The Turán problem for hypergraphs of fixed size

Peter Keevash
Department of Mathematics
Caltech, Pasadena, CA 91125, USA.
keevash@caltech.edu

Submitted: Oct 22, 2004; Accepted: Jun 3, 2005; Published: Jun 14, 2005
Mathematics Subject Classifications: 05D05

Abstract

We obtain a general bound on the Turán density of a hypergraph in terms of the number of edges that it contains. If \mathcal{F} is an r-uniform hypergraph with f edges we show that $\pi(\mathcal{F})<\frac{f-2}{f-1}-(1+o(1))\left(2 r!^{2 / r} f^{3-2 / r}\right)^{-1}$, for fixed $r \geq 3$ and $f \rightarrow \infty$.

Given an r-uniform hypergraph \mathcal{F}, the Turán number of \mathcal{F} is the maximum number of edges in an r-uniform hypergraph on n vertices that does not contain a copy of \mathcal{F}. We denote this number by $\operatorname{ex}(n, \mathcal{F})$. It is not hard to show that the limit $\pi(\mathcal{F})=$ $\lim _{n \rightarrow \infty} e x(n, \mathcal{F}) /\binom{n}{r}$ exists. It is usually called the Turán density of \mathcal{F}. There are very few hypergraphs with $r>2$ for which the Turán density is known, and even fewer for the exact Turán number. We refer the reader to $[10,11,12,13,14,15,16]$ for recent results on these problems.

A general upper bound on Turán densities was obtained by de Caen [3], who showed $\pi\left(K_{s}^{(r)}\right) \leq 1-\binom{s-1}{r-1}^{-1}$, where $K_{s}^{(r)}$ denotes the complete r-uniform hypergraph on s vertices. A construction showing $\pi\left(K_{s}^{(r)}\right) \geq 1-\left(\frac{r-1}{s-1}\right)^{r-1}$ was given by Sidorenko [17] (see also [18]); better bounds are known for large r. We refer the reader to Sidorenko [18] for a full discussion of this problem. For a general hypergraph \mathcal{F} Sidorenko [19] (see also [20]) obtained a bound for the Turán density in terms of the number of edges, showing that if \mathcal{F} has f edges then $\pi(\mathcal{F}) \leq \frac{f-2}{f-1}$. In this note we improve this as follows.

Theorem 1 Suppose \mathcal{F} is an r-uniform hypergraph with f edges.
(i) If $r=3$ and $f \geq 4$ then $\pi(\mathcal{F}) \leq \frac{1}{2}\left(\sqrt{f^{2}-2 f-3}-f+3\right)$.
(ii) For a fixed $r \geq 3$ and $f \rightarrow \infty$ we have $\pi(\mathcal{F})<\frac{f-2}{f-1}-(1+o(1))\left(2 r!^{2 / r} f^{3-2 / r}\right)^{-1}$.

We start by describing our main tool, which is Sidorenko's analytic approach. See [20] for a survey of this method. Consider an r-uniform hypergraph \mathcal{H} on n vertices. It is convenient to regard the vertex set V as a finite measure space, in which each vertex v has $\mu(\{v\})=1 / n$, so that $\mu(V)=1$. We write $h: V^{r} \rightarrow\{0,1\}$ for the symmetric function
$h\left(x_{1}, \cdots, x_{r}\right)$ which takes the value 1 if $\left\{x_{1}, \cdots, x_{r}\right\}$ is an edge of \mathcal{H} and 0 otherwise. Then $\int h d \mu^{r}=r!e(\mathcal{H}) n^{-r}=d+O(1 / n)$, where $d=\binom{n}{r}^{-1} e(\mathcal{H})$ is the density of \mathcal{H}.

