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Abstract

MacMahon’s classic theorem states that the length and major index statistics
are equidistributed on the symmetric group Sn. By defining natural analogues or
generalizations of those statistics, similar equidistribution results have been obtained
for the alternating group An by Regev and Roichman, for the hyperoctahedral group
Bn by Adin, Brenti and Roichman, and for the group of even-signed permutations
Dn by Biagioli. We prove analogues of MacMahon’s equidistribution theorem for
the group of signed even permutations and for its subgroup of even-signed even
permutations.

1 Introduction

A classic theorem by MacMahon [6] states that two permutation statistics, namely the
length (or inversion number) and the major index, are equidistributed on the symmetric
group Sn. Many refinements and generalizations of this theorem are known today (see [8]
for a brief review). In [8], Regev and Roichman gave an analogue of MacMahon’s theorem
for the alternating group An ⊆ Sn, and in [1], Adin, Brenti and Roichman gave an analogue
for the hyperoctahedral group Bn = C2 o Sn. Both results involve natural generalizations
of the Sn statistics having the equidistribution property.

Our main result here (Proposition 4.1) is an analogue of MacMahon’s equidistribution
theorem for the group of signed even permutations Ln = C2 oAn ⊆ Bn. Namely, we define
two statistics on Ln, the L-length and the negative alternating reverse major index, and
show that they have the same generating function, hence they are equidistributed. Our
Main Lemma (Lemma 4.6) shows that every element of Ln has a unique decomposition
into a descent-free factor and a signless even factor.

In [3], Biagioli proved an analogue of MacMahon’s theorem for the group of even-signed
permutations Dn (signed permutations with an even number of sign changes). Using
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our main result, we prove an analogue for the group of even-signed even permutations
(L ∩ D)n = Ln ∩ Dn (see Proposition 5.2).

The rest of this paper is organized as follows: Section 2 contains a review of wreath
products and known results concerning generators and canonical presentations in Sn, Bn

and An. In Section 3 we define the group Ln, introduce a canonical presentation in Ln,
and define the statistics we use. In Section 4 we prove the equidistribution property for
Ln, and in Section 5 we prove the equidistribution property for (L ∩ D)n. Finally, in
Section 6, we note three open problems.

2 Preliminaries

2.1 Notation

For an integer a ≥ 0 we let [a] = {1, 2, . . . , a} (where [0] = ∅).
Let Ca be the cyclic group of order a.
Let Sn be the symmetric group on 1, . . . , n and let An ⊂ Sn denote the alternating

group.

2.2 Wreath Products

Let G be a group and let A be a subgroup of Sn. Recall that the wreath product G oA is
the group { (

(g1, . . . , gn), v
) | gi ∈ G, v ∈ A } with multiplication given by(

(g1, . . . , gn), v
)(

(h1, . . . , hn), w
)

=
(
(g1hv−1(1), . . . , gnhv−1(n)), vw

)
.

The order of G o A is |G|n|A|.
Let X = G × [n]. For

(
(g1, . . . , gn), v

) ∈ G o A, define f((g1,...,gn),v) : X → X by

f((g1,...,gn),v)(h, i) := (hgv(i), v(i)).

One can verify that if G is Abelian, then function composition is compatible with mul-
tiplication in G o A, that is f((g1,...,gn),v)f((h1,...,hn),w) = f((g1,...,gn),v)((h1 ,...,hn),w). Thus, if
G is Abelian we can identify

(
(g1, . . . , gn), v

)
with f((g1,...,gn),v) and we can write π =(

(g1, . . . , gn), v
) ∈ G o A as

π = [fπ(1, 1), fπ(1, 2), . . . , fπ(1, n)] = [(gv(1), v(1)), . . . , (gv(n), v(n))].

Call this the window notation of π.

2.2.1 The Group of Signed Permutations

If G = C2 = {−1, 1}, then we write X simply as {±1,±2, . . . ,±n} and identify every
σ ∈ C2 o A with a bijection of X onto itself satisfying σ(−i) = −σ(i) for all i ∈ [n]. We
write σ = [σ1, . . . , σn] to mean that σ(i) = σi for i ∈ [n].

In particular, the hyperoctahedral group Bn := C2 o Sn is the group of all bijections of
{±1,±2, . . . ,±n} satisfying the above condition. It is also known as the group of signed
permutations.
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2.3 Generators and Canonical Presentation

In this subsection we review generators and canonical presentations in the groups Sn, Bn

and An+1.

2.3.1 Sn

The Coxeter System of Sn. Sn is a Coxeter group of type A. The Coxeter generators
are the adjacent transpositions { si }n−1

i=1 where si := (i, i + 1). The defining relations are
the Moore-Coxeter relations:

(sisi+1)
3 = 1 (1 ≤ i < n),

(sisj)
2 = 1 (|i − j| > 1),

s2
i = 1 (1 ≤ i < n).

