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Abstract

We propose a new elementary definition of the Higman-Sims graph in which
the 100 vertices are parametrised with Z4 × Z5 × Z5 and adjacencies are described
by linear and quadratic equations. This definition extends Robertson’s pentagon-
pentagram definition of the Hoffman-Singleton graph and is obtained by studying
maximum cocliques of the Hoffman-Singleton graph in Robertson’s parametrisation.
The new description is used to count the 704 Hoffman-Singleton subgraphs in the
Higman-Sims graph, and to describe the two orbits of the simple group HS on them,
including a description of the doubly transitive action of HS within the Higman-
Sims graph. Numerous geometric connections are pointed out. As a by-product we
also have a new construction of the Steiner system S(3, 6, 22).

1 Introduction

The Higman-Sims graph is the unique strongly regular graph whose parameters are
(100, 22, 0, 6), i.e. it is a graph of order 100, regular of degree 22; it is triangle-free (any
two adjacent vertices have 0 common neighbours), and any two non-adjacent vertices
have exactly 6 neighbours in common. This graph made its first official appearance [23]
in the context of the construction of the sporadic simple group HS which is a subgroup of
index 2 in the automorphism group of the graph (note Section 13 for a comment on the
history).

In this paper we provide a new and elementary construction of the Higman-Sims graph,
combining a geometric interpretation [16] of Robertson’s pentagon-pentagram construc-
tion of the Hoffman-Singleton graph with the known construction of the Higman-Sims
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graph via maximum cocliques in the Hoffman-Singleton graph. We demonstrate the
flavour of the construction by exploring some automorphisms, counting the Hoffman-
Singleton subgraphs and describing the doubly transitive action of degree 176 of the
sporadic simple group HS from within the Higman-Sims graph. These applications build
also on the combinatorial studies of the Hoffman-Singleton graph by James [30]. The key
result of [30] is that any 5-cycle in the Hoffman-Singleton graph determines a split of the
graph into two sets of five 5-cycles which are related by Robertson’s pentagon-pentagram
equations. It will become apparent that this extends to the Higman-Sims graph: every
5-cycle determines a split into four sets of five 5-cycles.

Structure of the paper. We give some background information about the Hoffman-
Singleton graph in Section 2. Section 3 contains our new construction of the Higman-Sims
graph. A first verification that the given graph is the Higman-Sims graph is given as The-
orem 1 whose proof is left as an exercise. Section 4 introduces some of the automorphisms
of the graph which can be used to show that the Higman-Sims graph is in fact a Cay-
ley graph. These automorphisms also give a hint of the remarkable symmetries of this
graph. Sections 5 and 6 show how to derive the new definition from the description of
the Higman-Sims graph as (modified) incidence graph of the vertices of the Hoffman-
Singleton graph and one family of its maximum cocliques. This is achieved by extending
the parametrisation of the Hoffman-Singleton graph in Definition 1 to a parametrisation
of the maximum cocliques, allowing adjacencies (incidences and certain intersection prop-
erties) to be expressed in the form of simple equations (Fig. 2) without any reference
to cocliques. Along the way we highlight some properties of maximum cocliques in the
Hoffman-Singleton graph. The well-known existence of two families of maximum cocliques
(containing 50 cocliques each) is captured very effectively by our parametrisation. Sec-
tion 7 extends our definition of the Higman-Sims graph to a graph of order 150 which
encapsulates everything about maximum cocliques of the Hoffman-Singleton graph. In
Section 8 we show how to count the Hoffman-Singleton subgraphs in the Higman-Sims
graph and characterise their two orbits under HS by means of certain intersection num-
bers. Section 9 is a brief sidetrack to demonstrate that some classical gems are explicitly
present in the Higman-Sims graph: from the correspondence between lines of PG(3, 2) and
triples of a 7-element set to (almost) the exceptional isomorphism between the alternat-
ing group A8 and PSL(4, 2), as well as the Alt(7) and Alt(8) geometries. In Section 10
we demonstrate the doubly transitive action of HS on 176 points as it manifests itself
within the Higman-Sims graph. Section 11 picks up the geometric theme again, showing
that the adjacencies of the Higman-Sims graph can be understood in terms of geometric
relationships between points, lines, conics and dual conics in a biaffine plane, with strong
connections to Wild’s semibiplanes [49]. In Section 12 we highlight a decomposition of
the Higman-Sims graph into 5 isomorphic subgraphs of order 20, concluding with a brief
historical note in Section 13.

In the remainder of this introduction, we give a brief overview of some constructions
of the Higman-Sims graph, and establish the notational conventions for the rest of the
paper.

Constructions of the Higman-Sims graph. The original construction by Higman
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and Sims [23] is based on the Steiner system S(3, 6, 22). This construction is visible in
Fig. 4, if one considers only H3 ∪ H2. In a variation on this theme, [2] begins with the
projective plane of order 4 and effectively incorporates some of the construction steps
of S(3, 6, 22) into the construction of the Higman-Sims graph. Elsewhere [18], we will
describe the extension of S(2, 5, 21) to S(5, 8, 24) from within the Higman-Sims graph.

It is known that the maximum cocliques of the Hoffman-Singleton graph form a graph
with two connected components (each isomorphic to the Hoffman-Singleton graph) if
adjacency is defined by disjointness. This allows to construct the Higman-Sims graph
either by introducing additional edges between those cocliques which meet in 8 vertices, or
else one can take the original Hoffman-Singleton graph together with one of the connected
components of the max-coclique graph, defining further adjacencies by incidence. This
latter approach is the basis of our new construction. A neat unification of these methods
leads to a graph of order 150 ([5], p.108, [6], p.394, cf. Section 7 below).

In [35] Mathon and Street present ‘the first elementary construction of the Higman-
Sims graph, starting from scratch without having to refer to cocliques in the Hoffman-
Singleton graph.’ Their interesting construction should be seen as describing an occur-
rence of the Higman-Sims graph in an unexpected place, perhaps stretching the meaning
of the word ‘elementary’. Another elementary description of the Higman-Sims graph is
its representation as a Cayley graph, found independently by Heinze [21], Jørgensen-Klin
[32] and Praeger-Schneider [44] (cf. Theorem 3).

Apart from the Cayley graph construction, there are other group-theoretic approaches
to the Higman-Sims graph, for example [10]. In Remark 28 we will indicate a construction
based on an incidence graph combined with a group action.

Hughes [27] uses semisymmetric 3-designs, while Yoshiara [52] has a construction of
the Higman-Sims graph with vertices in the Leech lattice. A comprehensive description of
the Higman-Sims graph (and G. Higman’s related geometry) in the Leech lattice appears
in R.A. Wilson’s paper [51].

Notation and Terminology. The following notation will be used throughout this
paper:
Z5 denotes the field of order 5, Z

∗
5 its multiplicative group.

G will always denote the graph defined in Definition 2 (which is the Higman-Sims graph,
cf. Theorem 1 and Remark 6).
Vi (i = 0, . . . , 5) are sets of 25 elements (i, x, y), x, y ∈ Z5; elements (0, x, y) ∈ V0 will
sometimes be referred to as point vertices, and in Section 5 just as points (x, y). Similarly
for line vertices (1, m, c) ∈ V1; these are also referred to as “the line y = mx + c” in
Section 5.
H,H1, H2, H3 denote Hoffman-Singleton graphs: H and H1 will have V0 ∪ V1 as vertex
set; the vertex set of H2 is V2 ∪ V3 and for H3 it is V4 ∪ V5.
K denotes the supergraph of order 150, defined in Section 7; vertex set: V0 ∪ · · · ∪ V5.
Aut(X) denotes the automorphism group of a graph X.
HS denotes the index 2 subgroup of Aut(G), consisting of all even permutations of the
vertices of G (cf. Remark 14 and Section 10); this is the Higman-Sims group.
g, h are special automorphisms of the Higman-Sims graph, defined in Lemma 12.
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In [16] we introduced the term affine automorphism to denote automorphisms of H which
preserve the partition {V0, V1} (they are induced by collineations or correlations of the
biaffine plane).
A set of five disjoint 5-cycles with no further edges between any vertices will be denoted
by 5C5.

Numbering of items: there are three distinct numbering schemes: Remarks and Lem-
mas are in one sequence; Definitions and Theorems each have a sequence of their own.

Web resources for this paper: some Magma [3] files and links related to this
paper are available at [15].

2 The Hoffman-Singleton Graph

The Hoffman-Singleton graph is the unique Moore graph of degree 7 [26, 6]. There
are essentially three constructions of this graph which may be described succinctly as
“1 + 7 + 42”, “15+35”, and “25+25”. For our purposes, Robertson’s [45] pentagon-
pentagram construction (“25 + 25”) with the geometric interpretation in the affine plane
AG(2,5) from [16] is pivotal and given as Definition 1 below. The “15 + 35” construction
is related to the projective space PG(3, 2) and will come into focus in Section 8 and
Remark 45, whilst the Moore graph definition (“1 + 7 + 42”) is visible in Fig. 4 (H3).

Definition 1. The Hoffman-Singleton graph H has vertex set Z2 × Z5 × Z5 and the
following edges:

(0, x, y) is adjacent to (0, x, y′) if and only if y − y′ = ±1; (1)

(1, m, c) is adjacent to (1, m, c′) if and only if c− c′ = ±2; (2)

(0, x, y) is adjacent to (1, m, c) if and only if y = mx+ c. (3)

In [16] we showed that the geometry of the pentagon-pentagram construction does
not lie in the pentagons and pentagrams but in the adjacency rules y = mx + c. Under
this geometric point of view the Hoffman-Singleton graph is the incidence graph of a
biaffine plane with pentagons and pentagrams as additional edges. (A biaffine plane is an
affine plane with one parallel class of lines — the ‘vertical’ lines, in our coordinatisation —
omitted. These structures inherit the best features of both projective and affine geometry:
duality and parallelism.) In this spirit, we refer to vertices (0, x, y) as points and to
vertices (1, m, c) as lines. Fig. 1 summarises Definition 1, introducing also the notation
V0 = {(0, x, y) : x, y ∈ Z5}, V1 = {(1, m, c) : m, c ∈ Z5}.

