3k + 6. For an odd integer 0 < p < d define
Kd+2(p) := Kd+2 −F (p), where F (p) denotes a [1, 2]-factor such that p vertices of Kp are
of degree d − 1 and the remaining vertices are of degree d. Take k + 1 copies of Kd+2(3),
one copy of Kd+2(d−3(k +1)) as well as a vertex x. Connect x with all vertices of degree
d−1. The resulting graph H is d-regular and has 2+(k+1)(d+2) vertices of eccentricity
4. It further has no k-factor since ΘH({x}, ∅, k) = −2.

Quite some results on factors in regular graphs have been generalized to almost regular
graphs (cf. [1], [8]). Theorem 1.1, however, cannot be easily generalized to r-almost
regular graphs:

The complete bipartite graph Kp,p+r, r > 0, is r-almost regular and of diameter 2 but
obviously has no k-factor.
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For complete multipartite graphs, which are r-almost regular and of diameter 2, a
result of Hoffman and Rodger [4] shows, that a k-factor only exists, if certain necessary
and sufficient conditions are met.

The conditions in Theorem 1.1 are closely related to those given in the following result
of Niessen and Randerath [5] on regular graphs.

Theorem 1.4 Let n, d and k be integers with n > d > k ≥ 1 such that nd and nk are
even. A d-regular graph of order n has a k-factor in the following cases:

• d and k are even;

• d is even and k is odd and n < 2(d + 1);

• d and k are odd and n < 1 + (k + 2)(d + 2);

• d is odd and k is even and n < 1 + (d − k + 2)(d + 2).

In all other cases there exists a d-regular graph of order n without a k-factor.

For a regular graph with radius ≤ 3, Theorem 1.1 provides conditions for the existence
of a k-factor, which allow for a higher order than Theorem 1.4.

2 Proof of the Main Theorem

The proof of Theorem 1.1 uses the k-factor Theorem of Belck [2] and Tutte [7], which we
cite in its version for regular graphs.

Theorem 2.1 The d-regular graph G has a k-factor if and only if

ΘG(D, S, k) := k|D| − k|S| + d|S| − eG(D, S) − qG(D, S, k) ≥ 0 (1)

for all disjoint subsets D, S of V (G). Here qG(D, S, k) denotes the number of components
C of G − (D ∪ S) satisfying

eG(S, V (C)) + k|V (C)| ≡ 1 (mod 2).

We simply call these components odd.
It always holds ΘG(D, S, k) ≡ k|V (G)| (mod 2) for all disjoint subsets D, S of V (G),

whether G has a k-factor or not.

In 1985, Enomoto, Jackson, Katerinis and Saito [3] proved the following result.

Lemma 2.2 Let G be a graph and k a positive integer with k|V (G)| even. If D, S ⊂
V (G) such that ΘG(D, S, k) ≤ −2 with |S| minimum over all such pairs, then S = ∅ or
∆(G[S]) ≤ k − 2.
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For regular graphs without a k-factor, for odd k, we can give the following result on
the subsets D and S.

Lemma 2.3 Let n, k, d be integers such that n is even and k is odd with n > d > k > 0.
Let further 2k ≤ d if d is even. If a connected d-regular graph G of order n has no k-factor,
then for all disjoint subsets D, S of V (G) with ΘG(D, S, k) ≤ −2 it holds |D| > |S|.

Proof. If G does not have a k-factor, then, since kn is even, there exist disjoint
subsets D, S of V (G) with ΘG(D, S, k) ≤ −2. Since G is connected, D ∪ S 6= ∅. Let
q := qG(D, S, k) and W := G − (D ∪ S).

Case 1: Let d be even. The graph G is connected and of even degree d, thus at
least 2-edge-connected, and we get

eG(D ∪ S, V (W )) ≥ 2q. (2)

Since eG(D, S) ≤ min{d|D| − eG(D, V (W )), d|S| − eG(S, V (W ))}, we have

2eG(D, S) ≤ d(|D| + |S|) − eG(D ∪ S, V (W )), (3)

which together with (2) results in 2q ≤ d(|D|+ |S|)− 2eG(D, S). Taking (1) into account
leads to (d − 2k)(|D| − |S|) ≥ 4, giving us the desired result.

Case 2: Let d be odd. We get for every odd component C of W

eG(D, V (C)) = d|V (C)| − eG(S, V (C)) − 2|E(C)|
≡ k|V (C)| + eG(S, V (C)) − 2|E(C)| ≡ 1 (mod 2).

Thus eG(D, S) ≤ d|D| − q which gives us in (1)

k(|D| − |S|) + d|S| − q + 2 ≤ eG(D, S) ≤ d|D| − q,

leading to
(d − k)(|D| − |S|) ≥ 2. 2

Proof of Theorem 1.1. The first case follows from the well-known Theorem of
Petersen [6].

In the remaining cases let, without loss of generality, k be odd and furthermore 2k ≤ d
if d is even, as the graph G has a k-factor if and only if G has a (d − k)-factor. We are
only going to prove the case that d and k are both odd. The proof to the case d even
and k odd only differs in the number of vertices of eccentricity ≥ 4 and uses analogous
argumentation.