The S Canonical Presentation. The following presentation of elements in Sn by
Coxeter generators is well known (see for example [5, pp. 61–62]).

For each 1 ≤ j ≤ n − 1 define

RS
j := {1, sj , sjsj−1, . . . , sjsj−1 · · · s1},

and note that RS
1 , . . . , RS

n−1 ⊆ Sn.

Theorem 2.1 (see [5, pp. 61–62]). Let w ∈ Sn. Then there exist unique elements wj ∈
RS

j , 1 ≤ j ≤ n − 1, such that w = w1 . . . wn−1. Thus, the presentation w = w1 . . . wn−1 is
unique.

For a proof, see for example [8, Section 3.1].

Definition 2.2 (see [8, Definition 3.2]). Call w = w1 . . . wn−1 in the above theorem
the S canonical presentation of w ∈ Sn.

2.3.2 Bn

The Coxeter System of Bn. Bn is a Coxeter group of type B, generated by s1, . . . , sn−1

together with an exceptional generator s0 := [−1, 2, 3, . . . , n], whose action is as follows:

[σ1, σ2, . . . , σn]s0 = [−σ1, σ2, . . . , σn]

s0[σ1, . . . ,±1, . . . , σn] = [σ1, . . . ,∓1, . . . , σn]

(see [4, §8.1]). The additional relations are: s2
0 = 1, (s0s1)

4 = 1, and s0si = sis0 for all
1 < i < n.
The B Canonical Presentation. For each 0 ≤ j ≤ n − 1 define

RB
j := {1, sj, sjsj−1, . . . , sjsj−1 · · · s1, sjsj−1 · · · s1s0,

sjsj−1 · · · s1s0s1, . . . , sjsj−1 · · · s1s0s1 · · · sj},
and note that RB

0 , . . . , RB
n−1 ⊆ Bn.

The following theorem is the case a = 2 of [9, Propositions 3.1 and 3.3]. For a proof
of the general case, see for example [2, Ch. 3.3].
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Theorem 2.3. Let σ ∈ Bn. Then there exist unique elements σj ∈ RB
j , 0 ≤ j ≤ n − 1,

such that σ = σ0 . . . σn−1. Moreover, written explicitly σ0 . . . σn−1 = si1si2 . . . sir is a
reduced expression for σ, that is r is the minimum length of an expression of σ as a
product of elements in {si}n−1

i=0 .

Definition 2.4. Call σ = σ0 . . . σn−1 in the above theorem the B canonical presentation
of σ ∈ Bn.

Remark 2.5. For σ ∈ Sn, the B canonical presentation of σ coincides with its S canonical
presentation.

Example 2.6. Let σ = [5,−1, 2,−3, 4], then σ4 = s4s3s2s1; σσ−1
4 = [−1, 2,−3, 4, 5],

therefore σ3 = 1 and σ2 = s2s1s0s1s2; and finally σσ−1
4 σ−1

3 σ−1
2 = [−1, 2, 3, 4, 5] so σ1 = 1

and σ0 = s0. Thus σ = σ0σ1σ2σ3σ4 = (s0)(1)(s2s1s0s1s2)(1)(s4s3s2s1).

2.3.3 An+1

A Generating Set for An+1. Let

ai := s1si+1 (1 ≤ i ≤ n − 1).

The set A = { ai }n−1
i=1 generates An+1. This set has appeared in [7], where it is shown

that the generators satisfy the relations

(aiaj)
2 = 1 (|i − j| > 1),

(aiai+1)
3 = 1 (1 ≤ i < n − 1),

a2
i = 1 (1 < i ≤ n − 1),

a3
1 = 1

(see [7, Proposition 2.5]).
Note that (An+1, A) is not a Coxeter system (in fact, An+1 is not a Coxeter group) as

a2
1 6= 1.

The A Canonical Presentation. The following presentation of elements in An+1 by
generators from A has appeared in [8, Section 3.3].

For each 1 ≤ j ≤ n − 1 define

RA
j := {1, aj , ajaj−1, . . . , aj · · ·a2, aj · · ·a2a1, aj · · ·a2a

−1
1 },

and note that RA
1 , . . . , RA

n−1 ⊆ An+1.

Theorem 2.7 (see [8, Theorem 3.4]). Let v ∈ An+1. Then there exist unique elements
vj ∈ RA

j , 1 ≤ j ≤ n − 1, such that v = v1 . . . vn−1, and this presentation is unique.

Definition 2.8 (see [8, Definition 3.5]). Call v = v1 . . . vn−1 in the above theorem the
A canonical presentation of v ∈ An+1.
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3 The Group of Signed Even Permutations

Our main object of interest in this paper is the group Ln := C2 o An. It is the subgroup
of Bn of index 2 containing the signed even permutations (which is not to be confused
with the group of even-signed permutations mentioned in Section 5). The order of Ln is
|C2|n|An| = 2n−1n!.

Example 3.1 (L3). Table 1 lists all the elements of L3 (in window notation) with their
B and L canonical presentation and B- and L-length (defined in the sequel).