Now consider a fixed forbidden r-uniform hypergraph \mathcal{F} with f edges on the vertex set $\{1, \cdots, m\}$. We associate to vertex i the variable x_{i}, and to an edge $e=\left\{i_{1}, \cdots, i_{r}\right\}$ the function $h_{e}(x)=h\left(x_{i_{1}}, \cdots, x_{i_{r}}\right)$, where x denotes the vector $\left(x_{1}, \cdots, x_{m}\right)$. The configuration product of \mathcal{F} with respect to h is the function $h_{\mathcal{F}}(x)=\prod_{e \in \mathcal{F}} h_{e}(x)$. Then
$\int h_{\mathcal{F}} d \mu^{m}=n^{-m} \operatorname{hom}(\mathcal{F}, \mathcal{H})=n^{-m} \operatorname{mon}(\mathcal{F}, \mathcal{H})+O\left(n^{-1}\right)=n^{-m} \operatorname{aut}(\mathcal{F}) \operatorname{sub}(\mathcal{F}, \mathcal{H})+O\left(n^{-1}\right)$,
where $\operatorname{hom}(\mathcal{F}, \mathcal{H})$ is the number of homomorphisms (edge-preserving maps) from \mathcal{F} to \mathcal{H}, $\operatorname{mon}(\mathcal{F}, \mathcal{H})$ is the number of these that are monomorphisms (injective homomorphisms), $\operatorname{aut}(\mathcal{F})$ is the number of automorphisms of \mathcal{F} and $\operatorname{sub}(\mathcal{F}, \mathcal{H})$ is the number of \mathcal{F}-subgraphs of \mathcal{H}. Also, Erdős-Simonovits supersaturation [6] implies that for any $\delta>0$ there is $\epsilon>0$ and an integer n_{0} so that for any r-uniform hypergraph \mathcal{H} on $n \geq n_{0}$ vertices with $\binom{n}{r}^{-1} e(\mathcal{H})>\pi(\mathcal{F})+\delta$ we have $n^{-m} \operatorname{sub}(\mathcal{F}, \mathcal{H})>\epsilon$. It follows that

$$
\begin{equation*}
\pi(\mathcal{F})=\inf _{\epsilon>0} \liminf _{|V| \rightarrow \infty} \max _{h: V^{r} \rightarrow\{0,1\}, \int h_{\mathcal{F}} d \mu^{m}<\epsilon} \int h d \mu^{r} \tag{1}
\end{equation*}
$$

We say that \mathcal{F} is a forest if we can order its edges as e_{1}, \cdots, e_{f} so that for every $2 \leq i \leq f$ there is some $1 \leq j \leq i-1$ so that $e_{i} \cap\left(\cup_{t=1}^{i-1} e_{t}\right) \subset e_{j}$. Sidorenko [20] showed that if \mathcal{F} is a forest with f edges then

$$
\begin{equation*}
\int h_{\mathcal{F}} d \mu^{m} \geq\left(\int h d \mu^{r}\right)^{f} \tag{2}
\end{equation*}
$$

Now we need a lemma on when a hypergraph contains a forest of given size.
Lemma 2 (i) An r-uniform hypergraph with at least $r!(t-1)^{r}$ edges contains a forest with t edges.
(ii) Let \mathcal{F} be a 3-uniform hypergraph. Then either (a) \mathcal{F} contains a forest with 3 edges, or (b) $\pi(\mathcal{F})=0$, or (c) $\mathcal{F} \subset K_{4}^{(3)}$, or (d) $\mathcal{F}=\mathcal{F}_{5}=\{a b c, a b d, c d e\}$.

Proof. (i) This is immediate from the result of Erdős and Rado [5] that such a hypergraph contains a sunflower with t petals, i.e. edges e_{1}, \cdots, e_{t} for which all the pairwise intersections $e_{i} \cap e_{j}$ are equal. A sunflower is in particular a forest.
(ii) Consider a 3 -uniform hypergraph \mathcal{F} that does not contain a forest with 3 edges. We can assume that \mathcal{F} is not 3 -partite (Erdős [4] showed that this implies $\pi(\mathcal{F})=0$) so \mathcal{F} has at least 3 edges. Clearly \mathcal{F} cannot have two disjoint edges, as then adding any other edge gives a forest.

Suppose there is a pair of edges that share two points, say $e_{1}=a b c$ and $e_{2}=a b d$. Any other edge must contain c and d, or together with e_{1} and e_{2} we have a forest. Consider another edge $e_{3}=c d e$. If there are no other edges then either $\mathcal{F}=\mathcal{F}_{5}$ or $\mathcal{F} \subset K_{4}^{(3)}$ (if e
equals a or b). If there is another edge $e_{4}=c d f$ then the same argument shows that e_{1} and e_{2} both contain e and f, i.e. $\mathcal{F}=K_{4}^{(3)}$ and there can be no more edges.

