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Abstract

Some of the classical orthogonal polynomials such as Hermite, Laguerre, Char-
lier, etc. have been shown to be the generating polynomials for certain combinatorial
objects. These combinatorial interpretations are used to prove new identities and
generating functions involving these polynomials. In this paper we apply Foata’s
approach to generating functions for the Hermite polynomials to obtain a triple
lacunary generating function. We define renormalized Hermite polynomials hn(u)
by

∞∑
n=0

hn(u)
zn

n!
= euz+z2/2.

and give a combinatorial proof of the following generating function:
∞∑

n=0

h3n(u)
zn

n!
=

e(w−u)(3u−w)/6

√
1 − 6wz

∞∑
n=0

(6n)!
23n(3n)!(1 − 6wz)3n

z2n

(2n)!
,

where w = (1 − √
1 − 12uz)/6z = uC(3uz) and C(x) = (1 − √

1 − 4x)/(2x) is
the Catalan generating function. We also give an umbral proof of this generating
function.

1. Introduction

The Hermite polynomials Hn(u) may be defined by the exponential generating function

∞∑
n=0

Hn(u)
zn

n!
= e2uz−z2

. (1)
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In this paper we will give a combinatorial proof of an identity for Hermite polynomials. For
our combinatorial interpretation, it is more convenient to take a different normalization
of the Hermite polynomials, which makes all the coefficients positive. Therefore, we work

with the polynomials hn(u) =
in

2n/2
Hn

(−iu√
2

)
, where i =

√−1, which have the generating

function ∞∑
n=0

hn(u)
zn

n!
= euz+z2/2.

All of our formulas for hn(u) are easily converted into formulas for Hn(u).
Foata [5] gave a combinatorial proof of Doetsch’s identity [2] giving a generating

function for h2n(u):

∞∑
n=0

h2n(u)
zn

n!
= (1 − 2z)−1/2 exp

(
u2z

1 − 2z

)
. (2)

We will prove the following generating function for h3n(u):

∞∑
n=0

h3n(u)
zn

n!
=

e(w−u)(3u−w)/6

√
1 − 6wz

∞∑
n=0

(6n)!

23n(3n)!(1 − 6wz)3n

z2n

(2n)!
, (3)

in which w = (1 − √
1 − 12uz)/6z = uC(3uz), where C(x) = (1 − √

1 − 4x)/2x is the
Catalan number generating function. Note that the formula can be written in terms of
hypergeometric series:

∞∑
n=0

h3n(u)
zn

n!
=

e(w−u)(3u−w)/6

√
1 − 6wz

2F0

(
1

6
,
5

6
;−;

54z2

(1 − 6wz)3

)
,

where 2F0(a, b,−; z) =
∑
n≥0

(a)n (b)n
zn

n !
, and

(α)n = α(α + 1) . . . (α + n − 1)

is the rising factorial.
We prove formula (3) by two methods—umbral and combinatorial. In section 2, we

define an umbra and study some of its properties and then give the umbral proof. An
umbral proof of a generating function for h2m+n(u) is given in [6].

In section 3 we prove (3) combinatorially by showing that both sides enumerate the
same weighted objects. We first describe the combinatorial interpretation of the Hermite
polynomials and then give the details of the weighted objects counted by both sides of
the formula.

By using these methods, it would be possible to give umbral and combinatorial proofs
of a more general generating function for h3m+2n+k(u).
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2. The Umbral Proof

Rota and Taylor in [7] laid a rigorous foundation for the classical umbral calculus. They
consider a vector space of polynomials in several variables or “umbrae” and define the
linear functional eval on it. A sequence (an) is represented by an umbra A if eval(An) = an

for all n. In practice, the word eval is usually dropped and we simply write An = an with
the understanding that the functional has been applied. When we write f(A) = g(A), we
mean eval(f(A)) = eval(g(A)). We consider formal power series f(t) with coefficients in
a ring of formal power series R = Q[[x, y, z, · · · ]].

Definition 2.1 A formal power series f(t) =
∞∑

n=0

fntn is admissible if for every monomial

xiyjzk · · · in R, the coefficient of xiyjzk · · · in fn is nonzero for only finitely many values
of n.

So, for example, f(t) = ext is an admissible formal power series, while f(t) = et is not.
Some computations similar to those of this section can be found in section 4 of Gessel [6].

2.1. The umbra M and its properties

We now define an umbra M whose relation to the Hermite polynomials will be described
in the next section. In this section, we study some properties of this umbra that we will
need. We define the umbra M by eMz = ez2/2 so that

Mn =




(2k)!

2kk!
, if n = 2k

0, if n is odd.
(4)

The following two formulas hold for M .