π B canonical presentation `B(π) L canonical presentation `L(π)
[+1, +2, +3] 1 0 1 0
[−1, +2, +3] (s0) 1 (a0) 1
[+1,−2, +3] (s1s0s1) 3 (a1a0a

−1
1 ) 2

[−1,−2, +3] (s0)(s1s0s1) 4 (a0a1a0a
−1
1 ) 3

[+1, +2,−3] (s2s1s0s1s2) 5 (a−1
1 a0a1) 4

[−1, +2,−3] (s0)(s2s1s0s1s2) 6 (a0)(a
−1
1 a0a1) 5

[+1,−2,−3] (s1s0s1)(s2s1s0s1s2) 8 (a1a0a
−1
1 )(a−1

1 a0a1) 6
[−1,−2,−3] (s0)(s1s0s1)(s2s1s0s1s2) 9 (a0a1a0a

−1
1 )(a−1

1 a0a1) 7
[+2, +3, +1] (s1)(s2) 2 (a1) 1
[−2, +3, +1] (s1s0)(s2) 3 (a1a0a

−1
1 )(a1) 3

[+2,−3, +1] (s1)(s2s1s0s1) 5 (a−1
1 a0a

−1
1 ) 4

[−2,−3, +1] (s1s0)(s2s1s0s1) 6 (a1a0a
−1
1 )(a−1

1 a0a
−1
1 ) 5

[+2, +3,−1] (s0)(s1)(s2) 3 (a0)(a1) 2
[−2, +3,−1] (s0)(s1s0)(s2) 4 (a0a1a0a

−1
1 )(a1) 4

[+2,−3,−1] (s0)(s1)(s2s1s0s1) 6 (a0)(a
−1
1 a0a

−1
1 ) 5

[−2,−3,−1] (s0)(s1s0)(s2s1s0s1) 7 (a0a1a0a
−1
1 )(a−1

1 a0a
−1
1 ) 6

[+3, +1, +2] (s2s1) 2 (a−1
1 ) 1

[−3, +1, +2] (s2s1s0) 3 (a−1
1 a0) 3

[+3,−1, +2] (s0)(s2s1) 3 (a0)(a
−1
1 ) 2

[−3,−1, +2] (s0)(s2s1s0) 4 (a0)(a
−1
1 a0) 4

[+3, +1,−2] (s1s0s1)(s2s1) 5 (a1a0a
−1
1 )(a−1

1 ) 3
[−3, +1,−2] (s1s0s1)(s2s1s0) 6 (a1a0a

−1
1 )(a−1

1 a0) 6
[+3,−1,−2] (s0)(s1s0s1)(s2s1) 6 (a0a1a0a

−1
1 )(a−1

1 ) 4
[−3,−1,−2] (s0)(s1s0s1)(s2s1s0) 7 (a0a1a0a

−1
1 )(a−1

1 a0) 7

Table 1: L3

3.1 Characterization in Terms of the B Canonical Presentation

Define the group homomorphism abs : C2 o Sn → Sn by ((ε1, . . . , εn), σ) 7→ σ, or equiva-
lently, in terms of our representation of elements of C2 o Sn as bijections of {±1, . . . ,±n}
onto itself, abs(σ)(i) := |σ(i)|.
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From this formulation one sees immediately that for any σ ∈ Bn, abs(σs0) = abs(σ).
Thus if σ = si1 . . . sik , then deleting all occurrences of s0 from si1 . . . sik what remains
is an expression for abs(σ). Since by definition abs(Ln) = An, we have the following
proposition.

Proposition 3.2.

Ln =
{

σ ∈ Bn | σ = si1 . . . sik , #{ j | ij 6= 0 } is even
}
.

3.2 Generators and Canonical Presentation

3.2.1 A Generating Set for Ln+1

Ln+1 is generated by a1, . . . , an−1 together with the generator a0 := s0 = [−1, 2, 3, . . . , n, n+
1]. The additional relations are a2

0 = 1, (a0a1)
6 = (a0a

−1
1 )6 = 1, and (a0ai)

4 = 1 for all
1 < i ≤ n − 1.

3.2.2 The L Canonical Presentation

Let RL
0 := {1, a0, a1a0a

−1
1 , a0a1a0a

−1
1 } and for each 1 ≤ j ≤ n − 1 define

RL
j :=RA

j ∪ {ajaj−1 · · ·a2a
−1
1 a0, ajaj−1 · · ·a2a

−1
1 a0a

−1
1 }

∪ {ajaj−1 · · ·a2a
−1
1 a0a1, . . . , ajaj−1 · · ·a2a

−1
1 a0a1a2 · · ·aj}.

For example,

RL
2 = {1, a2, a2a1, a2a

−1
1 , a2a

−1
1 a0, a2a

−1
1 a0a

−1
1 , a2a

−1
1 a0a1, a2a

−1
1 a0a1a2}.