The other possibility is that every pair of edges intersect in exactly one point. Then there are at most 2 edges containing any point, or we would have a forest with 3 edges. Consider three edges, which must have the form $e_{1}=a b c, e_{2}=c d e, e_{3}=e f a$. There can be at most one more edge $e_{4}=b d f$. But this forms a 3-partite hypergraph (with parts $a d, b e, c f$), a case we have already excluded. This proves the lemma.

Proof of Theorem. Let \mathcal{F} be an r-uniform hypergraph with f edges that contains a forest \mathcal{T} with t edges. Label the edges e_{1}, \cdots, e_{f}, where e_{1}, \cdots, e_{t} are the edges of \mathcal{T}. Suppose that \mathcal{H} is an r-uniform hypergraph on a vertex set V of size n. Define the measure μ and the function $h: V^{r} \rightarrow\{0,1\}$ as before. Observe the inequality

$$
h_{\mathcal{F}}(x) \geq h_{\mathcal{T}}(x)+\sum_{i=t+1}^{f} h_{e_{1}}(x)\left(h_{e_{i}}(x)-1\right) .
$$

This holds, as the second term is non-positive (since $h_{e}(x) \in\{0,1\}$), so it could only fail for some x if $h_{\mathcal{F}}(x)=0$ and $h_{\mathcal{T}}(x)=1$. But then we have $h_{e_{1}}(x)=\cdots=h_{e_{t}}(x)=1$ and $h_{e_{i}}(x)=0$ for some $i>t$, and the term $h_{e_{1}}(x)\left(h_{e_{i}}(x)-1\right)=-1$ cancels $h_{\mathcal{T}}(x)$, so the inequality holds for all x. Integrating gives
$\int h_{\mathcal{F}}(x) d \mu^{m} \geq \int h_{\mathcal{T}}(x) d \mu^{m}+\sum_{i=t+1}^{f} \int h_{e_{1}}(x) h_{e_{i}}(x)-h_{e_{1}}(x) d \mu^{m} \geq p^{t}+(f-t)\left(p^{2}-p\right)$,
where we write $p=\int h d \mu^{r}$ and apply the inequality (2) for the forests \mathcal{T} and $\left\{e_{1}, e_{i}\right\}$, $t+1 \leq i \leq f$. By equation (1) we deduce that the Turán density $\pi=\pi(\mathcal{F})$ satisfies $\pi^{t}+(f-t)\left(\pi^{2}-\pi\right) \leq 0$.

Writing $g(x)=x^{t-1}+(f-t)(x-1)$ we either have $\pi=0$ or $g(\pi) \leq 0$. Now $g(0)=-(f-t) \leq 0, g(1)=1$ and $\frac{d g}{d x}=(t-1) x^{t-2}+f-t \geq 0$ for $0<x<1$ so g has exactly one root α in $[0,1]$, and $\pi \leq \alpha$.

First we consider the case $r=3$. If $f \geq 5$ then by the lemma we can take $t=3$. Solving the quadratic $g(x)=x^{2}+(f-3)(x-1)=0$ gives $\pi \leq \alpha=\frac{1}{2}\left(\sqrt{f^{2}-2 f-3}-f+3\right)$. This also holds when $f=4$, as then by the lemma we may suppose that $\mathcal{F}=K_{4}^{(3)}$. Chung and $\mathrm{Lu}[2]$ showed that $\pi\left(K_{4}^{(3)}\right) \leq \frac{3+\sqrt{17}}{12}$ which is less than $\frac{1}{2}(\sqrt{5}-1)$.

Now consider the case when $r \geq 3$ is fixed and $f \rightarrow \infty$. By the lemma we can take $t=$ $(f / r!)^{1 / r}$. Write $\alpha=1-\epsilon$. Since $g(\alpha)=0$ we have $(f-t) \epsilon=(1-\epsilon)^{t-1}<1$, so $\epsilon<1 /(f-t)$. From the Taylor expansion of $(1-\epsilon)^{t-1}$ we have $(f-t) \epsilon>1-(t-1) \epsilon+\binom{t-1}{2} \epsilon^{2}-\binom{t-1}{3} \epsilon^{3}$. Also $\binom{t-1}{3} \epsilon^{3}<\frac{1}{6}\left(\frac{t-1}{f-t}\right)^{3}<\frac{1}{6}(t / f)^{3}$ (since $f>t^{2}$) so $\binom{t-1}{2} \epsilon^{2}-(f-1) \epsilon+1-\frac{1}{6}(t / f)^{3}<0$.