Lemma 2.2 (i) For any admissible formal power series f , eMzf(M) = ez2/2f(M + z).

(ii) eM2z =
1√

1 − 2z
.

Proof. (i) We first observe that it is sufficient to prove that the formula holds for
f(t) = etx: If the formula is true for f(t) = etx, then comparing coefficients of xn/n! on
both sides we get that the formula holds for f(t) = tn. But this implies by linearity that
the formula is true for all admissible formal power series f . To prove the formula for
f(t) = etx, we have

eMzeMx = eM(z+x) = ez2/2+zx+x2/2 = ez2/2ezxeMx = ez2/2e(M+z)x.

(ii) We have

eM2z =
∞∑

n=0

M2n zn

n!
=

∞∑
n=0

(2n)!

2nn!

zn

n!
=

1√
1 − 2z

.
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Corollary 2.3 For any admissible formal power series f ,

eM2zf(M) =
1√

1 − 2z
f

(
M√

1 − 2z

)
.

Proof. As in the lemma, it is sufficient to prove the formula for f(t) = etx. Here
eM2zf(M) = eM2z+Mx. If we apply Lemma 2.2 (i) directly, we cannot eliminate the linear
term in M . So we introduce a parameter α and rewrite eM2z+Mx as eMαeM2z+M(x−α). We
will choose a value for α later. Now applying Lemma 2.2 (i) we get

eMαeM2z+M(x−α) = eα2/2e(M+α)2z+(M+α)(x−α) = eM2z+M(x−(1−2z)α)+zα2+xα−α2/2.

Now we choose the value of α to eliminate the term in M on the right; i.e., we solve
x − (1 − 2z)α = 0 and get α = x/(1 − 2z). Substituting this value of α in the above
expression and simplifying, we obtain that eM2z+Mx = eM2zex2/2(1−2z). By Lemma 2.2 (ii),

this is equal to
1√

1 − 2z
ex2/2(1−2z). But applying the definition of M directly gives

1√
1 − 2z

f

(
M√

1 − 2z

)
=

1√
1 − 2z

eMx/
√

1−2z =
1√

1 − 2z
ex2/2(1−2z).

Applying the corollary to f(M) = eM3x gives the formula

eM2z+M3x =

exp

(
M3x

(1 − 2z)3/2

)
√

1 − 2z
, (5)

which we will need in the next section.

2.2. Proof of the formula

To prove formula (3), we first express the Hermite polynomial hn(u) in terms of the umbra
M . We have ∞∑

n=0

hn(u)
zn

n!
= euz+z2/2 = e(u+M)z .

Comparing the coefficients of zn/n! on both sides, we get hn(u) = (u + M)n. Using this,
we get

∞∑
n=0

h3n(u)
zn

n!
=

∞∑
n=0

(u + M)3n zn

n!
= e(u+M)3z = e(u3+3Mu2+3M2u+M3)z.
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We follow the same procedure as in the proof of Corollary 2.3. We introduce a parameter
α and rewrite the last expression as eMαeu3z+M(3u2z−α)+3M2uz+M3z. Now applying Lemma
2.2 (i) we get

eMαeu3z+M(3u2z−α)+3M2uz+M3z = eα2/2eu3z+(M+α)(3u2z−α)+3(M+α)2uz+(M+α)3z

= ezα3+3uzα2−α2/2+3u2zα+u3z+M(3zα2+(6uz−1)α+3u2z)+M2(3zα+3uz)+M3z. (6)

In order to apply formula (5), we need to eliminate the linear term in M . So we choose
a value of α that makes the coefficient of M equal to zero. By solving a quadratic and
taking the solution with a power series expansion, we get α = (1 − √

1 − 12uz)/6z − u.
We know that the Catalan generating function C(x) is given by (1 − √

1 − 4x)/2x. In
terms of this generating function, α = uC(3uz) − u = w − u where w = uC(3uz). Using
this value of α to simplify expression (6), we get that

∞∑
n=0

h3n(u)
zn

n!
= exp(w3z − (w − u)2/2 + 3M2wz + M3z).

We know that C(x) satisfies the equation C(x) = 1 + x(C(x))2. Substituting x = 3uz
and using the fact that C(3uz) = w/u, we obtain w = u + 3w2z; i.e., w− u = 3w2z. This
gives us

∞∑
n=0

h3n(u)
zn

n!
= e(w−u)(3u−w) /6e3M2wz+M3z.

Applying formula (5) with f(t) = t3z, we get that

∞∑
n=0

h3n(u)
zn

n!
=

e(w−u)(3u−w)/6

√
1 − 6wz

exp

(
M3z

(1 − 6wz)3/2

)
.