Note that RL
0 , . . . , RL

n−1 ⊆ Ln+1.

Theorem 3.3. Let π ∈ Ln+1. Then there exist unique elements πj ∈ RL
j , 0 ≤ j ≤ n − 1,

such that π = π0 . . . πn−1, and this presentation is unique.

A proof is given below.

Definition 3.4. Call π = π0 . . . πn−1 in the above theorem the L canonical presentation
of π ∈ Ln+1.

The following recursive L-Procedure is a way to calculate the L canonical presenta-
tion:

First note that RL
0 = L2 so RL

0 gives the canonical presentations of all π ∈ L2.
For n > 1, let π ∈ Ln+1, |π(r)| = n + 1.
If π(r) = n + 1, ‘pull n + 1 to its place on the right’ by

[. . . , n + 1, . . . ]ar−1ar · · ·an−1 = [. . . . . . , n + 1] if r > 2 ,

[k, n + 1, . . . ]a−1
1 a2 · · ·an−1 = [. . . . . . , n + 1] if r = 2 ,

(∗) [n + 1, . . . ]a1a2 · · ·an−1 = [. . . . . . , n + 1] if r = 1 ;

the electronic journal of combinatorics 11 (2004), #R83 6



and if π(r) = −(n + 1), ‘correct the sign’ by

[. . . ,−(n + 1), . . . ]ar−2 · · ·a−1
1 a0 = [n + 1, . . . ] if r > 3 ,

[`, k,−(n + 1), . . . ]a−1
1 a0 = [n + 1, . . . ] if r = 3 ,

[k,−(n + 1), . . . ]a1a0 = [n + 1, . . . ] if r = 2 ,

[−(n + 1), . . . ]a0 = [n + 1, . . . ] if r = 1 ,

and then ‘pull to the right’ using (∗).
This gives πn−1 ∈ RL

n−1 and ππ−1
n−1 ∈ Ln. Therefore by induction π = π0 . . . πn−2πn−1

with πj ∈ RL
j for all 0 ≤ j ≤ n − 1.

For example, let π = [3, 5,−4, 2,−1], then π3 = a3a2a1; ππ−1
3 = [−4, 3, 2,−1, 5], there-

fore π2 = a2a
−1
1 a0; next ππ−1

3 π−1
2 = [2, 3,−1, 4, 5] so π1 = a1; and finally ππ−1

3 π−1
2 π−1

1 =
[−1, 2, 3, 4, 5] so π0 = a0. Thus

π = π0π1π2π3 = (a0)(a1)(a2a
−1
1 a0)(a3a2a1).

Table 1 gives the L canonical presentation of L3.

Proof of Theorem 3.3. The L-Procedure proves the existence of such a presentation, and
the uniqueness follows by a counting argument:

n−1∏
j=0

|RL
j | =

n−1∏
j=0

2(j + 2) = 2n(n + 1)! = 2n+1|An+1| = |Ln+1|.

Remark 3.5. For π ∈ An+1, the L canonical presentation of π coincides with its A
canonical presentation.

Remark 3.6. The canonical presentation of π ∈ Ln+1 is not necessarily a reduced
expression. For example, the canonical presentation of π = [−3, 1,−2] ∈ L3 is π =
(a1a0a

−1
1 )(a−1

1 a0) which is not reduced (π = a1a0a1a0).

3.3 Bn and Ln+1 Statistics

Definition 3.7. Let w = [w1, w2, . . . , wn] be a word on Z. The inversion number of w is
defined as inv(w) := #{ 1 ≤ i < j ≤ n | wi > wj }.

For example, inv([5,−1, 2,−3, 4]) = 6.

Definition 3.8. 1. Let σ ∈ Bn, then j ≥ 2 is a l.t.r.min (left-to-right minimum) of σ if
σ(i) > σ(j) for all 1 ≤ i < j.

2. Define delB(σ) := # ltrm(σ) = #{ 2 ≤ j ≤ n | j is a l.t.r.min of σ }.
For example, the left-to-right minima of σ = [5,−1, 2,−3, 4] are {2, 4} so delB(σ) = 2.

Remark 3.9. The implicit definition of delS(w) for w ∈ Sn in [8, Proposition 7.2] is
similar to the above definition of delB. In particular, if w ∈ Sn then delS(w) = delB(w).
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Definition 3.10. Let σ ∈ Bn. Define

Neg(σ) := { i ∈ [n] | σ(i) < 0 }.
Remark 3.11. 1. If v ∈ Sn and σ ∈ Bn then

Neg(vσ) = { i ∈ [n] | v(σ(i)) < 0 }
= { i ∈ [n] | σ(i) < 0 }
= Neg(σ).

2. Neg(σ−1) = { |σ(i)| | i ∈ Neg(σ) }.
Definition 3.12. Let σ ∈ Bn. Define the B-length of σ in the usual way, i.e., `B(σ) is
the length of σ with respect to the Coxeter generators of Bn.