We recall from [16] that two parallel lines (1, m, c) and (1, m, c′) of H are adjacent
if and only if their points of intersection (0, x, y) and (0, x, y′) with any vertical line are
non-adjacent. A particular consequence of this is the existence of 125 5-cycles in H
which consist of two adjacent points on a vertical line and three consecutive lines, e.g.
(0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 0, 3), (1, 0, 0) (and the same with 3 points and 2 lines). Each
of these 5-cycles determines a distinct split of H into a pair of 5C5 (cf. [30] or [16]) which
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(0, x, y)

y = mx + c

0 1 2 3 4

parallel classes

3

1

4

2

0

(1, m, c)

Points, V0 Lines, V1

vertical lines =
parallel classes of points of lines

Figure 1: Geometric interpretation of Robertson’s description of the Hoffman-Singleton
graph

can be labelled as in Fig. 1 with the same adjacency rules. The 2-fold transitivity of
the automorphism group of the Hoffman-Singleton graph on the 126 splits now follows
from the transitivity on these special 5-cycles of the group of affine automorphisms (which
stabilises the obvious split into the given pair of 5C5).

Remark 1. We note at this point that the enumeration of 5-cycles in [16] shows that any
5-cycle of H has 0, 2, 3, or 5 vertices in common with V0. Now assume that {V ′

0 , V
′
1} 6=

{V0, V1} is a split of H into a pair of complementary 5C5 and that V ′
0 contains one of the

above-mentioned special 5-cycles with exactly two consecutive vertices u, v on a vertical
line, with the remaining three consecutive vertices r, s, t all in a fixed parallel class of lines
(in V1). Then r, s, t have distinct Neighbours on each of the 5-cycles in V0, and therefore
no vertical line can contribute more than 2 vertices to V ′

0 . Therefore |V ′
0 ∩ V0| = 10 in

this case. Dually, if V ′
0 contains a 5-cycle with 3 consecutive points on a vertical line then

|V ′
0 ∩ V0| = 15. This will be useful in the proof of Lemma 34.

The biaffine plane underlying our description of the Hoffman-Singleton graph inherits
a duality from the projective geometry into which it can be embedded. An example of
such a mapping ψ which interchanges points and lines and preserves all adjacencies is

(0, x, y)
ψ7→ (1, x, 2y), (1, m, c)

ψ7→ (0, 3m, 2c). (4)

Whenever we need to interchange points and lines, we might use a phrase like ‘by duality’.

Remark 2. This paper as well as its precursor [16] can be seen under the following general
viewpoint. When the Petersen graph is viewed as a pair of 5-cycles, one immediately sees
20 of its automorphisms (dihedral group for the cycle, and swapping the cycles). The full
automorphism group, however, has order 120, due to the fact that there are 6 distinct ways
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of choosing a pair of ‘opposite’ 5-cycles. The same holds for the Hoffman-Singleton graph:
looking at the split into points and lines of a biaffine plane, one immediately sees 2000
affine automorphisms; the full automorphism group, however, has order 252 000 because
there are 126 distinct splits into points and lines of a biaffine plane. We will note the same
for the Higman-Sims graph later in this paper: when we consider the Higman-Sims graph
as a pair of Hoffman-Singleton graphs, we can immediately see 252 000 automorphisms.
But the total number of automorphisms is 352·252 000, since there are 352 ways of splitting
the Higman-Sims graph into a pair of Hoffman-Singleton graphs. The same phenomenon
was observed [19] on a graph of order 32, the smallest of the McKay-Miller-Širáň graphs
for q = 2.

The remainder of this section deals with non-affine automorphisms of the Hoffman-
Singleton graph, showing how they arise from automorphisms of the Petersen graph. It
is obvious that any of the 5-cycles of V0 together with any of the 5-cycles of V1 induce a
Petersen graph in H . When considering automorphisms of H , we might therefore look at
extending automorphisms of a Petersen graph.

Lemma 3. Let P be a Petersen subgraph of H. Then every automorphism of P can be
extended to an automorphism of H in exactly four ways.

Proof. Implicit in the uniqueness proof [30] of the Hoffman-Singleton graph H is a proof
that Aut(H) is transitive on the 525 Petersen subgraphs of H and that we may assume
the vertices of P to be (0, 0, 0), . . . , (0, 0, 4), (1, 0, 0), . . . , (1, 0, 4). Then it follows from the
orbit-stabiliser theorem that the stabiliser of P in Aut(H) has order 252 000/525 = 480.
The identity of P has 4 extensions to an automorphism of H , since we are free to choose
an eigenvalue in the horizontal direction (4 possibilities). Therefore the stabiliser of P
induces 120 distinct automorphism of P , i.e. every automorphism of P can be extended
to an automorphism of H .

Remark 4. We give an example of a (non-affine) automorphism of P , and an extension
to H , since this will be useful later on. It is easy enough to construct an automorphism
of P : just choose any 5-cycle, and find its complementary cycle. We indicate this by
listing the images of the vertices of P in a scheme according to Fig. 1. We also list the
image of the additional vertex (0, 1, 3). This image was determined as follows: the unique
neighbour of (0, 1, 3) in P is (1, 0, 3) which is mapped to (1, 0, 4) under the automorphism
of P . Therefore the image of (0, 1, 3) must be one of the 4 neighbours of (1, 0, 4) outside
P ; our choice was (0, 4, 4). For better orientation we have labelled the rows as they are
labelled in Fig. 1, cycles in the left hand block V0 being labelled differently from those in
the right hand block V1.

(V0)

(4) 103 . . . . 104 . . . . (3)

(3) 101 044 . . . 004 . . . . (1)

(2) 001 . . . . 003 . . . . (4)

(1) 000 . . . . 002 . . . . (2)

(0) 100 . . . . 102 . . . . (0)

(V1) (5)
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The construction of the automorphism of H is now mechanical (and best left to a com-
puter, although it is easy enough to do it by hand). The key ingredient is that H is an
srg(50, 7, 0, 1), and that if one starts with a subgraphX ofH which contains P and at least
one more vertex, one obtains all of H by successively adding common neighbours of pairs
of non-adjacent vertices. (The Petersen graph, being an srg(10, 3, 0, 1), is closed under
the operation of taking ‘midpoints’ of non-adjacent vertices.) For example, to determine
the image of v = (1, 3, 0), note that v is the unique common neighbour of (0, 0, 0) and
(0, 1, 3), both of whose images are already known: (1, 0, 0) and (0, 4, 4). The image of v
must therefore be the unique common neighbour of these two vertices, i.e. (0, 4, 0). After
a bit of work one obtains the following automorphism of the graph H . The significance
of the boldface entries will be explained in Section 10.

(V0)

(4) 103 143 123 133 113 104 021 011 041 031 (3)

(3) 101 044 034 024 014 004 130 110 140 120 (1)

(2) 001 132 142 112 122 003 013 033 023 043 (4)

(1) 000 134 144 114 124 002 121 141 111 131 (2)

(0) 100 012 022 032 042 102 020 010 040 030 (0)

(V1)

(6)

3 A New Definition of the Higman-Sims Graph

Definition 2. Throughout this paper, G is the graph with vertex set Z4 × Z5 × Z5 and
adjacencies defined as follows (cf. Figure 2):

(0, x, y) is adjacent to (0, x, y′) ⇔ y − y′ = ±1; (7)

(1, m, c) is adjacent to (1, m, c′) ⇔ c− c′ = ±2; (8)

(2, A, B) is adjacent to (2, A, B′) ⇔ B − B′ = ±1; (9)

(3, a, b) is adjacent to (3, a, b′) ⇔ b− b′ = ±2; (10)

(0, x, y) is adjacent to (1, m, c) ⇔ y = mx+ c; (11)

(1, m, c) is adjacent to (2, A, B) ⇔ c = 2(m− A)2 +B; (12)

(2, A, B) is adjacent to (3, a, b) ⇔ B = 2A2 + 3aA− a2 + b; (13)

(3, a, b) is adjacent to (0, x, y) ⇔ y = (x− a)2 + b; (14)

(0, x, y) is adjacent to (2, A, B) ⇔ y = 3x2 + Ax+B ± 1; (15)

(1, m, c) is adjacent to (3, a, b) ⇔ c = m2 − am+ b± 2. (16)

We further define
Vi = {i} × Z5 × Z5 (i = 0, . . . , 3). (17)

Remark 5. The definition is summarised in Fig. 2; each of the four sets V0, . . . , V3 con-
sists of five 5-cycles. They are indicated in the corners of the square, with labels ‘(±1)’
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V2

V3

(±1)

V0

V1

(0, x, y)

(1, m, c)

y = (x − a)2 + b

c = 2(m − A)2 + B

y
=

3x
2 +

A
x
+

B
± 1c

=
m

2−

am
+

b±
2

y
=

m
x

+
c

(2, A, B)

(3, a, b)

(±2)

B
=

2
A

2
+

3
a
A

−
a
2
+

b

(±1)

(±2)

Figure 2: Higman-Sims ‘à la Robertson’

to indicate pentagon 5-cycles, and labels ‘(±2)’ to indicate pentagram 5-cycles (cf. equa-
tions (1), (2), (7)–(10)). Equations between the four sets contain the rules of adjacency.
The sets V0 and V1 together induce a Hoffman-Singleton graph as described in Definition 1.
This subgraph is denoted by H1 throughout the paper.

Theorem 1. The graph G is strongly regular with parameters (100, 22, 0, 6). This implies
that G is the Higman-Sims graph, by the uniqueness theorem of Gewirtz [12].

Remark 6. The proof of Theorem 1 is an exercise in solving quadratic equations over
Z5 and can be tackled head-on. We leave the details to the reader. In Section 5 we
will take a more gentle approach which indicates how the description given above is
obtained, relating it to maximum cocliques in the Hoffman-Singleton graph. This shows
that G is the Higman-Sims graph, without having to rely on the characterisation by
Gewirtz. Alternatively, one can avoid the use of the theorem of Gewirtz by establishing
that given a vertex x of G, the edges between vertices at distance 1 and 2 from x form
the incidence graph of a S(3, 6, 22); as shown in [1], p. 273, this can be achieved by an
ingenious application of a result by Majindar [34] on block intersections. We note that our
construction of the Higman-Sims graph provides also a new construction of S(3, 6, 22).