Writing $\Delta=(f-1)^{2}-4\binom{t-1}{2}\left(1-\frac{1}{6}(t / f)^{3}\right)$ for the discriminant of this quadratic we have

$$
\begin{aligned}
\epsilon & >\frac{f-1-\Delta^{1 / 2}}{(t-1)(t-2)}=\frac{2\left(1-\frac{1}{6}(t / f)^{3}\right)}{f-1+\Delta^{1 / 2}} \\
& =\frac{2}{f-1}\left(1+\left(1-2(t-1)(t-2)\left(1-\frac{1}{6}(t / f)^{3}\right)(f-1)^{-2}\right)^{1 / 2}\right)^{-1}+O\left(t^{3} / f^{4}\right) \\
& =\frac{2}{f-1}\left(1+1-(t-1)(t-2)(f-1)^{-2}+O\left(t^{4} / f^{4}\right)\right)^{-1}+O\left(t^{3} / f^{4}\right) \\
& =\frac{1}{f-1}\left(1+\frac{1}{2}(t-1)(t-2)(f-1)^{-2}+O\left(t^{4} / f^{4}\right)\right)+O\left(t^{3} / f^{4}\right) \\
& =\frac{1}{f-1}+\frac{(t-1)(t-2)}{2(f-1)^{3}}+O\left(t^{3} / f^{4}\right)
\end{aligned}
$$

Since $\alpha=1-\epsilon$ and $t=(f / r!)^{1 / r}$ we have

$$
\pi \leq \alpha<\frac{f-2}{f-1}-(1+o(1))\left(2 r!^{2 / r} f^{3-2 / r}\right)^{-1}
$$

This proves the theorem.
Remarks. (1) For a graph G we have $e(G) \geq\binom{\chi(G)}{2}$ with equality if and only if G is complete. The Erdős-Stone theorem [7] implies that $\pi(G)=\frac{\chi(G)-2}{\chi(G)-1}<1-\frac{1+o(1)}{\sqrt{2 e(G)}}$. It is natural to think that complete hypergraphs should also have the highest Turán density among all hypergraphs with the same number of edges. Were this true de Caen's bound would give $\pi(\mathcal{F})<1-\Omega\left(f^{-(r-1) / r}\right)$ for an r-uniform hypergraph \mathcal{F} with f edges.
(2) If \mathcal{F} has 3 edges then Sidorenko's bound $\pi(\mathcal{F}) \leq 1 / 2$ is tight when $\mathcal{F}=K_{3}^{(2)}$ is a triangle, or more generally when \mathcal{F} is the $2 k$-uniform hypergraph with edges $\left\{P_{1} \cup\right.$ $\left.P_{2}, P_{2} \cup P_{3}, P_{3} \cup P_{1}\right\}$, where P_{1}, P_{2}, P_{3} are disjoint sets of size k (see [8, 14]). If \mathcal{F} is 3-uniform and has 3 edges then the lemma shows that $\pi(\mathcal{F}) \leq \max \left\{\pi\left(\mathcal{F}_{4}\right), \pi\left(\mathcal{F}_{5}\right)\right\}$, where \mathcal{F}_{4} denotes the 3-edge subgraph of $K_{4}^{(3)}$ and $\mathcal{F}_{5}=\{a b c, a b d, c d e\}$. Frankl and Füredi [9] showed that $\pi\left(\mathcal{F}_{5}\right)=2 / 9$ and Mubayi [15] showed $\pi\left(\mathcal{F}_{4}\right)<1 / 3-10^{-6}$, so we see that $\pi(\mathcal{F})<1 / 3-10^{-6}$, and Sidorenko's bound is not tight. It would be interesting to determine if it is ever tight for a hypergraph with edges of odd size.
(3) How many edges in an r-uniform hypergraph guarantee a forest with t edges? An answer to this question may lead to an improvement in our theorem, and it also seems interesting in its own right. Erdős and Rado [5] conjectured that for any t there is a constant C so that any r-uniform hypergraph with C^{r} edges contains a sunflower with t edges. We can obtain a bound of this form for forests, indeed, we claim that any r-uniform hypergraph \mathcal{F} with $\left(2^{t}\right)^{r}$ edges contains a forest with t edges. For if we fix any edge e, then the other edges have 2^{r} possible intersections with it, so we can find a hypergraph $\mathcal{F}^{\prime} \subset \mathcal{F} \backslash e$ with $\left(2^{t-1}\right)^{r}$ edges, all of which have the same intersection with e. By induction we can find a forest with $t-1$ edges in \mathcal{F}^{\prime}, and adding e gives a forest of size t in \mathcal{F}.