For example,

`B([5,−1, 2,−3, 4]) = `B(s0s2s1s0s1s2s4s3s2s1) = 10

(see Example 2.6).

Lemma 3.13 (see [4, §8.1]). Let σ ∈ Bn. Then

`B(σ) = inv(σ) +
∑

i∈Neg(σ−1)

i. (1)

In [8], the A-length of w ∈ An, `A(w) was defined as the length of w’s A canonical
presentation, and it was shown to have the following property.

Proposition 3.14 (see [8, Proposition 4.4]). Let w ∈ An, then

`A(w) = `S(w) − delS(w),

where `S(w) is the length of w with respect to the Coxeter generators of Sn.

This serves as motivation for the following definition.

Definition 3.15. Let σ ∈ Bn. Define the L-length of σ as

`L(σ) := `B(σ) − delB(σ) = inv(σ) − delB(σ) +
∑

i∈Neg(σ−1)

i. (2)

Remark 3.16. 1. The function `L is not a length function with respect to any set of
generators, that is for every set of generators of Ln, there exists π ∈ Ln such that `L(π)
is in not the length of a reduced expression for π using those generators. For example, in
L3 we have `L([3, 1, 2]) = `L([−1, 2, 3]) = 1 but `L([3, 1, 2][−1, 2, 3]) = `L([−3, 1, 2]) = 3.

2. If w ∈ An then, according to Proposition 3.14 and the above remarks, `A(w) =
`L(w).
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Definition 3.17. 1. The S-descent set of σ ∈ Bn is defined by

DesS(σ) := { 1 ≤ i ≤ n − 1 | σ(i) > σ(i + 1) }.
2. Define the major index of σ ∈ Bn by

majB(σ) :=
∑

i∈DesS(σ)

i.

3. Define the reverse major index of σ ∈ Bn by

rmajBn
(σ) :=

∑
i∈DesS(σ)

(n − i).

For example, if σ = [5,−1, 2,−3, 4] then DesS(σ) = {1, 3}, majB(σ) = 4 and rmajB5
(σ) =

6.

Remark 3.18. DesS(σ) = { 1 ≤ i ≤ n − 1 | `B(σsi) < `B(σ) }. Indeed, by Remark 3.11
and the definition of inv, for 1 ≤ i ≤ n − 1

`B(σsi) − `B(σ) =
(
inv(σsi) +

∑
i∈Neg((σsi)−1)

i
) − (

inv(σ) +
∑

i∈Neg(σ−1)

i
)

= inv(σsi) − inv(σ)

=

{
+1 if σ(i) < σ(i + 1),

−1 if σ(i) > σ(i + 1).

The majB and rmajBn
statistics are equidistributed on Bn, as the following lemma

shows.

Lemma 3.19. There exists an involution φ of Bn satisfying the conditions

majB(σ) = rmajBn
(φ(σ))

and
Neg(σ−1) = Neg((φ(σ))−1).. (3)

Proof. Given σ = [σ1, . . . , σn] ∈ Bn, σi1 < σi2 < · · · < σin , let ρσ be the order-reversing
permutation on {σ1, . . . , σn}, that is ρσ(σik) = σin+1−k

, and define

φ(σ) = [ρσ(σn), ρσ(σn−1), . . . , ρσ(σ1)].

Since ρσ is a permutation, the letters in the window notation of φ(σ) are again σ1, . . . , σn,
so ρφ(σ) = ρσ. Thus

φ2(σ) = [ρφ(σ)(ρσ(σ1)), . . . , ρφ(σ)(ρσ(σn))]

= [ρ2
σ(σ1), . . . , ρ

2
σ(σn)]

= σ,
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and by Remark 3.11, Neg(σ−1) = Neg(φ(σ)−1).
Finally,

i ∈ DesS(φ(σ)) ⇐⇒ φ(σ)(i) > φ(σ)(i + 1)

⇐⇒ ρσ(σn+1−i) > ρσ(σn−i)

⇐⇒ σn+1−i < σn−i

⇐⇒ n − i ∈ DesS(σ),

So
rmajBn

(φ(σ)) =
∑

i∈DesS(φ(σ))

n − i =
∑

i∈DesS(σ)

i = majB(σ).

Example 3.20. Let σ = [5,−1, 2,−3, 4]. To compute φ(σ), we first reverse σ to get
[4,−3, 2,−1, 5], then apply the order-reversing permutation on {−3,−1, 2, 4, 5} to get
φ(σ) = [−1, 5, 2, 4,−3]. Indeed we have majB(σ) = 4 = rmajB5

(φ(σ)) and Neg(σ−1) =
{1, 3} = Neg(φ(σ)−1).

Definition 3.21. 1. The A-descent set of π ∈ Ln+1 is defined by

DesA(π) := { 1 ≤ i ≤ n − 1 | `L(πai) ≤ `L(π) },
and the A-descent number of π ∈ Ln+1 is defined by desA(π) := |DesA π|.

