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Abstract

A sequence of complex numbers is holonomic if it satisfies a linear recurrence with
polynomial coefficients. A power series is holonomic if it satisfies a linear differential
equation with polynomial coefficients, which is equivalent to its coefficient sequence
being holonomic. It is well known that all algebraic power series are holonomic.
We show that the analogous statement for sequences is false by proving that the
sequence {√n}n is not holonomic. In addition, we show that {nn}n, the Lambert
W function and {log n}n are not holonomic, where in the case of {log n}n we have
to rely on an open conjecture from transcendental number theory.

1 Introduction

A sequence u : N → C is called holonomic (P -recursive, P -finite) over a field K ⊆ C if it
satisfies a homogeneous linear recurrence

p0(n)u(n) + p1(n)u(n + 1) + . . . + pd(n)u(n + d) = 0 n ≥ 0, (1)

where the pk are polynomials with coefficients in K and pd is not identically zero. If K is
not mentioned, it is understood to be C. Many combinatorial sequences are holonomic.
A formal power series f(z) =

∑
n≥0 u(n)zn is holonomic (D-finite, P -finite) if it satisfies

a homogeneous linear ordinary differential equation

p0(z)f(z) + p1(z)f ′(z) + . . . + pd(z)f (d)(z) = 0 (2)

with polynomial coefficients. Holonomicity of meromorphic functions is defined in the
same way. It is well known [8] that a power series is holonomic if and only if its coefficient
sequence is.
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There are powerful methods for showing that certain power series are not holonomic.
For instance, given that f is holonomic, 1/f (if defined) is holonomic if and only if f ′/f
is algebraic, and exp(

∫
f) is holonomic if and only if f is algebraic [3, 7]. Such results

can be used to show that a given sequence is not holonomic by applying them to its
generating function. For instance, the Bell numbers and the Bernoulli numbers with
exponential generating functions exp(ez − 1) and z/(ez − 1), respectively, can be seen to
be non-holonomic in this way.

On the sequence level, we have that a sequence that is not eventually zero but has
arbitrarily long runs of zeros cannot satisfy a recurrence of the form (1). Furthermore,
for every holonomic sequence u there is a constant γ such that |u(n)| ≤ n!γ for n ≥ 2
[5, 6]. In general, this bound is best possible, since {n!m}n is easily seen to be holonomic
for integer m. However, none of these techniques apply to the sequences {√n}n, {log n}n

and {nn}n or to the corresponding power series.

2 Powers of Hypergeometric Sequences

A power series f(z) is called algebraic if it satisfies Q(f(z), z) = 0 for some non-zero
bivariate polynomial Q. All algebraic power series are holonomic [8]. The following
theorem shows that the analogous statement for sequences does not hold. For instance,
putting p = q = 1, a1 = 2, b1 = 1, r = 1

2
shows that the sequence {√n + 1}n (and hence

also {√n}n) is not holonomic.

Theorem 1. Let a1, . . . , ap, b1, . . . , bq be pairwise distinct positive integers (possibly p = 0
or q = 0, but not both). Define the sequence {h(n)}n by

h(n) =
(a1)n . . . (ap)n

(b1)n . . . (bq)n

n ≥ 0, (3)

where (c)n denotes the rising factorial

(c)n =
n∏

i=1

(c + i − 1),

and let r ∈ Q\Z. Then the sequence {h(n)r}n is not holonomic.

Before proving Theorem 1, we briefly comment on its assumptions. Sequences like
(3) are called hypergeometric, where in general the ai and bi may be complex numbers
with the exception that no bi can be a negative integer or zero. Such sequences have
the property that the quotient h(n+1)

h(n)
is a rational function of n, and they are obviously

holonomic, since they satisfy a linear recurrence of order one with polynomial coefficients.
We assume the ai and bi to be pairwise distinct to rule out cases like

√
(1)n(1)n = n!.

The fact that ai and bi are integers will be used in an argument from algebraic number
theory. Finally, if some ai was negative, the sequence h(n)r would be eventually zero,
hence holonomic. Indeed, it is not difficult to see that if two sequences differ only at
finitely many entries, one of them is holonomic if and only if the other one is.
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If a sequence of real numbers is holonomic (over C), it is holonomic over R:

d∑
k=0

pk(n)u(n + k) = 0 =⇒
d∑

k=0

<(pk(n))u(n + k) = 0.