Then writing the second exponential function as a series and using (4), we obtain the final
result: ∞∑

n=0

h3n(u)
zn

n!
=

e(w−u)(3u−w)/6

√
1 − 6wz

∞∑
n=0

(6n)!

23n(3n)!(1 − 6wz)3n

z2n

(2n)!
.

Now we turn to the combinatorial method of proof. We begin with a combinatorial
interpretation of the Hermite polynomials that will be used in the combinatorial proofs.

3. The Combinatorial Proof

We assume that the reader is familiar with enumerative applications of exponential gen-
erating functions, as described, for example, in [8, Chapter 5] and [1]. The product
formula and the exponential formula for exponential generating functions discussed in
these references play an important role in the combinatorial proofs.
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3.1. Combinatorial interpretation of Hermite polynomials

The exponential generating function uz+z2/2 counts sets with one or two elements, where
a one-element set is weighted u. Then by the exponential formula, the coefficient of zn/n!
in euz+z2/2, which is hn(u), is the generating polynomial for partitions of an n-element
set into blocks of size one or two, where each block of size one is weighted u. (If we
used Hn(u) as Foata did, instead of hn(u), we would need to attach a weight of −2 to
each two-element block and a weight of 2u to each one element block.) It is convenient
to represent these partitions as graphs in which the vertices in a two-element block are
joined by an edge. We call these graphs, in which every vertex has degree at most one,
matchings.

Thus the Hermite polynomial hn(u) can be viewed as the generating polynomial for
the number of vertices of degree zero over the set of all matchings on n vertices, where
each vertex of degree zero is assigned the weight u. With this combinatorial interpretation
we will prove the following formula:

∞∑
n=0

h3n(u)
zn

n!
= e(w−u)(3u−w)/6 1√

1 − 6wz

∞∑
n=0

(6n)!

23n(3n)! (1 − 6wz)3n

z2n

(2n)!
. (7)

We will describe the graphs enumerated by the left side of formula (7). Then we will
describe the same graphs in terms of their connected components and use the product
formula for exponential generating functions to complete the proof.

3.2. Graphs counted by the left side.

In order to give a combinatorial interpretation to
∑∞

n=0 h3n(u)xn/n!, we must interpret
h3n(u), which counts matchings of a 3n-element set, as counting labeled objects with n
labels. To accomplish this, we take n labels and attach to each one three vertices marked
a, b, and c. Figure 1 shows a labeled vertex connected to three marked vertices. Then

i
c

b

a

i

Figure 1: A label and three marked vertices

h3n(u) counts graphs constructed by taking n components like that in Figure 1, with
labels 1, 2, . . . , n and adding to them a matching of the 3n marked vertices, where each
unmatched marked vertex is weighted u. Figure 2 shows such a graph.

Let G be the set of all graphs enumerated by the left side of formula (7). For a graph
in G, each vertex has degree one, two, or three. The trivalent vertices are labeled with
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a

25a

b

c
c

a

b
10

12

b

c

11

b

a

22
c c

b

a

17
c

a
b

2

1

b c

a

b

a

c
13c

b

a

21

b
a

c

19

a

c

b

23

b

a

c

24b
c

a

3a

c

b

a

ab

c

c

a

b

b
c

b

a
c

c

a
b

b

c

a

c
b

a

b

a

c

b

a c

b

c

a a

c

b 7
8

4

15

14

9

5
20

6

18 16

Figure 2: Graph counted by h75(u)z25/25!
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the integers 1 to n, where n is the total number of trivalent vertices, and are weighted by
the exponential generating function variable z. The bivalent and monovalent vertices are
marked with a, b, and c; the monovalent vertices have weight u and the bivalent vertices
have weight 1.

We first make a preliminary simplification of the graphs in G: we eliminate all the
bivalent marked vertices, moving their “marks” to the adjacent trivalent vertices.

More precisely, we think of each edge joining two trivalent vertices as consisting of
two “half-edges”, each of which has a mark. Although we retain the monovalent vertices,
we move their marks to the half-edge of the adjacent trivalent vertices. Note that some
trivalent vertices now have loops. Figure 3, which shows the transformed version of the
graph in Figure 2, should make this simplification clear.

We will express the generating function for graphs in G as a product of three factors
corresponding to connected components with no cycles, with exactly one cycle, and with
at least two cycles. Note that a loop is a cycle.

3.3. Counting w-trees

The graph in Figure 3 has three connected components. One component is a tree. The
component with one cycle may be viewed as a cycle of trees. The third component may
also be decomposed into trees and cycles. Thus the first step of our enumeration is to
count the rooted trees from which we will construct our graphs, which we call w-trees.