2. Define the alternating reverse major index of π ∈ Ln+1 by

rmajLn+1
(π) :=

∑
i∈DesA(π)

(n − i).

3. Define the negative alternating reverse major index of π ∈ Ln+1 by

nrmajLn+1
(π) := rmajLn+1

(π) +
∑

i∈Neg(π−1)

i.

For example, if π = [5,−1, 2,−3, 4] then DesA(π) = {1, 2}, rmajL5
(π) = 5, and

nrmajL5
(π) = 5 + 1 + 3 = 9.

Remark 3.22. 1. For w ∈ An+1, the above definitions agree with [8, Definition 1.5].
2. In general, DesA(π) 6= { 1 ≤ i ≤ n − 1 | π(i) > π(i + 1) }.

4 Equidistribution on Ln+1

The following is our main result.

Proposition 4.1. For every B ⊆ [n + 1]∑
{π∈Ln+1|Neg(π−1)⊆B }

q
nrmajLn+1

(π)
=

∑
{π∈Ln+1|Neg(π−1)⊆B }

q`L(π)

=
∏
i∈B

(1 + qi)
n−1∏
i=1

(1 + q + · · · + qi−1 + 2qi).
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Example 4.2. For n = 3 and B = {2} we have

∑
{π∈L4|Neg(π−1)⊆{2} }

qnrmajL4
(π) =

∑
{π∈L4|Neg(π−1)⊆{2} }

q`L(π)

= (1 + q2)(1 + 2q)(1 + q + 2q2) = 1 + 3q + 5q2 + 7q3 + 4q4 + 4q5,

as one may verify using Table 2.

π nrmajL4
(π) `L(π)

[+1, +2, +3, +4] 0 0
[+1, +3, +4, +2] 1 2
[+1, +4, +2, +3] 2 2
[+2, +1, +4, +3] 1 1
[+2, +3, +1, +4] 2 1
[+2, +4, +3, +1] 3 3
[+3, +1, +2, +4] 2 1
[+3, +2, +4, +1] 1 2
[+3, +4, +1, +2] 3 3
[+4, +1, +3, +2] 3 3
[+4, +2, +1, +3] 2 2
[+4, +3, +2, +1] 3 3
[+1,−2, +3, +4] 2 2
[+1, +3, +4,−2] 3 4
[+1, +4,−2, +3] 4 4
[−2, +1, +4, +3] 3 3
[−2, +3, +1, +4] 4 3
[−2, +4, +3, +1] 5 5
[+3, +1,−2, +4] 4 3
[+3,−2, +4, +1] 3 4
[+3, +4, +1,−2] 5 5
[+4, +1, +3,−2] 5 5
[+4,−2, +1, +3] 4 4
[+4, +3,−2, +1] 5 5

Table 2: { π ∈ L4 | Neg(π−1) ⊆ {2} }

By the Inclusion-Exclusion Principle we have:

Corollary 4.3. For every B ⊆ [n + 1]∑
{π∈Ln+1|Neg(π−1)=B }

q
nrmajLn+1

(π)
=

∑
{π∈Ln+1|Neg(π−1)=B }

q`L(π).
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Note that the case B = ∅ of Proposition 4.1 is just the case t = 1 of the following
theorem.

Theorem 4.4 (see [8, Theorem 6.1(2)]).

∑
w∈An+1

q`A(w)tdelA(w) =
∑

w∈An+1

q
rmajAn+1

(w)
tdelA(w)

= (1 + 2qt)(1 + q + 2q2t) · · · (1 + q + · · · + qn−2 + 2qn−1t).

The proof of Proposition 4.1 uses the decomposition of

{ π ∈ Ln+1 | Neg(π−1) ⊆ B }

into left cosets of An+1, and a set of distinguished coset representatives.

Lemma 4.5. Let w ∈ Sn+1. Then

`L(w) = `L(s1w).

Proof.

inv(s1w) =

{
inv(w) + 1 if w−1(1) < w−1(2);

inv(w) − 1 if w−1(1) > w−1(2)

and

delB(s1w) =

{
delB(w) + 1 if w−1(1) < w−1(2);

delB(w) − 1 if w−1(1) > w−1(2),

therefore
`L(w) = inv(w) − delB(w) = inv(s1w) − delB(s1w) = `L(s1w).

Lemma 4.6 (Main Lemma). Let π ∈ Ln+1. Then there exists a unique σ ∈ Ln+1

such that u = σ−1π ∈ An+1 and desA(σ) = 0. Moreover, DesA(u) = DesA(π), inv(u) −
delS(u) = inv(π) − delB(π), and Neg(π−1) = Neg(σ−1).

Proof. Let σ′ ∈ Bn+1 be the increasing word with the letters of π. Clearly inv(σ′) =
delB(σ′) = 0 so by (2), `L(σ′) =

∑
i∈Neg(σ′−1) i.