As a further alternative, Corollary 22 proves that G is the Higman-Sims graph based
on its construction from maximum cocliques in the Hoffman-Singleton graph. The con-
struction from S(3, 6, 22) is visible in Fig. 4, H1 ∪H3.

It should be pointed out that the proof of Theorem 1 becomes simpler if one makes use
of Remark 8 below, as well as taking advantage of the automorphisms which we describe in
Section 4. To show that G is triangle-free, one invokes the fact that the Hoffman-Singleton
graph is triangle-free and proves by a simple calculation that there do not exist 3 vertices
v0, v1, v2 with vi ∈ Vi which form a triangle, nor do there exist any v0, v1 ∈ V0, v2 ∈ V2

forming a triangle. Similarly, when proving that non-adjacent vertices u, v have 6 common
neighbours, only the following cases need to be considered: (1) v, w ∈ V0, belonging to
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the same 5-cycle of V0; (2) v, w ∈ V0, belonging to distinct 5-cycles of V0; (3) v ∈ V0,
w ∈ V1; (4) v ∈ V0, w ∈ V2.

For a different angle on this, we refer to Remark 25 and Lemma 26.

Remark 7. Alerted by the geometric interpretation of Definition 1, the attentive reader
will have noted that for (i, j) ∈ {(0, 2), (0, 3), (1, 2), (1, 3)} adjacencies between Vi and Vj
correspond to incidences of certain points or lines with certain parabolas or dual parabolas.
Less obvious is that adjacencies between V2 and V3, as well as those within V2 and V3,
indicate disjointness of certain sets (cf. Corollary 22). Geometric interpretations of all
adjacencies between Vi and Vj (i 6= j) are found in Theorem 6.

Remark 8. Any two consecutive sets Vi and Vi+1 (where subscripts are taken modulo 4)
induce a subgraph of G which is isomorphic to the Hoffman-Singleton graph. We demon-
strate this for i = 2: the two sets V2 and V3 each induce five 5-cycles, the first one arranged
as pentagons, the second one arranged as pentagrams, as in the case of V0 and V1. The
vertices (2, A, B) and (3, a, b) are adjacent if and only if Y = MA+C where Y = B−2A2,
C = b− a2, M = 3a. Thus, after choosing the 0-point on each 5-cycle appropriately (ad-
ditive adjustments), and after permuting the 5-cycles in V3 (multiplication by 3), we get
the equations which define the Hoffman-Singleton graph in Definition 1.

Remark 9. The ‘diagonal’ subgraphs of order 50 induced in G by V0 ∪V2 and by V1 ∪V3

have automorphism groups of order 2000, isomorphic to the group of the affine transfor-
mations of the Hoffman-Singleton graph (cf. [16]). See Section 11 for more.

4 Some Automorphisms of G

Automorphisms φ of H which map V0 to itself are mappings (0, x, y) 7→ (0, x′, y′) where
(x, y) 7→ (x′, y′) is an affine transformation whose linear part has (0, 1) as eigenvector with
eigenvalue ±1:

(x, y)
φ7→ (x, y)

(
r s
0 t

)
+ (e, f) = (rx+ e, sx+ ty + f), (18)

where r, t ∈ Z
∗
5, s, e, f ∈ Z5, t = ±1. Such transformations can be extended readily to

automorphisms of the Hoffman-Singleton graph H1 (cf. [16]). If we stipulate further that
r2 = t, the mapping φ can be extended to an automorphism of G, preserving each of the
sets Vi (i = 0, . . . , 3). Note that (0, x, y) 7→ (0, x,−y) can be extended to an automorphism
of H1, but not to an automorphism of G.

Theorem 2. Let r, s, t, e, f ∈ Z5, t = ±1 and r2 = t. The mapping φ : V0 → V0 defined
by

(0, x, y)φ = (0, rx+ e, sx+ ty + f) (19)
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can be extended to an automorphism φ of G by defining:

(1, m, c)φ = (1, rm+ rst,−rme + tc+ f − rest), (20)

(2, A, B)φ = (2, rA− e+ rst,−rAe+ tB + f − rest− 2e2), (21)

(3, a, b)φ = (3, ra+ e+ 2rst, sa+ tb+ f + s2t). (22)

Proof. Verifications are by direct calculation and are left to the reader.

Remark 10. The formulas are found by determining how the lines y = mx + c and
parabolas y = (x − a)2 + b and c = 2(m − A)2 + B transform when the points are
transformed as in (19). Then one only needs to check that the adjacencies between V0

and V2 and between V1 and V3 are preserved.
We note that the condition t = ±1 is needed in order to preserve the (vertical) 5-

cycles in V0, and the condition r2 = t is needed to preserve the family of parabolas
y = (x−a)2 + b, (a, b ∈ Z5), and thus the adjacencies between V0 and V3. After sections 5
and 6 we will see this in a different light: preservation of a family of maximum cocliques
of H1.

Remark 11. The square of the duality ψ of H introduced in (4) is (0, x, y)
ψ27→ (0, 3x,−y),

(1, m, c)
ψ27→ (1, 3m,−c) and satisfies the hypotheses of Theorem 2. Therefore ψ2 can be

extended to an automorphism of G: (2, A, B)
ψ27→ (2, 3A,−B), (3, a, b)

ψ27→ (3, 3a,−b).
Clearly, ψ2 and its extension to G have order 4. It is not hard to find that ψ itself can
be extended to an automorphism of G (of order 8) which interchanges V0 with V1 and V2

with V3 by defining (2, A, B)
ψ7→ (3, 3A, 2B), (3, a, b)

ψ7→ (2, a, 2b). The automorphism ψ4

is an involution whose fixed-point set of order 20 is the set W0 defined in Section 12.

The following Lemma introduces two further automorphisms which will allow us to
show that G is a Cayley graph (Theorem 2).

Lemma 12. Define mappings g, h : G→ G by

(0, x, y)
g7→ (0, x+ 1, y − x)

(1, m, c)
g7→ (1, m− 1, c−m+ 1)

(2, A, B)
g7→ (2, A− 2,−A +B − 1)

(3, a, b)
g7→ (3, a− 1,−a+ b+ 1)

∣∣∣∣∣∣∣∣∣

(0, x, y)
h7→ (1, 2x, 2y − 2x2)

(1, m, c)
h7→ (2, m, 2c− 2m2)

(2, A, B)
h7→ (3,−A, 2B)

(3, a, b)
h7→ (0, 2a, 2b+ 2a2)

Then g is an automorphism of order 5 which fixes each of the sets V0, . . . , V3, and h is an
automorphism of order 4 of G which cyclically permutes V0, . . . , V3.

The proof is left as a computational exercise. The automorphism h confirms our earlier
observation that the four sides of the square in Fig. 2 are Hoffman-Singleton graphs. In
conjunction with Theorem 2 it shows that G is vertex transitive. The automorphism g is
an extension of an affine self-mapping of V0 as described in Theorem 2.
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Remark 13. Considering the automorphism h and its powers, we note that for v ∈
Vi∪Vi+1, the neighbours of v in Vi+2∪Vi+3 (subscripts modulo 4) form a coclique of order
15 in the Hoffman-Singleton subgraph induced in G by Vi+2 ∪ Vi+3.

Theorem 3. (Heinze [21], Jørgensen-Klin [32], Praeger and Schneider [44]) The Higman-
Sims graph is a Cayley graph.

Proof. We can obtain a direct proof of this result from our explicit knowledge of the
automorphisms g and h. Note first that g and k = h−1gh together generate an elementary
abelian group of order 25 which acts transitively on V0. (It may help to observe that
h−1kh = g−1.) It is easy to see that 〈g, h〉 has order 100 and is a regular group of
automorphisms of G. An abstract definition of this group by generators and relations as
well as a suitable generator set are given on [15].

Remark 14. We note that, as a permutation, h is product of 25 cycles of length 4 and
hence an odd permutation. This implies that the automorphism group of the Higman-
Sims graph contains a subgroup of index 2, consisting of the automorphisms which are
even permutations. This subgroup is the sporadic simple group HS.

Remark 15. Anticipating notation and results that will be introduced later, we note
that an automorphism of H1 can be extended to an automorphism of all of G if and only
if it preserves the families F1 and F2 of maximum cocliques of H1.

5 Maximum Cocliques

in the Hoffman-Singleton Graph

We will now derive a description of the maximum cocliques in the Hoffman-Singleton
graph as sets of parabolas in the biaffine plane. It is well-known that maximum cocliques
in the Hoffman-Singleton graph are of order 15; this can be proved via eigenvalues ([14],
Theorem 2.12) or via an application of the Cauchy-Schwarz inequality ([31, 13]). It will
also be a by-product of Lemma 16.

In this section we will use geometric notation and terminology as much as possible.
In particular, we will refer to the ‘point vertices’ (0, x, y) of the Hoffman-Singleton graph
as points (x, y), and a ‘line vertex’ (1, m, c) will be referred to as the line y = mx + c.
We remind the reader that ‘a vertical line’ consists of vertices (0, x, y) on a 5-cycle of V0,
with x constant, y ∈ Z5 (and that vertical lines are not lines of our biaffine plane).

Lemma 16. A coclique of order n ≥ 15 in the Hoffman-Singleton graph consists either
of 5 points, one from each vertical line, and 5 pairs of non-adjacent parallel lines, or of
5 pairs of non-adjacent points on vertical lines and 5 lines, one from each parallel class.
In particular, the order of a maximum coclique in the Hoffman-Singleton graph is 15.

Proof. Let C be a coclique of order n ≥ 15 in the Hoffman-Singleton graph. Since each
parallel class of lines is a 5-cycle, there can be at most two elements of each class in a
coclique. In particular, C must contain at least 5 points and at least 5 lines.

the electronic journal of combinatorics 11 (2004), #R77 11



Case 1: C contains one pair of non-adjacent parallel lines. We may assume that they
are the horizontal lines y = 0 and y = 1, since otherwise an adjacency-preserving affine
transformation can bring us into this situation. Then none of the points (x, 0) and (x, 1),
x ∈ Z5, can belong to C. Now C contains at least 3 more lines, and we may assume
that one of them is y = mx, (m 6= 0) —represented by the vertex (1, m, 0)— otherwise we
perform a translation x 7→ x + r. The line y = mx is incident with the points (2/m, 2)
and (4/m, 4). Consequently, there can be at most one point in C whose first coordinate
is 2/m because (2/m, 0), (2/m, 1), (2/m, 2) do not belong to C, and the points (2/m, 3)
and (2/m, 4) are adjacent. Similarly, C can contain only one point with first coordinate
4/m.