Assume that G does not have a k-factor. With Theorem 2.1 there exist disjoint subsets
D, S of V (G) such that ΘG(D, S, k) ≤ −2. From Lemma 2.3 we know that |D| > |S|
and q ≥ k(|D| − |S|) + 2 ≥ k + 2.
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Let X := {v ∈ V (G) : e(v) ≥ 4} and CX := V (C) ∩ X for every odd component C
of W . By the hypothesis we have r := |X| ≤ 1 + (d + 2)(k + 1). Call an odd component
C an A-component, if |C| ≤ d and let a denote the number of A-components. For every
A-component C it holds eG(D ∪ S, V (C)) ≥ d.

Case 1: There exist at most two odd components which have a vertex x such that
eG(x, D ∪ S) = 0. Let l, 0 ≤ l ≤ 2, be the number of such odd components of W . Then
these are not A-components, giving us a ≤ q − l, and it holds eG(V (C), D ∪ S) ≥ |V (C)|
for all other odd components. This results in

eG(V (W ), D ∪ S) ≥ ad + (q − a − l)(d + 1) + l

= q(d + 1) − a − ld

≥ q(d + 1) − (q − l) − ld

= d(q − l) + l > d(q − 2).

This together with (3) results in

d(|D| + |S|) − 2eG(D, S) > d(q − 2). (4)

Inequality (4) and ΘG(D, S, k) ≤ −2 lead to

(d − 2k)(|D| − |S|) > (d − 2)q − 2d + 4.

If we now use q ≥ 2 + k(|D| − |S|), we get

(d − 2k)(|D| − |S|) > (d − 2)(2 + k(|D| − |S|)) − 2d + 4,

giving us the contradiction

0 ≥ d(1 − k)(|D| − |S|) > 2(d − 2) + 4 − 2d = 0. (5)

Case 2: There exist at least three odd components having a vertex x such that
eG(x, D∪S) = 0. Assume that one of these vertices is not a member of X. Then e(x) ≤ 3
for this vertex and we have eG(V (C), D ∪ S) ≥ |V (C)| for all other odd components.
Analogously to l = 1 in Case 1 we can then show eG(V (W ), D ∪ S) > (q − 2)d and arrive
at the contradiction (5). Thus each vertex x with eG(x, D∪S) = 0 is a member of X. Let
B denote the set of all odd components of W which are not A-components. Then |B| ≥ 3
and a ≤ q − 3 and it holds

eG(V (W ), D ∪ S) ≥ ad +
∑

C∈B
(|V (C)| − |CX |)

≥ ad − r +
∑

C∈B
|V (C)|

≥ ad − r + (q − a)(d + 1)

= q(d + 1) − a − r.
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This combined with (3) and ΘG(D, S, k) ≤ −2 leads to

(d − 2k)(|D| − |S|) ≥ q(d − 1) + 4 − a − r. (6)

Since a ≤ q − 3, q ≥ k(|D| − |S|) + 2 and r ≤ 1 + (d + 2)(k + 1), we can deduce the
inequality

d(1 − k)(|D| − |S|) ≥ 2d + 2 − (d + 2)(k + 1), (7)

which does not give us any information in the case k = 1. Let us first consider k ≥ 3.
Then inequality (7) can be rewritten as

|D| − |S| ≤ (d + 1)(k + 1) − 2d − 3

d(k − 1)
= 1 +

k − 2

d(k − 1)
< 2.

By Lemma 2.3 it follows that |D| = |S| + 1. Let now q = k + 2 + η with a non-negative
integer η. With (6) and |D| = |S| + 1 we get

a ≥ (k + 2 + η)(d − 1) − d + 2k + 4 − 1 − (d + 2)(k + 1)

= η(d − 1) − k − 1. (8)

Since q ≥ a + 3 we get k + η − 1 ≥ η(d − 1) − k − 1, or 2k ≥ η(d − 2). Thus η ≤ 2 with
equality if and only if k = d− 2. Since q ≤ k + 4, the inequality ΘG(D, S, k) ≤ −2 yields
d|S| − eG(D, S) ≤ 2 and thus eG(V (W ), D ∪ S) ≤ d + 2. For a ≥ 1 there are at most 2
edges leading to non-A-components, which together with q ≥ a + 3 and the connectivity
of G yields a contradiction.

For η ≥ 1, we have a ≥ 1, so it remains the case η = 0 and a = 0, giving us |S| = 0 or
eG(D, S) = d|S| and hence eG(V (W ), D) ≤ d. Since a = 0 and from the definition of the
odd components in Theorem 2.1, every odd component of G− (D ∪ S) has at least d + 2
vertices. Thus W has at least (k+2)(d+2) vertices, of whom at most r ≤ 1+(d+2)(k+1)
are not connected to D with an edge. This means

eG(V (W ), D) ≥ (k + 2)(d + 2) − 1 − (d + 2)(k + 1) = d + 1,

which yields a contradiction.
It remains the case that k = 1. According to Lemma 2.2, we have |S| = 0, if we take

D and S such that S is of minimum order. Thus q ≥ |D|+ 2. From the definition of odd
components we have |V (C)| ≥ d + 2 for every non–A–component C. This gives us

eG(V (W ), D) ≥ ad + (q − a)(d + 2) − r

≥ q(d + 2) − 2a − 1 − 2(d + 2)

≥ qd − 2d + 1

≥ (|D| + 2)d − 2d + 1

≥ d|D| + 1,

which contradicts eG(V (W ), D) ≤ d|D|. 2
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