For every v ∈ Sn+1 and i, j ∈ [n + 1],

v(i) < v(j) ⇐⇒ (σ′v)(i) < (σ′v)(j),

thus
inv(σ′v) = inv(v) (4)

and
delB(σ′v) = delS(v). (5)
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By Remark 3.11, Neg((σ′v)−1) = Neg(v−1σ′−1) = Neg(σ′−1). Therefore for every v ∈
Sn+1,

`L(σ′v) = inv(σ′v) +
∑

i∈Neg((σ′v)−1)

i − delB(σ′v)

=
∑

i∈Neg(σ′−1)

i + inv(v) − delB(v)

= `L(σ′) + `L(v).

(6)

There are two possible cases to consider:
Case 1: σ′ ∈ Ln+1. Let σ = σ′ and let u = σ′−1π.
Using (6) we have for 1 ≤ i ≤ n − 1,

`L(σai) = `L(σ′ai)

= `L(σ′) + `L(ai)

> `L(σ′)

= `L(σ)

and

`L(π) − `L(πai) = `L(σu) − `L(σ(uai))

= `L(σ′u) − `L(σ′(uai))

= `L(σ′) + `L(u) − `L(σ′) − `L(uai)

= `L(u) − `L(uai).

Therefore desA(σ) = 0 and DesA(u) = DesA(π) as desired. From (4) and (5) we also get
that

inv(π) − delB(π) = inv(σu) − delB(σu)

= inv(σ′u) − delB(σ′u)

= inv(u) − delS(u).

Case 2: σ′s1 ∈ Ln+1. Let σ = σ′s1 and let u = s1σ
′−1π.

Using (6) we have for 1 ≤ i ≤ n − 1,

`L(σai) = `L(σ′si+1)

= `L(σ′) + `L(si+1)

> `L(σ′)

= `L(σ′) + `L(s1) (`L(s1) = 0)

= `L(σ′s1)

= `L(σ)
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and, using also Lemma 4.5,

`L(π) − `L(πai) = `L(σ′s1u) − `L(σ′(s1uai))

= `L(σ′) + `L(s1u) − `L(σ′) − `L(s1uai)

= `L(s1u) − `L(s1(uai))

= `L(u) − `L(uai).

Therefore desA(σ) = 0 and DesA(u) = DesA(π) as desired. From (4) and (5) and
Lemma 4.5,

inv(π) − delB(π) = inv(σ′s1u) − delB(σ′s1u)

= inv(s1u) − delS(s1u)

= inv(u) − delS(u).

In both cases, the fact that Neg(π−1) = Neg(σ−1) follows by Remark 3.11 from the
fact that π−1 = u−1σ−1 and u ∈ An+1.

To see that σ is unique, suppose σ̃ ∈ Ln+1 satisfies desA(σ̃) = 0 and ũ = σ̃−1π ∈ An+1.
Then 0 = desA(σ̃) = desA(σuũ−1) (since σ̃ = σuũ−1), so for 1 ≤ i ≤ n − 1,

0 ≤ `L(σuũ−1ai) − `L(σuũ−1)

= `L(σ) + `L(uũ−1ai) − `L(σ) − `L(uũ−1)

= `L(uũ−1ai) − `L(uũ−1)

= `A(uũ−1ai) − `A(uũ−1),

whence uũ−1 = 1, i.e. σ = σ̃.

Let T = { σ ∈ Ln+1 | desA(σ) = 0 }.
Corollary 4.7. 1. For every B ⊆ [n + 1] there exists a unique σ ∈ T such that B =
Neg(σ−1).

2. For every B ⊆ [n + 1],

{ π ∈ Ln | Neg(π−1) ⊆ B } =
⊎

u∈An+1

{ σu | σ ∈ T, Neg(σ−1) ⊆ B }, (7)

where ] denotes disjoint union.

Corollary 4.8. Let π ∈ Ln+1, and write π = σu with σ and u like in Lemma 4.6. Then
`L(π) = `A(u) +

∑
i∈Neg(π−1) i .

Proof. By (2), Lemma 4.6 and Proposition 3.14,

`L(π) = inv(π) − delB(π) +
∑

i∈Neg(π−1)

i

= inv(u) − delS(u) +
∑

i∈Neg(π−1)

i

= `A(u) +
∑

i∈Neg(π−1)

i.
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Proof of Proposition 4.1. From Corollary 4.7, Lemma 4.6 and Theorem 4.4,∑
π∈Ln+1

Neg(π−1)⊆B

q
nrmajLn+1

(π)
=

∑
σ∈T

Neg(σ−1)⊆B

∑
u∈An+1

q
nrmajLn+1

(σu)

=
∑
σ∈T

Neg(σ−1)⊆B

∑
u∈An+1

qrmajL(σu)+
P

i∈Neg((σu)−1) i

=
∑
σ∈T

Neg(σ−1)⊆B

q
P

i∈Neg(σ−1) i
∑

u∈An+1

qrmajA(u)

=
∑
C⊆B

q
P

i∈C i
∑

u∈An+1

qrmajA(u)

=
∏
i∈B

(1 + qi)
n−1∏
i=1

(1 + q + · · ·+ qi−1 + 2qi).