It follows that if C contains a pair of non-adjacent parallel lines then C contains at
most 8 points, and therefore at least two pairs of non-adjacent parallel lines. By duality,
the analogous statement with points and lines interchanged is also valid.

Case 2: C contains two pairs of non-adjacent parallel lines, say y = 0, y = 1, y = mx
and y = mx + 1. The line y = mx meets the horizontal lines y = 0, 1 in (0, 0) and
(1/m, 1) respectively. Then the line y = mx + 1 passes through (1/m, 2), allowing only
one of the adjacent points (1/m, 3) and (1/m, 4) to belong to C. Similarly, only one of
the points on the vertical line x = 4/m can belong to C. Our four lines have 4 distinct
points of intersection with each of the vertical lines x = 2/m and x = 3/m, so that C
cannot contain a pair of points from these vertical lines either.

It follows that if C contains two non-adjacent parallel lines then C can contain at most
1 pair of points from a vertical line. Since we established above that it is impossible for
a maximum coclique to contain precisely one such pair of points, we conclude that if C
contains one pair of parallel lines then C contains 5 pairs of parallel lines, but at most one
point from each vertical line. By duality, if C contains 2 points on a vertical line, then
C contains 5 such pairs and no pairs of parallel lines. In particular, we have established
that the order of a maximum coclique in the Hoffman-Singleton graph is 15.

Lemma 17. Let C be a maximum coclique in the Hoffman-Singleton graph, and assume
that C consists of 5 points pi and 10 lines `j (i = 1, . . . , 5, j = 1, . . . , 10). Then no three
of the points are collinear in the biaffine plane.

Proof. We note that the 10 lines must be partitioned into pairs of non-adjacent parallel
lines. Assume that p1, p2, p3 are collinear points of C, incident with the line ` with
equation y = 0. This is no loss of generality since we can always use an admissible affine
transformation to transform a given line into `. Then the lines y = mx+ c (m 6= 0) in C
must pass through the remaining two points of `, say (x4, 0) and (x5, 0). If y = mx + c1
and y = mx+ c2 are two such parallel lines, their adjacency is governed by the difference
c1 − c2 = m(x4 − x5). There are exactly two values for m which will make this a square
and two which make it a non-square in Z

∗
5. This means that C contains at most 3 pairs

of non-adjacent lines, a contradiction.

Corollary 18. Assume that C is a coclique in the Hoffman-Singleton graph consisting of 5
points and 10 lines. Then the 5 points form one of the sets with equation y = ±(x−a)2+b
in the biaffine plane.
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Proof. The 5 points together with the point of intersection of the vertical lines form an
oval in the projective plane over Z

∗
5. By Segre’s theorem [46], this is a conic. Since the line

at infinity is a tangent, this conic is a parabola y = r(x−a)2+b, r 6= 0 (in the affine plane).
The 10 lines in the coclique represented by vertices (1, m, c) are non-adjacent in the graph
H if and only if r = ±1, because the 3 values (b, b+ r, b− r) of r(x− a)2 + b (x ∈ Z5) are
consecutive mod 5 if and only if r = ±1. In that case, any pair of parallel lines which do
not meet the parabola intersect a vertical line in adjacent points, and consequently the
lines are non-adjacent in the graph (cf. the comment in the introduction).

Corollary 19. There are exactly 100 distinct cocliques of order 15 in the Hoffman-
Singleton graph.

Proof. We know from Corollary 18 that there are at most 50 = 2 · 5 · 5 cocliques of
order 15 containing exactly 5 points and 10 lines, and by duality there are at most 50
containing exactly 5 lines. It is an easy exercise to verify that the passants of the parabola
y = (x− a)2 + b are the 10 lines y = mx+ c, where c = m2 −ma+ b± 2; in other words:
for any a, b ∈ Z5 the 15 vertices

(0, x, (x− a)2 + b), x ∈ Z5

(1, m,m2 −ma+ b+ 2), m ∈ Z5,
(1, m,m2 −ma+ b− 2), m ∈ Z5,

form a 15-coclique in the Hoffman-Singleton graph. Similarly, the passants of the parabola
y = −(x− e)2 + f are given by the 10 lines y = mx+ c where c = −m2 −me + f ± 2.

Dually, the 5 lines y = mx + c where c = 2(m − E)2 + F avoid all the points (x, y)
where y = 3x2 +Ex+ F ± 1; and the 5 lines y = mx+ c where c = 3(m+E)2 −F avoid
all the points (x, y) where y = 2x2 − Ex− F ± 1.

This leads us to define the following 15-element sets for a, b, A,B, e, f, E, F ∈ Z5:

P (a, b) = {(0, x, (x− a)2 + b) : x ∈ Z5} ∪ {(1, m,m2 −ma + b± 2) : m ∈ Z5}, (23)

Q(A,B) = {(1, m, 2(m− A)2 +B) : m ∈ Z5} ∪ {(0, x, 3x2 + Ax+B ± 1) : x ∈ Z5};
(24)

P ′(e, f) = {(0, x,−(x− e)2 + f) : x ∈ Z5} ∪ {(1, m,−m2 −me + f ± 2) : m ∈ Z5},
(25)

Q′(E, F ) = {(1, m, 3(m+ E)2 − F ) : m ∈ Z5} ∪ {(0, x, 2x2 − Ex− F ± 1) : x ∈ Z5}.
(26)

These sets P (a, b) etc. are the 100 maximum cocliques of the Hoffman-Singleton graph,
grouped into 4 sets of 25.
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6 Two Families of Maximum Cocliques and the Max-

coclique Graph

We define 2 families of 50 maximum cocliques of the Hoffman-Singleton graph as follows:

F1 = {P (a, b) : a, b ∈ Z5} ∪ {Q(A,B) : A,B ∈ Z5}, (27)

F2 = {P ′(e, f) : e, f ∈ Z5} ∪ {Q′(E, F ) : E, F ∈ Z5}. (28)

These two families can be transformed into each other by means of the affine automor-
phism of H induced by (0, x, y) 7→ (0, x,−y). Each of them is invariant under dualities
of the Hoffman-Singleton graph. An intrinsic characterisation of these two families is
obtained by looking at the cardinality of intersections of their members:

Lemma 20. Let X ∈ F1, and let Y be any maximum coclique of the Hoffman-Singleton
graph. Then

Y ∈ F1 if and only if |X ∩ Y | ∈ {0, 5}, (29)

Y ∈ F2 if and only if |X ∩ Y | ∈ {3, 8}. (30)

The corresponding result with F1 and F2 interchanged also holds.

Proof. We give a sample calculation. Let a, b, e, f ∈ Z5 and consider the two cocliques
X = P (a, b) and Y = P ′(e, f) (cf. (23) and (25)). One constructs two quadratic equations
to determine their common points; after minimal manipulations they are:

2x2 − 2(e+ a)x+ a2 + e2 + b− f = 0,

2m2 +m(e− a) + b− f + ν + µ = 0, where ν, µ ∈ {2,−2}.

The discriminants are ∆1 = (a− e)2 + 2(b− f) and ∆2 = (e− a)2 + 2(b− f) + 2(ν +µ) =
∆1 + 2ν + 2µ, respectively.

It is impossible that ∆1 and ∆2 are both ±2 for all choices of ν, µ, hence X and Y
cannot be disjoint.

When ∆1 = ±1 then X and Y have 2 vertices of V0 in common, and consideration
of the possibilities for ∆2 reveals 3 combinations of µ, ν such that ∆2 = ±1 (and one
combination yielding ∆2 = ±2). Hence X and Y have 3 · 2 = 6 vertices of V1 in common,
for an intersection of cardinality 8 in total.

When ∆1 = 0 then X and Y have 1 common neighbour in V0, and consideration of the
possibilities for ∆2 reveals 2 combinations of µ, ν such that ∆2 = 0 (and 2 combinations
yielding ∆2 = ±2). Hence X and Y have 2 vertices of V1 in common for an intersection
of cardinality 3 in total.

Remark 21. If one goes through all the detail of the preceding proof, the following
stronger result is obtained: for given X ∈ F1 the number of maximum cocliques Y with
|X ∩ Y | = 0, 3, 5, 8, 15 is 7, 35, 42, 15, 1, respectively.

the electronic journal of combinatorics 11 (2004), #R77 14



Theorem 4 (The max-coclique graph). Let Z be the graph whose vertex set is F1 ∪
F2 and adjacency is defined by disjointness. Then F1 and F2 each induce a connected
component of Z, each of the components being isomorphic to the Hoffman-Singleton graph.

Proof. Lemma 20 and Remark 21 imply that there are two connected components. It
remains to show that F1 induces a Hoffman-Singleton graph. The case for F2 then follows
by applying the automorphism induced by the affine transformation (0, x, y) 7→ (0, x,−y).
Thinking of the sets P (a, b) and Q(A,B) as unions of parabolas in the (x, y)- and (m, c)-
coordinate systems, it is obvious that P (a, b) ∩ P (r, s) = ∅ if and only if r = a and
s = b ± 2. Similarly, Q(A,B) ∩ Q(R, S) = ∅ if and only if R = A and S = B ± 1. Next
we observe that P (a, b)∩Q(A,B) = ∅ if and only if none of the following 4 equations (in
x or m) has a solution in Z5:

(x− a)2 + b = 3x2 + Ax+B ± 1,

2(m− A)2 +B = m2 − am+ b± 2.

The discriminants of these equations equal ±2 if and only if B = 2A2 + 3aA− a2 + b.
Now we see that F1 induces a component which is isomorphic to the subgraph of G

induced by V2 ∪ V3: just identify the cocliques P (a, b), Q(A,B) with the vertices (3, a, b)
and (2, A, B) of G, respectively. We have seen in Remark 8 that this graph is isomorphic
to the Hoffman-Singleton graph.

Corollary 22. (1) The graph G is isomorphic to the graph whose vertex set is H ∪ F1,
where adjacency in H is defined as in Definition 1, adjacency in F1 is disjointness of
cocliques, and v ∈ H is adjacent to X ∈ F1 if and only if v ∈ X.