The following lemma generalizes this.

Lemma 2. Let K be a subfield of C and {u(n)}n be a holonomic sequence with u(n) ∈ K
for all n. Then {u(n)}n is holonomic over K.

Proof. Suppose

d∑
k=0

pk(n)u(n + k) = 0 with pk(n) =

mk∑
i=0

ckin
i, cki ∈ C, (4)

and set m = m0 + · · · + md + d + 1. Since u(n) ∈ K, for each n the recurrence (4) gives
rise to a linear equation vT

n c = 0 with vn ∈ Km that is satisfied by the coefficient vector

c = (c00, . . . , c0m0 , . . . , cd0, . . . , cdmd
)T ∈ Cm.

We may assume that u is not the zero sequence (otherwise the statement of the lemma
is trivial), hence not all vn are the zero vector. Let s be maximal such that there are s
vectors vn1 , . . . , vns that are linearly independent over C. We have s < m since c 6= 0.
The linear system

vT
n1

c = 0

...

vT
ns

c = 0

with coefficients in K has more unknowns than equations, hence there is a solution 0 6=
c̃ ∈ Km. Since any vector vn is a C-linear combination of vn1 , . . . , vns , the vector c̃ satisfies
vT

n c̃ = 0 for all n. We obtain the desired recurrence for u(n) by replacing each cki in (4)
with the corresponding entry of c̃.

Another proof of Lemma 2 has been given by Lipshitz [4].

Lemma 3. If {u(n)}n and {v(n)}n are holonomic sequences, then their termwise (or
Hadamard) product {u(n)v(n)}n is holonomic. In particular, powers of holonomic se-
quences with positive integer exponent are holonomic.

Proof. See, e.g., [8].

Proof of Theorem 1. We assume that h(n)r is holonomic. Write r = α
β

with β > 0,

gcd(α, β) = 1 and take integers α′, β ′ such that α′α + β ′β = 1.
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Case 1: α′ > 0. The sequence h(n) is holonomic. Observe that h(n)−1 is of the form (3),
too, hence it is also holonomic. By Lemma 3, we find that

(h(n)r)α′
h(n)β′

= h(n)
1−β′β

β h(n)β′
= h(n)1/β

is holonomic.
Case 2: α′ < 0. In this case

(h(n)r)−α′
h(n)−β′

= h(n)
β′β−1

β h(n)−β′
= h(n)−1/β

is holonomic.
Case 3: α′ = 0. This cannot happen since β 6= ±1.

We assume that we are in Case 1. Case 2 can be reduced to Case 1 by replacing h(n)
with h(n)−1. For any integer s ≥ 2 we define

Ks = Q(21/β , 31/β, . . . , s1/β).

Then K =
⋃

s≥2 Ks is a field. Indeed, K is the intersection of all subfields of C that

contain the set {s1/β | s ∈ N}. Since h(n)1/β ∈ K for all n, by Lemma 2 the sequence
h(n)1/β satisfies a recurrence

d∑
k=0

pk(n)h(n + k)1/β = 0 n ≥ 0,

where the pk are polynomials with coefficients in K. There is an integer s0 such that all
these coefficients are in Ks0. For simplicity of notation assume

a1 = max(a1, . . . , ap, b1, . . . , bq). (5)

Now choose n0 larger than the roots of pd and such that n1 = a1 + n0 + d − 1 is larger
than s0 and prime. Then

h(n0 + d)1/β = n
1/β
1

(
(a1)n0+d−1(a2)n0+d . . . (ap)n0+d

(b1)n0+d . . . (bq)n0+d

)1/β

= −pd(n0)
−1

d−1∑
k=0

pk(n0)h(n0 + k)1/β

implies
n

1/β
1 ∈ Kn1−1. (6)

(In the case where the maximum in (5) occurs among the denominator parameters bi it
is important to note h(n0 + d)1/β 6= 0.) But

Kn1−1 = Q(ρ
1/β
1 , . . . , ρ

1/β
t ),
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where ρ1, . . . , ρt are the primes smaller than n1, and by Galois Theory [2, Section 4.12],
the degree of this field over Q is

[Kn1−1 : Q] = [Q(ρ
1/β
1 , . . . , ρ

1/β
t ) : Q] = βt.