Actually, it is not hard to improve this bound to $2\binom{r}{r / 2}^{t-2}$. For we only need the intersections $\left\{e \cap e^{\prime}: e^{\prime} \in \mathcal{F}\right\}$ to form a chain, and the subsets of e can be partitioned into $\binom{r}{r / 2}$ chains (see, for example, [1] page 10). Thus we need only lose a factor $\binom{r}{r / 2}$ at each induction step, and after $t-2$ steps we get down to a 2 -edge forest.

However, this bound does not help in our application, as we are interested in the case when r is fixed and t is large. We have an upper bound of $r!t^{r}$ from Erdős and Rado, and and noting that $K_{r+t-2}^{(r)}$ does not contain a forest with t edges we obtain a lower bound of $\binom{r+t-2}{r} \sim t^{r} / r$!, so we have a constant $r!^{2}$ factor of uncertainty.

References

[1] B. Bollobás, Combinatorics, Set systems, hypergraphs, families of vectors and combinatorial probability, Cambridge University Press, Cambridge, 1986.
[2] F. Chung and L. Lu, An upper bound for the Turán number $t_{3}(n, 4)$, J. Combin. Theory Ser. A 87 (1999), 381-389.
[3] D. de Caen, Extension of a theorem of Moon and Moser on complete subgraphs, Ars Combin. 16 (1983), 5-10.
[4] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183-190.
[5] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 1960, 85-90.
[6] P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983), 181-192.
[7] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087-1091.
[8] P. Frankl, Asymptotic solution of a Turán-type problem. Graphs and Combinatorics 6 (1990), 223-227.
[9] P. Frankl, Z. Füredi, A new generalization of the Erdős-Ko-Rado theorem, Combinatorica 3 (1983), 341-349.
[10] Z. Füredi, O. Pikhurko and M. Simonovits, On triple systems with independent neighborhoods, Combin. Probab. Comput., to appear.
[11] Z. Füredi and M. Simonovits, Triple systems not containing a Fano Configuration, Combin. Probab. Comput., to appear.
[12] P. Keevash, The Turán problem for projective geometries, J. Combin. Theory Ser. A, to appear.
[13] P. Keevash and B. Sudakov, The exact Turán number of the Fano plane, Combinatorica, to appear.
[14] P. Keevash and B. Sudakov, On a hypergraph Turán problem of Frankl, Combinatorica, to appear.
[15] D. Mubayi, On hypergraphs with every four points spanning at most two triples, Electron. J. Combin. 10 (2003), Note 10, 4 pp. (electronic).
[16] D. Mubayi and V. Rödl, On the Turán number of Triple Systems, J. Comb. Theory Ser. A, 100 (2002), 136-152.
[17] A. F. Sidorenko, Systems of sets that have the T-property, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1981, 19-22.
[18] A. F. Sidorenko, What we know and what we do not know about Turán numbers, Graphs Combin. 11 (1995), 179-199.
[19] A. F. Sidorenko, Extremal combinatorial problems in spaces with continuous measure, Issled. Operatsiǔi ASU 34 (1989), 34-40.
[20] A. F. Sidorenko, An analytic approach to extremal problems for graphs and hypergraphs, Extremal problems for finite sets (Visegrád, 1991), 423-455, Bolyai Soc. Math. Stud., 3, János Bolyai Math. Soc., Budapest, 1994.