(2) The graph G is isomorphic to the graph whose vertex set is H∪F2, where adjacency
in H is defined as in Definition 1, adjacency in F2 is disjointness of cocliques, and v ∈ H
is adjacent to X ∈ F2 if and only if v ∈ X.

(3) Each coclique in Fi, i ∈ {1, 2}, contains 15 vertices of H, and each vertex of H is
contained in 15 cocliques of Fi.

Proof. For (1), recall the definition of F1 (cf. (27)) in equations (23) and (24), and
note that membership of (0, x, y) or (1, m, c) in a coclique of F1 is governed by the same
equations as those defining adjacency between vertices of V0 ∪ V1 and V2 ∪ V3 in G (cf.
Fig. 2 and equations (7)–(16)). Adjacency between vertices of {P (a, b) : a, b ∈ Z5} and
{Q(A,B) : A,B ∈ Z5} was shown in the proof of Theorem 4 to be governed by the
same equations that apply in V2 ∪ V3. The reader will have no difficulty confirming the
5-cycle adjacencies (labelled ±1 and ±2 in Fig. 2) within {Q(A,B) : A,B ∈ Z5} and
{P (a, b) : a, b ∈ Z5}.

(2) Application of the automorphism of H induced by (0, x, y) 7→ (0, x,−y) maps F1

to F2 and preserves disjointness of cocliques and incidence of vertices with cocliques.
(3) One part of this statement is evident from the definition of Fi, and the other follows

by applying the automorphism h2 (cf. Lemma 12), bearing in mind Theorem 4.
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Remark 23. It follows from James [30] that every 5-cycle of the Hoffman-Singleton graph
H1 determines a split of H1 into a pair of 5C5, and that whenever {V ′

0 , V
′
1} is a split of H1

into a pair of 5C5 then there exists an automorphism of H1 mapping V0 to V ′
0 and V1 to

V ′
1 . This implies that given a 15-coclique C of H1 and any split of H1 into a pair {V ′

0 , V
′
1}

of 5C5, the number of elements of C in V ′
0 will be 5 or 10; and the intersection of C with

any 5-cycle of H1 will consist of 1 or 2 vertices.
Corollary 22 shows that there is not only an automorphism of H1 but also of G which

maps V0 to V ′
0 and V1 to V ′

1 (because V2 and V3 are identified with cocliques in F1 and
adjacencies determined by membership and disjointness).

Remark 24. Corollary 22 characterises the cocliques of F1 as the sets of neighbours
in H1 of vertices in H2. Application of h and its powers shows more generally that if
v ∈ Vi ∪ Vi+1 then the neighbours of v in Vi+2 ∪ Vi+3 (indices mod 4) form a coclique in
the Hoffman-Singleton subgraph induced by Vi+2 ∪ Vi+3; i.e. edges between Vi ∪ Vi+1 and
Vi+2 ∪ Vi+3 correspond to incidence of vertices of a Hoffman-Singleton subgraph and its
maximum cocliques.

Remark 25. We now look back at Theorem 1 in the light of Corollary 22. To see that
G is triangle-free, consider three vertices v1, v2, v3 of G. If all three are contained in H1

or in its complement H2, they cannot form a triangle because the Hoffman-Singleton
graph has girth 5. If not all three belong to H1 or to H2, we may assume that v1 ∈ H1,
v2, v3 ∈ H2 (apply the automorphism h2 if need be). If v2 and v3 are adjacent, then their
neighbourhoods in H1 are disjoint cocliques, which means that v1 cannot belong to both
of them.

To see that any two non-adjacent vertices v1, v2 of G have exactly 6 common neigh-
bours, assume first that both vertices belong to H1. There is a unique common neighbour
v in H1, and we may assume that v1, v, v2 belong to a vertical 5-cycle. Now our knowledge
of maximum cocliques makes it evident that there are exactly 5 of them which contain
v1 and v2 (i.e. there are exactly 5 common neighbours of v1 and v2 in H2). If, secondly,
v1 ∈ H1, v2 ∈ H2, we prove the following result (the first part is contained in Neumaier’s
Proposition 3 or Jeurissen’s Lemma 6.2) by a simple calculation.

Lemma 26. (Neumaier [38], Jeurissen [31]) Let v be a vertex of the Hoffman-Singleton
graph and C a maximum coclique in F1 not containing v.

(1) There exist exactly 3 cocliques in F1 which contain v and which are disjoint from C.
(2) There are exactly 3 vertices in C which are adjacent to v.

The same is true if F1 is replaced by F2 throughout.

Proof. We first consider the case where v = (0, x, y) ∈ V0, assuming that C consists of
all neighbours in H1 of w = (2, A, B) ∈ V2, with y = 3x2 + Ax + B + δ and δ ∈ {0,±2}
(non-adjacency). If δ = 0, then v and C have two common neighbours (2, A, B ± 1) in
V2, and otherwise only one. Any further common neighbours in V2 ∪ V3 must belong to
V3 and satisfy the equation

−x2 + 2ax− a2 + y = B − 2A2 + 2aA+ a2
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(refer to Fig. 2). Substitute y = 3x2 +Ax+B + δ into this quadratic equation for a, and
note that its discriminant is −2δ. This shows that there are 1 resp. 2 further neighbours
common to v and w in H2, according to whether δ = 0 or δ = ±2. In the language of
maximum cocliques of H1 this means that there are exactly three cocliques of F1 which
contain v and which are disjoint from C.

The proof of (1) in the case where v = (0, x, y) ∈ V0, w = (3, a, b) ∈ V3, with
y = (x − a)2 + b + δ and δ 6= 0 is similar: if δ = ±1 then v and w have no common
neighbours in V3, and if δ = ±2, v and w have 1 common neighbour in V3. Vertices
(2, A, B) which are adjacent to v as well as w must satisfy the equation

(x− a)2 + b+ δ = 3x2 + Ax+B ± 1

where B = 2A2 +3aA−a2 +b. The discriminant of the resulting quadratic equation for A
is 3(δ±1). This shows that there are 3 solutions in the case when δ = ±1 and 2 solutions
in the case when δ = ±2, so that in each case we have 3 common neighbours of v and w
in H2.

To see that part (2) is merely a ‘dual’ of part (1), consider the Hoffman-Singleton
graph H1 in G. The vertex v has 15 neighbours in H2, forming a coclique D (and each
vertex of D representing a coclique in H1). The coclique C in H1 consists of all neighbours
in H1 of a vertex w ∈ H2. Now apply part (1) in H2: there exist precisely 3 vertices in D
which are adjacent to w. These three vertices represent cocliques containing v which are
disjoint from C.

To get the same results for C ∈ F2, we extend the affine mapping (0, x, y) 7→ (0, x,−y)
to an automorphism of H which swaps F1 and F2.

Remark 27. The previous lemma looks very much like a parallel axiom in a geometry
made up of the vertices of H as points and maximum cocliques from F1 as blocks. This
incidence structure, a partial 5-geometry, was first observed by Neumaier [38]. In the
terminology of [28] it is a semisymmetric design D with parameters (50, 15, [5]) while [35]
speaks of an SPBIBD(50, 15; 0, 5). We note that [38] has a realisation of the incidence
graph of this design in the Leech lattice, but also describes it in terms of the 100 maximum
cocliques in the Hoffman-Singleton graph.

Remark 28. Here is another approach to constructing the Higman-Sims graph: let T
be the incidence graph of the semisymmetric design D defined in Remark 27 (whose
automorphism groupA is isomorphic to the automorphism group of the Hoffman-Singleton
graph); now add one of the edges {x, y} of H as well as all the images of {x, y} under A.
The result is the Higman-Sims graph — the new edges producing a vast increase in the
order of the automorphism group.

For future reference, we include the following simple result about vertex stabilisers
without proof.

Lemma 29. Let H be the Hoffman-Singleton graph and denote by Aut+(H) the subgroup
of Aut(H) consisting of those automorphisms which preserve the two families F1 and F2.
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Figure 3: The supergraph K (note the wraparound, and twist)

1. The stabiliser of a vertex of H in Aut(H) is the symmetric group S7 in its natural
action on the neighbours of the vertex.

2. The stabiliser of a vertex of H in Aut+(H) is the alternating group A7.

7 The Supergraph

We will now give an explicit construction of a ‘supergraph’ K of order 150, constructed
from 3 Hoffman-Singleton graphs which are linked cyclically, so that removal of any one
of them produces a graph isomorphic to G. This graph K is mentioned in [5], p.108,
[6], p. 394. It provides an ideal environment for the study of maximum cocliques in the
Hoffman-Singleton graph (and therefore for the study of the Higman-Sims graph), as we
shall see.

The vertex set of the graph K is V0 ∪· · ·∪V5, with adjacencies on V0 ∪· · ·∪V3 defined
as before (vertices in V2 ∪ V3 representing 15-cocliques of F1). A second Higman-Sims
graph is constructed on V0 ∪ V1 ∪ V4 ∪ V5 (vertices in V4 ∪ V5 representing 15-cocliques
of F2), using equations (25) and (26). Finally, we define vertices of u ∈ V2 ∪ V3 and
v ∈ V4 ∪ V5 to be adjacent when they have 8 common neighbours in H1 (i.e. when their
corresponding 15-cocliques intersect in 8 vertices). The resulting graph is described in
Fig. 3; note that the figure wraps around, but a twist is needed when identifying the left
and right. To see that the graph induced by V2 ∪ · · · ∪ V5 is isomorphic to the Higman-
Sims graph G, one shows that the neighbours of vertices in H2 form 15-cocliques in H3,
and that cocliques corresponding to adjacent vertices of H2 are disjoint. We omit the
calculations. (H1, H2, H3 are the subgraphs of order 50 induced by V0 ∪ V1, V2 ∪ V3, and
V4 ∪ V5 respectively. All three are isomorphic to the Hoffman-Singleton graph.)