By similar considerations, this time invoking the other equality in Theorem 4.4,∑
π∈Ln+1

Neg(π−1)⊆B

q`L(π) =
∑
σ∈T

Neg(σ−1)⊆B

∑
u∈An+1

q`L(σu)

=
∑
σ∈T

Neg(σ−1)⊆B

∑
u∈An+1

qinv(σu)+
P

i∈Neg((σu)−1) i−delB(σu)

=
∑
σ∈T

Neg(σ−1)⊆B

q
P

i∈Neg(σ−1) i
∑

u∈An+1

qinv(u)−delS(u)

=
∑
C⊆B

q
P

i∈C i
∑

u∈An+1

q`A(u)

=
∏
i∈B

(1 + qi)
n−1∏
i=1

(1 + q + · · · + qi−1 + 2qi).

5 Even-signed Even Permutations

We denote by Dn the group of even-signed permutations, that is the subgroup of Bn

consisting of all the signed permutations having an even number of negative entries in
their window notation. Equivalently,

Dn = { σ ∈ Bn | # Neg(σ−1) is even }.

Dn is a Coxeter group of type D, generated by s̃0, s1, . . . , sn−1, where s̃0 = s0s1s0 =
[−2,−1, 3, . . . , n] (see, for example, [4, §8.2]).
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Following Biagioli [3], we define the D-length of σ ∈ Dn by

`D(σ) = `B(σ) − # Neg(σ),

which is also the length of a reduced expression for σ in the above generators (see [4, §8.2]
for a proof), and we let

dmaj(σ) = majB(σ) − # Neg(σ) +
∑

i∈Neg(σ−1)

i.

Biagioli proved the following Dn-analogue of MacMahon’s theorem.

Proposition 5.1 (see [3, Proposition 3.1]).∑
σ∈Dn

qdmaj(σ) =
∑

σ∈Dn

q`D(σ).

Let
drmajn(σ) = rmajBn

(σ) − # Neg(σ) +
∑

i∈Neg(σ−1)

i.

Since the involution φ from Lemma 3.19 satisfies the condition (3), dmaj and drmajn
are equidistributed on Dn, hence we can replace dmaj with drmajn in Proposition 5.1.

Let (L ∩ D)n+1 = Ln+1 ∩ Dn+1, the group of even-signed even permutations on
±1, . . . ,±(n + 1), and let

`(L∩D)(π) = `D(π) − delB(π)

and
drmaj(L∩D)n+1

(π) = rmajLn+1
(π) − # Neg(π) +

∑
i∈Neg(π−1)

i.

Proposition 5.2. ∑
π∈(L∩D)n+1

qdrmaj(L∩D)n+1
(π) =

∑
π∈(L∩D)n+1

q`(L∩D)(π).

Proof. From the definitions and from Corollary 4.3 we have for every i∑
π∈Ln+1

#Neg(π−1)=2i

q
drmaj(L∩D)n+1

(π)
=

∑
π∈Ln+1

#Neg(π−1)=2i

q
nrmajLn+1

(π)−# Neg(π)

= q−2i
∑

B⊆[n+1]
|B|=2i

∑
π∈Ln+1

Neg(π−1)=B

qnrmajLn+1
(π)

= q−2i
∑

B⊆[n+1]
|B|=2i

∑
π∈Ln+1

Neg(π−1)=B

q`L(π)

=
∑

π∈Ln+1

#Neg(π−1)=2i

q`L(π)−# Neg(π)

=
∑

π∈Ln+1

#Neg(π−1)=2i

q`(L∩D)(π).
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Taking the sum over all i we get the desired equality.

6 Open Problems

The following questions arise quite naturally when considering what is known for Sn and
Bn and comparing our results for Ln+1 with the results for An+1 from [8]. However, they
remain open.

1. Is it possible to define a descent number desL on Ln+1 for which a theorem like
Corollary 1.11 in [8], that is

∑
π∈Ln+1

q
nrmajLn+1

(π)

1 q
desL(π−1)
2 =

∑
π∈Ln+1

q
`L(π)
1 q

desL(π−1)
2

holds?

2. The statistic delS (resp. delA), as defined in [8], has an algebraic interpretation
as the number of occurrences of s1 (resp. a±1

1 ) in the canonical presentation of an
element. Is there an interpretation of delB(σ) based on counting occurrences of
generators in the B canonical presentation of σ? Alternatively, is there another
canonical presentation of Bn for which delB has such a meaning?

3. For π ∈ Ln+1 one can define length(π), the length of π with respect to the set of
generators {a0, a1, . . . , an−1}, and then proceed to define a notion of descent. Is
there a closed formula for length(π)? How does it relate to `L(π)?
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