Adjoining n
1/β
1 would enlarge the degree to βt+1, hence (6) is impossible. This contradic-

tion shows that h(n)r is not holonomic.

As an application we show that f(x, n) = 1/(x2+n) is not holonomic. We will not need
the definition of holonomicity for functions f(x1, . . . , xr, n1, . . . , ns) of several continuous
and several discrete arguments here, but only the fact that definite integration preserves
holonomicity [9]. For n ≥ 1 we have

∫ ∞

0

dx

x2 + n
=

1√
n

arctan
x√
n

∣∣∣∣
∞

x=0

=
π

2
√

n
,

thus 1/(x2 + n) is not holonomic by Theorem 1.

3 The Sequence log n

The proof of Theorem 1 immediately yields the following criterion.

Proposition 4. If there are infinitely many n such that

u(n) /∈ Q({u(k) | 0 ≤ k < n}),

then the sequence {u(n)}n is not holonomic.

With this criterion we can prove that {log n}n is not holonomic, assuming the following
weak form of Schanuel’s Conjecture.

Conjecture 5. Suppose that α1, . . . , αs ∈ R are linearly independent over Q, and that
eα1 , . . . , eαs are integers. Then α1, . . . , αs are algebraically independent.

Theorem 6. If Conjecture 5 holds, then {log n}n is not holonomic.

Proof. For distinct primes ρ1, . . . , ρs, the numbers log ρ1, . . . , log ρs are linearly indepen-
dent over Q, since for all c1, . . . , cs ∈ Z we have

0 =

s∑
i=1

ci log ρi = log(ρc1
1 . . . ρcs

s ) =⇒ ρc1
1 . . . ρcs

s = 1 =⇒ ∀i : ci = 0. (7)

By Conjecture 5, log ρ1, . . . , log ρs are algebraically independent and thus the assumption
of Proposition 4 is satisfied.
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4 The Sequence nn and the Lambert W Function

Theorem 7. For rational numbers a, b with b 6= 0, the sequence {(a + n)bn}n is not
holonomic.

Proof. By Lemma 3 we may assume b ∈ Z. Now the entries of the sequence are in Q,
and if it was holonomic, then by Lemma 2 there would be polynomials pk with rational
coefficients, pd 6= 0, such that

d∑
k=0

pk(n)(n + a + k)b(n+k) = 0 n ≥ 0.

Multiplying both sides with n−bn yields

d∑
k=0

(n + a + k)bkpk(n)

(
1 +

a + k

n

)bn

= 0.

Putting
m = max

0≤k≤d
(deg pk + bk) and M = {k | deg pk + bk = m},

we find (lc denotes the leading coefficient)

d∑
k=0

nbkpk(n)

(
1 +

a + k

n

)bn

= O(nm−1) as n → ∞

∑
k∈M

lc(pk)

(
1 +

a + k

n

)bn

= O(n−1).

Now we take the limit n → ∞. ∑
k∈M

lc(pk)e
b(a+k) = 0,

hence ∑
k∈M

lc(pk)e
bk = 0.

This contradicts the transcendence of eb.

The Lambert W function is defined implicitly by the equation

W (z)eW (z) = z.

In combinatorics −W (−z) is known as the exponential generating function of rooted
labelled trees. All information we will need about W (z) can be found in [1].

Corollary 8. The Lambert W function is not holonomic.
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Proof. This follows from Theorem 7 with a = 0 and b = 1, Lemma 3 and the series
expansion

W (z) =

∞∑
n=1

(−n)n−1

n!
zn.

Alternatively, a well-known method for proving non-holonomicity [8] can be applied
to W (z). The derivatives of W (z) can be written as polynomials in z and W (z) [1],
and plugging this representation into (2) yields a non-zero bivariate polynomial Q with
0 = Q(z, W (z)) = Q(W (z)eW (z), W (z)). This is impossible, since the exponential function
is not algebraic.

We remark that W satisfies the algebraic differential equation

z(W (z) + 1)W ′(z) = W (z).

5 Open Problems

We have proved that {nr}n is not holonomic for r ∈ Q\Z. It is natural to conjecture that
it is not holonomic for r ∈ C\Z. We did not succeed in finding a proof that {log n}n is not
holonomic that does not depend on Schanuel’s Conjecture. Furthermore, there are many
other sequences that could be considered. For instance, we do not know of any proof that
the sequence of primes is not holonomic.
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