Remark 30. In the graph G, only those automorphisms of H1 which preserve the families
F1, F2 can be extended to an automorphism of G. By contrast, every automorphisms
of H1 can be extended to an automorphism of K. Those automorphisms of H1 which
interchange F1 and F2 will swap H2 and H3. The full group of automorphisms of K has
order 3 · 252 000 = 756 000.
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8 Hoffman-Singleton Subgraphs of G

In this section we study the Hoffman-Singleton subgraphs of the Higman-Sims graph G.
The structures revealed in the process will be discussed further in Section 9. Lemmas
31 and 32 show that Aut(G) is transitive on Hoffman-Singleton subgraphs; but there are
two orbits under the action of the subgroup HS (which consists of the even permutations
amongst the automorphisms).

Lemma 31. Let Z be an srg(100, 22, 0, 6) and assume that X is an induced Hoffman-
Singleton subgraph of Z. Then Y = Z \ X is also a Hoffman-Singleton graph. The
neighbours in X of a vertex v ∈ Y form maximum cocliques in X which intersect in 0 or
5 vertices. Therefore they all belong to the same family of maximum cocliques of X and
hence there exists an automorphism of Z mapping X to Y .

Proof. The statement of the lemma gives sufficient indication of the proof. We note that
the lemma is a slight modification of Exercise 2 in [8], p. 113, but with a different approach
to the proof.

Lemma 32. Let X, Y be Hoffman-Singleton subgraphs of G. If τ ∈ Aut(G) is an even
permutation of degree 100 such that Xτ = Y then all automorphisms of G which map X
to Y are even.

Proof. Let σ ∈ Aut(G) be another automorphism of G with Xσ = Y . Then στ−1 belongs
to the stabiliser of X in Aut(G), which is a simple group (cf. Remark 49) and therefore
contains only even permutations.

Theorem 5. The graph G contains exactly 704 Hoffman-Singleton subgraphs.

We split the proof into a sequence of lemmas which at the same time will help us
become more familiar with the graphs G and K.

The following lemma allows the reconstruction of the Higman-Sims graph as in Fig. 2,
starting from a 5-cycle. It is stated without proof.

Lemma 33. Let F = {v0, . . . , v4} be a 5-cycle in V0, where vi is adjacent to vi±1 (sub-
scripts modulo 5). Then V2 is the union of the sets of common neighbours outside F of
vi and vi+2, i = 0, . . . , 4.

Lemma 34. Let τ be an automorphism of G which preserves H1 and H2. Then |V τ
3 ∩V3| =

|V τ
0 ∩ V0|.

Proof. If V τ
0 = V0 or V1, the statement is obvious. Assume therefore that |V τ

0 ∩ V0| = 15
(cf. Remark 1; the case where this intersection contains 10 vertices follows by duality). In
view of Lemma 33 we find V τ

0 by choosing a 5-cycle F in V τ
0 and collecting the common

neighbours outside F of vertices at distance 2 in F . Now we show that each 5-cycle of V τ
2

has 2 vertices in V2. To this end, consider the case when τ maps some 5-cycle of V0 to

(0, 0, 0), (0, 0, 1), (0, 0, 2), (1, 0, 2), (1, 0, 0).
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Figure 4: The graph K, as seen from the vertex w.

All other cases follow from this one by extending affine automorphisms of H1 which fix V0.
Applying Lemma 33 one finds readily that one of the 5-cycles in V τ

2 is

(2, 0, 0), (2, 0, 1), (2, 0, 2), (3, 0, 2), (3, 0, 0).

Therefore |V τ
2 ∩ V2| = 15 and hence |V τ

3 ∩ V3| = 15 = |V τ
0 ∩ V0|.

Lemma 35. There are (at least) 125 pairs {X1, X2} of Hoffman-Singleton subgraphs of
G such that

X1 ∪X2 = G, |X1 ∩ V0| = |X1 ∩ V3| = 15, and |X1 ∩ V1| = |X1 ∩ V2| = 10.

Proof. By Remark 23 there exists an automorphism τ of G such that V τ
0 = V ′

0 , and
V τ

1 = V ′
1 . By Lemma 34, X1 = V τ

3 ∪ V τ
0 and X2 = V τ

2 ∪ V τ
3 have the required properties.

Since there are 125 splits ofH1 into pairs of 5C5 other than {V0, V1}, we have the numerical
result. We add that our final census (after Lemma 39) of Hoffman-Singleton subgraphs
will show that the estimate of 125 pairs with the desired properties is sharp (hence the
parentheses).

Together with the 2 Hoffman-Singleton subgraphs H1 and H2, Lemma 35 produces
252 Hoffman-Singleton subgraphs. A further 252 of them are obtained by applying the
automorphism h. To find another 200 Hoffman-Singleton subgraphs, we consider Fig. 4.
It shows the supergraph K as seen from a vertex w ∈ H3; the graph H3 appears as
the Moore graph of degree 7, with S as neighbours of w. The remaining 30 = 15 + 15
neighbours of w form maximum cocliques C1 ⊂ H1 and C2 ⊂ H2 (C1 is an F2-coclique).
The (set-theoretic) complements of these cocliques in H1 and H2 respectively are L1 and
L2. Note that for i = 1, 2 the subgraph S ∪ Ci is a coclique, since Hi ∪ H3 induces a
Higman-Sims graph and thus is triangle-free.

Lemma 36. For u′ ∈ L2 denote by N(u′) the set of neighbours of u′ in S. Let T be the
set of triples of elements in S. Then

u′
φ7→ N(u′)
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determines a bijection φ between L2 and T . A similar bijection can be defined between L1

and T .

Proof. Consider a vertex u′ ∈ L2. Since the subgraph of K induced by H2 ∪ H3 is
isomorphic to G and therefore an srg(100, 22, 0, 6) (Theorem 1), the vertices u′ and w
have 6 neighbours in common, with exactly 3 of them in C2 by Lemma 26. Consequently,
u′ has precisely 3 neighbours in S.

By Remark 30, if τ is an automorphism of H3 which fixes w and which preserves the
two families of maximum cocliques of H3 then τ can be extended to an automorphism
of K which maps H1 to H1 and H2 to H2. The restriction of τ to S is A7 (Lemma 29),
and therefore transitive on triples of elements of S. Since there are 35 elements of L2

and
(
7
3

)
= 35 triples of elements of S, the Higman-Sims graph induced by H2 ∪H3 in K

provides an explicit representation of a one-to-one correspondence between L2 and triples
from S. The same reasoning applies to L1.

Remark 37. We can explore the action of A7 on S a little further, considering orbits
of pairs of triples of elements of S (which correspond to edges or non-edges in L2). One
counts 70 pairs of disjoint triples, 315 pairs of triples which intersect in one point, and
210 pairs of triples which intersect in two points. Since the subgraph induced by L2 is
regular of degree 4, and therefore has 70 edges, we conclude that two vertices of L2 are
adjacent precisely then when their corresponding triples in S are disjoint (edges must
correspond to a union of orbits of A7 on pairs of triples from S, since A7 acts as a group
of automorphisms of L2).

We anticipate Lemma 43 which identifies L2 with the set of lines of PG(3, 2) and note
that PG(3, 2) contains 315 pairs of intersecting lines. Our list of orbit cardinalities for
pairs of triples of elements from S now implies that the bijection φ associates intersecting
lines with triples having exactly one point in common. In other words: this famous
correspondence [20] is hardwired into the Higman-Sims graph.

Composing the two bijections from Lemma 36 we obtain a bijection u ↔ u′ between
L1 and L2 which we introduce formally in the following definition.

Definition 3. For u ∈ L1 we define u′ ∈ L2 to be the vertex which has the same 3
neighbours in S as u.

Lemma 38. Let u ∈ L1. Then u and u′ have the same 3 neighbours in each of C1, S, and
C2. Moreover, if z ∈ L1, then u and z′ are adjacent if and only if u′ and z are adjacent.

Proof. Let w = (4, 0, 0) and consider 3 of its neighbours in H3, say v1 = (4, 0,−1), v2 =
(4, 0, 1), v3 = (5, 0, 0) (any three neighbours will do, but they can always be transformed
into these by an automorphism ofK fixing w, since A7 is transitive on triples from S). One
finds easily that u = (0, 0, 0) and u′ = (2, 0, 0) are the two vertices of L1 resp. L2 having
v1, v2, v3 as common neighbours. As one calculates the three neighbours of u, u′ in C1, C2

respectively, it turns out that (0, 0,−1), (0, 0, 1), (1, 0, 0) and (2, 0,−1), (2, 0, 1), (3, 0, 0)
are common neighbours of u and u′, and that there are no other edges between any of the
vertices considered.
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Now we let A7 operate. C1 and C2 are invariant, the orbit of u is L1, and u and u′ are
not adjacent. Therefore there is never an edge between a vertex x ∈ L1 and its counterpart
x′ ∈ L2, and x and x′ always share the same neighbours in C1 and in C2. In addition,
observe that for any u, z ∈ L1 there is an edge between u and z′ if and only if there is an
edge between u′ and z (an even permutation of S which swaps the triples corresponding
to u and z can be extended to an automorphism of K which must interchange u and z,
as well as u′ and z′, preserving the presence or absence of any edges).

When considering the graph G = H1 ∪ H2, we can think of it embedded in the
supergraph K. The neighbours of w ∈ H3 form an F2-coclique C1 in H1, together with a
maximum coclique C2 of H2. These two cocliques are paired in a natural way: each vertex
of C2 has precisely 8 neighbours in C1, and each vertex in C1 has precisely 8 neighbours in
C2 (cf. Lemma 20—note that the neighbours inH1 of a vertex in H2 form an F1-coclique).

Lemma 39. Let C1 be an F2-coclique in H1, w ∈ H3 the corresponding vertex of H3, and
C2 the associated maximum coclique of H2. Then the mapping τ : G → G which inter-
changes u and u′ for all u ∈ L1 and fixes each vertex of C1 and of C2 is an automorphism
of G. Moreover, τ is an odd permutation, hence τ /∈ HS.

Proof. This follows immediately from Lemma 38: adjacencies between L1 resp. Lτ1 and
C1, C2 are unaffected, and τ is compatible with adjacencies between L1 and L2.

Proof of Theorem 5. We have seen that L2 ∪ C1 is a Hoffman-Singleton subgraph of G.
Since there are 50 possibilities to choose w, and hence 50 possibilities to choose C1 and
C2, we have found 50 more Hoffman-Singleton graphs. They are all distinct from the
504 which we have already, since the intersections with V0, V1 have cardinalities 5, 10 or
10, 5 respectively (C1, like any 15-coclique, meets V0 in 5 or 10 vertices and V1 in 10 or
5). Now apply h, h2, h3 to finally obtain the total of 704 Hoffman-Singleton subgraphs.
The next two Lemmas show that there are no further Hoffman-Singleton subgraphs: the
total number of 5-cycles in G is 443 520 (Lemma 41), each contained in two Hoffman-
Singleton subgraphs. Therefore the number of Hoffman-Singleton subgraphs is at most
2 · 443 520/1 260 = 704.

Lemma 40. Let Z be an srg(100, 22, 0, 6) and let F be a 5-cycle of Z. Then F is contained
in 0 or 2 Hoffman-Singleton subgraphs of Z.

Proof. Assume that Z contains a Hoffman-Singleton subgraph H which contains F . In
view of Lemma 31 we may assume that Z = G, that H is the subgraph induced by
V0 ∪V1, and that F is one of the five 5-cycles in V0 (otherwise we apply an automorphism
of H which can be extended to G). Then it is clear that F belongs to two Hoffman-
Singleton subgraphs, namely to H and also to the subgraph induced by V0 ∪ V3. To see
that there are no other Hoffman-Singleton subgraphs containing F , we note first that
every vertex of G outside V0 has a neighbour in F , and each vertex of V2 has 2 neighbours
in F . The latter means that no vertex of V2 can be part of a Hoffman-Singleton graph
X containing F ; the former shows that X must contain V0, since X must contain four
5-cycles without neighbours in F . Additional 5-cycles of X which are disjoint from V0
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must therefore consist of vertices in V1 ∪ V3 and must contain at least one edge {u, v}
from V1 (without loss of generality). Since each 5-cycle in V3 contains 4 neighbours of
this edge, it is impossible to construct five disjoint 5-cycles forming a 5C5 which are not
entirely contained in V1 or V3.

Lemma 41. Assume that Z is a strongly regular graph with parameters (100, 22, 0, 6).

1. Z contains 443 520 pentagons, 22 176 through each vertex.

2. Z contains 28 875 4-cycles, 1155 through each vertex.

Proof. Let v be a vertex of Z. To count the 5-cycles through v, choose two neighbours
of v, a and b. Since Z is triangle-free, there are exactly 6 neighbours of a which are also
adjacent to b: these must be avoided, otherwise the pentagon v, a, x, y, b contains a
triangle x, y, a. That leaves 22 − 6 = 16 neighbours of a which are not adjacent to b,
each of which allows 6 ways to finish off a pentagon. Hence there are

(
22
2

) · 16 · 6 = 22 176
pentagons through a given vertex v. The total number of pentagons in Z is therefore
22 176 · 100/5 = 443 520.

Now we count the 4-cycles. Any two non-adjacent vertices in Z have 6 common
neighbours. Choosing two of these neighbours determines a 4-cycle with the given non-
edge as diagonal. Z is regular of degree 22, and therefore has 1100 edges and

(
100
2

)
/2 −

1100 = 3850 non-edges. Each of these non-edges is a diagonal in
(
6
2

)
= 15 4-cycles. As each

4-cycle has two diagonals, we find that the total number of 4-cycles is 3 850 ·15/2 = 28 875
(or 1155 such cycles through each vertex).

To conclude this section, we list the intersections of the 704 Hoffman-Singleton sub-
graphs of G with the sets V0,. . . , V3.

Lemma 42. The following table lists the cardinalities of the intersections of the 704
Hoffman-Singleton subgraphs of G with the sets V0, . . . , V3. Rows 1 and 2 belong to
one of the HS-orbits, rows 3 and 4 to the other. The last row lists the number of
Hoffman-Singleton graphs with each intersection pattern above it. It is evident that
members X of the HS-orbit of H1 are characterised by the fact that (|X ∩ H1|, |X ∩
H2|) ∈ {(20, 30), (30, 20), (0, 50), (50, 0)}, whilst the corresponding cardinalities are

the electronic journal of combinatorics 11 (2004), #R77 23



(15, 35), (35, 15), (25, 25) for the other HS-orbit.

(a) (b) (c) (d)

V0

V1V2

V3 10

1015

15 5

1520

10 15

510

20 25

250

0

V0

V1V2

V3 15

1510

10 20

105

15 10

2015

5 0

025

25

V0

V1V2

V3 10

1515

10 15

2010

5 5

1020

15 0

2525

0

V0

V1V2

V3 15

1010

15 5

1020

15 10

515

20 25

00

25

# 125 25 25 1

(31)

(The first column of the table indicates that the intersection numbers are listed in accor-
dance with Fig. 2.)

Proof. The description of the Hoffman-Singleton subgraphs in the proof of Theorem 5
leads immediately to all the entries of the table. Together with Lemma 32 it also justifies
the claim about the two orbits. Addition of the entries for V0 and V1 does the rest.

9 Actions of A7, PSL(4, 2), and A8

Fig. 4 and its description in Section 8 show the alternating group A7 acting simultaneously
on sets of cardinalities 7, 15, 35, and 42 (S; C1 and C2; L1 and L2; M). In this section we
point out some well-known facts which manifest themselves in this view of the Higman-
Sims graph. For additional guidance, we include the distance distribution diagram around
w as Fig. 5.

We will indicate proofs of the various statements, to make clear how they all flow from
this source. Alternative approaches to these themes can be found in [9, 11, 20].

Lemma 43. The edges between C2 and L2 give the point-line incidence graph of the
projective geometry PG(3, 2) with 15 points and 35 lines.

Proof. Since H2 is an srg(50, 7, 0, 1) and C2 is a coclique in it, any two distinct vertices in
C2 have a unique common neighbour in L2. To verify Veblen’s axiom, one can proceed as
follows. Note first that v = (1, 0, 0) ∈ C1 has 8 neighbours in C2 (v and w are adjacent,
hence their respective cocliques in H2 meet in 8 vertices). It follows that v has 7 neighbours
in L2; they are

(2, 0, 0), (3, 0, 2), (3, 0,−2), (3, 1, 2), (3, 2,−2), (3, 3,−2), (3, 4, 2).
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Figure 5: Distance distribution diagram in K

It turns out that these 7 vertices have just 7 neighbours in C2, namely:

(2, 0, 4), (2, 3, 0), (2, 1, 0), (2, 4, 0), (2, 2, 0), (2, 0, 1), (3, 0, 0).

Now it is easy to see that these 7 points and 7 lines form a Fano plane. As one lets A7

act, one obtains the validity of Veblen’s axiom in general.

Remark 44. In the preceding proof, each vertex of C1 represents a Fano plane: its 7
neighbours in L2 as lines, and vertices of S as points. A further 15 such structures on
S are obtained starting with vertices of C2. This demonstrates the well-known fact that
there are 30 possible ways of defining a Fano plane on a 7-element set (S), all equivalent
under the action of the symmetric group S7, but splitting into two orbits of length 15
under the action of A7.

Remark 45. The construction of the Hoffman-Singleton graph from the 15 points and
35 lines of PG(3, 2), where edges between points and lines indicate incidence, and edges
between lines indicate disjointness of their corresponding triples, is also evident in the
proof of Lemma 43. In addition, one sees again the bijection between lines of PG(3, 2) and
triples of a 7-element set, in which intersecting lines correspond to triples with intersections
of cardinality 1.

It is but a short step from here to establish the exceptional isomorphism of PSL(4, 2)
and A8: the automorphisms induced by A7 are a subgroup of index 8 in the simple group
PSL(4, 2). The reader is encouraged to complete the story.

Remark 46. We note that the graph induced by S ∪ L2 ∪C2 is a trivial modification of
Neumaier’s Alt(7)-geometry ([38], see also [40], p.153, or [7], p.523; the usual convention
is to have all edges {s, c} for s ∈ S, c ∈ C2; here, no such edges are present).
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Remark 47. In view of the presence of the group A8 it is natural to ask if there is a way
to construct the Alt(8)-geometry [38] (cf. also [40], p. 217) from the Higman-Sims graph
G. The answer is indeed positive: one finds that the stabiliser in HS of an F2-coclique C
of H1 is A8, and that the HS-orbit of the set complement of C in H1 has length 8. The
bijection between lines of PG(3, 2) and partitions of type 42 of an 8-element set becomes
conspicuous. We will consider this in detail elsewhere.

10 The Doubly Transitive Action of HS on 176 Points

Since the Higman-Sims graph stood at the cradle of the sporadic simple group HS, a few
words about the automorphism group are in order. Firstly, we note that as usual we
can obtain the order of Aut(G) via the orbit-stabiliser theorem; we consider the action
of Aut(G) on the Hoffman-Singleton subgraphs: |Aut(G)| = 704 · 126 000 = 88 704 000.
The index 2 subgroup HS therefore has order 44 352 000. The simplicity of HS is a
consequence of the simplicity of the stabiliser (cf. Remark 49) of a Hoffman-Singleton
subgraph when HS acts on one of its two orbits of Hoffman-Singleton subgraphs. We also
note that whilst HS contains a subgroup which is isomorphic to the full automorphism
group of the Hoffman-Singleton graph, there is no such subgroup of HS which acts on a
Hoffman-Singleton subgraph of G.

G. Higman [24] discovered a doubly transitive permutation representation of the group
HS (at the time it was still undecided whether the group he considered was in fact isomor-
phic to HS, though). We will show such an action in the framework of the Higman-Sims
graph G.

Lemma 48. Let S be the set of the 176 pairs of complementary Hoffman-Singleton sub-
graphs of G in one of the two HS-orbits. Then the group HS acts doubly transitively
on S.

Proof. We recall (cf. Lemma 42) that there are two orbits of Hoffman-Singleton graphs
under the action of HS, and that the graphs occur in complementary pairs in each or-
bit. The two orbits are distinguished by the cardinalities of their intersection with a
fixed Hoffman-Singleton subgraph of G. We also recall that the stabiliser of a Hoffman-
Singleton graph H1 in HS is doubly transitive on the splits of H1 into two 5C5.

Looking at the table in (31), rows 1 and 2, we must show that any Hoffman-Singleton
subgraph of G with one of the intersection patterns in columns (a)–(c) can be transformed
into any other by an automorphism of G which stabilises H1. This will be established
if we can show that for any Hoffman-Singleton subgraphs X, Y of G such that |X ∩
H1| = |Y ∩ H1| = 20 there exists an automorphism τ in the stabiliser of H1 such that
Xτ = Y . In other words: we need only consider row 1, columns (a)–(c). Remembering
our automorphism ψ from (4), we note that it suffices to prove transitivity of the stabiliser
of H1 on the patterns of columns (a) and (b).

Looking at column (a), note that the 15+10 vertices of X in V3 ∪ V0 are one half of a
split of V3 ∪ V0 into a pair of 5C5. This means that amongst the 10 vertices in V0 there is
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a unique pair of adjacent ones, and affine transformations of V0 induce a transitive action
on the 125 sets of 10 vertices.

Considering column (b), note that the 5 vertices of X ∩ V0 are part of an F2-coclique,
and affine transformations with vertical eigenvalue 1 operate transitively on these.

Finally we must show that a pattern from (a) can be transformed into one from column
(b). To this end we return to the example in Remark 4. The automorphism (of H1; but
note that it can be extended to G) defined by (6) will turn the pattern of 20 boldface
positions into a pattern of 5 vertices in V0 and 15 vertices of V1. It remains to show that
the 20 boldface positions are the intersection of a Hoffman-Singleton subgraph with H1.
To this end we define an automorphism τ of G which preserves V3 ∪ V0 and such that V τ

3

and V τ
2 each have 10 vertices in V0, resp. V1. This can be achieved following the method

of Remark 4: choose the Petersen graph consisting of the vertices (3, 0, 0)–(3, 0, 4) and
(0, 0, 0)–(0, 0, 4) and define its image so that two V3-vertices of P are mapped onto the
bold positions. If we also require that (0, 1, 0) maps to (0, 2, 1), we obtain the following
automorphism τ :

(V3)

(3) 004 341 014 044 311 002 330 344 314 320 (4)

(1) 304 032 340 310 022 003 041 013 043 011 (3)

(4) 302 332 342 312 322 303 040 313 343 010 (2)

(2) 300 334 042 012 324 301 321 024 034 331 (1)

(0) 000 020 323 333 030 001 021 023 033 031 (0)

(V0) (32)

It is easy to verify that V τ
3 has 10 vertices in V0, and that τ can be extended to an

automorphism of G.

Remark 49. In [16] we showed how to use Definition 1 to obtain that the order of the
automorphism group of the Hoffman-Singleton graph is 252 000. We now show that this
automorphism group has a subgroup of index 2 which is simple. (This is of course a
well-known fact, usually by reference to [22], but we want to show that all the arguments
can proceed at a very elementary level.)

The automorphism of the Hoffman-Singleton graph H induced by (0, x, y) 7→ (0, x,−y)
interchanges the two families of maximum cocliques. Therefore those automorphisms
which preserve the two families of maximum cocliques form a subgroup U of index 2 in
Aut(H), which is therefore of order 126 000. Since the transposition (0, x, y) 7→ (0, x,−y)
does not belong to the vertex stabiliser of (0, 0, 0) in this subgroup, this stabiliser must
have index 2 in the vertex stabiliser of the full automorphism group, which is the sym-
metric group S7. Since U is primitive on the vertices of H , and A7 is simple, we conclude
that U is a simple group of order 126 000. In order to identify the isomorphism type of
this simple group (PSU(3, 5)), we refer to O’Nan [39] or D.G. Higman [22].

11 Coordinate-free Description of G

We have noted that the edges between V0 and V1 describe the incidence graph of a biaffine
plane of order 5, V0 being the set of points, V1 the set of lines. The edges between V0
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and V3 form the incidence graph of points and the set of parabolas y = (x − a)2 + b in
this biaffine plane. Further, the edges between V1 and V2 describe the incidence graph
of ‘dual points’ and a certain set of ’dual parabolas’ of the biaffine plane. (Dual points
are, as usual, the lines of the geometry, and dual parabolas are sets of all tangents of a
parabola—it is easy to show that the set of tangents to the parabola y = 3(x − a)2 + b
consists of all lines y = mx+ c where c = 2(m+ a)2 + b− 2a2.)

The following theorem provides geometric descriptions for all adjacencies between Vi
and Vj (i 6= j).

Theorem 6. Interpret the sets V0, . . . , V3 as above, with p, `, P,Q be elements of V0, . . . , V3

respectively. Then

1. the parabola P is adjacent (in G) to the dual parabola Q if and only if exactly one
of the lines of Q is a tangent of P ;

2. the point p is adjacent in G to the dual parabola Q if and only if p does not lie on
any of the lines of Q (i.e. p is an internal point of the dual parabola Q);

3. the line ` is adjacent in G to the parabola P if and only if ` is a passant of P (cf. end
of Section 5);

4. all other adjacencies in G, apart from the 5-cycles within each of V0, . . . , V3, describe
incidences.

Proof. It suffices to indicate a proof of the first statement. Statements 2 and 3 are duals of
each other, and statement 3 was established at the end of Section 5. To establish statement
1, assume that P has the equation y = (x− a)2 + b and Q is given by c = 2(m−A)2 +B.
Then Q consists of the lines y = mx+2(m−A)2+B. Such a line is a tangent of P if it has
a unique point of intersection with P ; i.e. the equation (x−a)2 +b = mx+2(m−A)2 +B
has discriminant 0 (as equation in x). This leads to the condition

m2 + (a+ A)m− b+ 2A2 +B = 0.

This quadratic equation in m has a unique solution if and only if its discriminant equals 0:

(a+ A)2 − b+ 2A2 +B = 0.

This is the condition of adjacency between vertices (3, a, b) and (2, A, B).

Remark 50. This description opens the way to define families of generalised Higman-
Sims graphs, starting from any McKay-Miller-Širáň graph instead of H (or more generally,
starting from any graph based on the incidence graph of a biaffine plane).

Remark 51. As a point of interest we note that the sets V0, . . . , V3 (as geometric entities
in a biaffine plane) have been considered by Wild [49, 50]. The incidence graphs of the
systems S(C1, C2) of Wild are obtained by removing all edges within each of V0, . . . , V3,
and removing the (diagonal) edges between V0 and V2, and between V1 and V3.
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Wild [50] also establishes the isomorphism of the graphs induced by V0 ∪ V1 and
V0 ∪ V3 (points and lines vs points and conics, omitting the 5-cycles; the generalisation
from q = 5 to general q is obvious). This is the biaffine analogue of results for projective
planes [33, 41, 42]. See also [43] for recent work.

Remark 52. Further to Remark 51, we note that the isomorphism between the graphs
induced by V0 ∪ V1 and V0 ∪ V3 manifested itself in [48] (cf. also [17]), disguised by the
language of voltage assignments. In this paper, Šiagiová expressed certain adjacencies
of the McKay-Miller-Širáň graphs [36, 19] by means of quadratic equations, whereas the
original definition uses linear equations which are the direct analogue of the equations
y = mx+c in Robertson’s definition of the Hoffman-Singleton graph. One might say that
the original description operates in V0 ∪V1, whilst Šiagiová’s description uses V0 ∪V3. (Of
course, the present paper considers only the case q = 5; [48] deals with arbitrary q ≡ 1
mod 4.)

12 Decomposition of the Higman-Sims Graph into

Five Isomorphic Subgraphs

In the course of our studies of the Higman-Sims graph, the following decomposition into
5 isomorphic subgraphs of order 20 appeared.

Lemma 53. Let

Wi =
⋃
r∈Z5

{(0, i, r), (1, 3i, r), (2, 2i, r), (3, 2i, r)} , (i ∈ Z5).

For i ∈ Z5 the subgraphs of G induced by Wi are isomorphic to the Kronecker product of
the Petersen graph with a coclique of order 2.

Proof. Each Wi consists of four 5-cycles, one from each Vk, k = 1, . . . , 4. For each pair
of (cyclically) consecutive values of k the two 5-cycles form a Petersen graph. One sees
without difficulty that (0, i, r) is adjacent to (2, 2i, s) if and only if r = s ± 1, i.e. if and
only if (0, i, r) is adjacent to (0, i, s); and (0, i, r) is adjacent to (3, 2i, s) if and only if
r = s + i2, i.e. if and only if (0, i, r) is adjacent to (1, 3i, r + 2i2). The remaining details
can be left to the reader.

Remark 54. The subgraph of order 80 induced by four of these subgraphs Wi is identified
as the second orbit of the stabiliser of the remaining one of these graphs in [4]. What is
new here is the observation that we are actually dealing with five isomorphic subgraphs
of order 20.

As an aside, we add that the orbit of W0 under Aut(G) as well as under HS has length
5775, the number of elements in one of the two conjugacy classes of involutions in HS.
Indeed, each such involution has one of these 20-vertex subgraphs as fixed-point set. For
example, W0 is the fixed-point set of the automorphism ψ4 as mentioned in Remark 11.
(The second class of involutions of HS can be represented by h2 (cf. Lemma 12) which is
fixed-point-free.)
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13 Historical Comment

T.B. Jajcayová and R. Jajcay, in their recent biographical note [29] on D.M. Mesner,
report that the Higman-Sims graph made an early appearance in Mesner’s 1956 disserta-
tion, getting a brief mention as NL2(10) in [37] (designs of negative Latin square type).
However, the automorphism group of the graph was not considered in either work. We
add that in [47], p.107, the Higman-Sims graph is indeed identified as NL2(10).

An interesting first-hand account (in English) by C.C. Sims on how the Higman-Sims
group was found is included in a forthcoming paper by G. Hiss [25].
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81(2):205–208, 2001.

[49] P. Wild. Divisible semibiplanes and conics of Desarguesian biaffine planes. Simon
Stevin, 58(1-2):153–166, 1984.

[50] P. Wild. Biaffine planes and divisible semiplanes. J. Geom., 25(2):121–130, 1985.

[51] R.A. Wilson, Vector stabilizers and subgroups of Leech lattice groups. J. Algebra,
127(2):387–408, 1989.

[52] S. Yoshiara. A locally polar geometry associated with the group HS. European J.
Combin., 11(1):81–93, 1990.

the electronic journal of combinatorics 11 (2004), #R77 33