Definition 3.1 A w-tree is a rooted tree with labeled trivalent internal vertices and un-
labeled leaves in which the three half-edges incident with every internal vertex are marked
with the letters a, b and c, and one of the half-edges incident with the root has no matching
half-edge.

Figure 4 shows a w-tree. A special case of a w-tree is the one with no internal vertices
and no marks: it is simply a leaf with a half-edge attached to it.

We denote by w the exponential generating function in z for w-trees where each
internal vertex is weighted with z and each leaf is weighted with u. Let Wn be the number
of w-trees with n internal vertices. There are 2n ways to draw such a tree (with the root
at the top) by choosing an ordering of the two children of each internal vertex, so there
are 2nWn such drawings. But these drawings can be counted in another way. If we remove
the labels and marks from such a drawing, we have a binary tree counted by the Catalan
number Cn = 1

n+1

(
2n
n

)
. The marks can be added in 6n ways and the labels in n! ways. Thus

2nWn = 6nn! Cn, so Wn = 3nn! Cn. Each such tree has n + 1 leaves, so the exponential
generating function for weighted w-trees is w =

∑∞
n=0 3nn! Cnun+1zn/n! = uC(3uz). This

relation to the Catalan generating function gives the equation w = u + 3w2z as shown in
section 2.2.

3.4. Acyclic components.

The connected components of graphs in G with no cycles are trees. Such a tree appears
in the lower left corner of Figure 3.
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3

a

25a
b

c

c

a

b
10

12

b

c

11
b

a

22 c cb

a

17
c

ab

2

1
b c

a
b

ac
13c

b

a

21
b

a

c

19

a

c

b

23

b

a

c

24b c

a

a
c

b

a

a

b
c

c
a

b

b

c

b

ac

c

ab

b

c

a

c
b

a b

a
c

b

a c

b

c

a
a

c
b

8

4

15

149

5
20

6

18

16

7

Figure 3: Graph in Figure 2 with bivalent vertices eliminated
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2

1

b

a c

c

a b

Figure 4: w-tree

To count these trees we use a known method (see, e.g., [3]) for relating labeled unrooted
trees of various types to rooted trees: we subtract the edge-rooted versions from the
vertex-rooted versions.

First we count trees rooted at a trivalent vertex. In such a tree, the three half-edges
at the root are joined to w-trees. So we can construct such a rooted tree by taking an
ordered triple of w-trees, with exponential generating function w3, and a new root vertex
with its three half-edges marked a, b, and c, and attaching the first w-tree to half-edge a,
the second to half-edge b, and the third to half-edge c. Thus the exponential generating
function for these vertex-rooted trees is w3z.

Next we count versions of these trees rooted at an edge joining two trivalent vertices.
With the help of Figure 5 we see that the exponential generating function for such edge-
rooted trees is (3w2z)2/2 = 9w4z2/2.

w-tree

w-tree

w-tree

w-tree
3  choices
for  this  mark

3  choices
for  this  mark

edge - root

Figure 5: Edge-rooted tree

An unrooted tree with n trivalent vertices is counted n times in the generating function
for vertex-rooted trees and n − 1 times in the generating function for edge-rooted trees.
Thus the difference w3z − 9w4z2/2 counts every unrooted tree once. A straightforward
computation shows that w3z−9w4z2/2 can be expressed most simply as (w−u)(3u−w)/6.
Thus the exponential generating function for graphs whose connected components are
trees is

e(w−u)(3u−w)/6. (8)
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As pointed out by the referee, other derivations of this generating function can be
obtained by using the combinatorial interpretation of derivatives. Here is one such deriva-
tion: If T is the generating function for these trees, then

dT

du
= w − u =

1 −√
1 − 12uz

6z
− u (9)

since if we remove one of the monovalent vertices (weighted u) from a tree counted by
T , leaving an unmatched half-edge, we obtain a w-tree with at least one trivalent vertex.
Integrating with respect to u, and using the fact that T has constant term 0, we get

T =
(1 − 12uz)3/2 − 1

108z2
+

u

6z
− u2

2
,

and this is easily checked to be equal to (w − u)(3u − w)/6.
We also note that the coefficients of T are given explicitly by

T =
∞∑

n=1

3n (2n)!

(n + 2)!
un+2 zn

n!
.

Now let us look at the connected components with one or more cycles. The two
components other than the tree in Figure 3 are of this form. First we reduce these
components by shrinking all the w-trees present in them. Figure 6 illustrates this process.
As we see in the picture, the process of shrinking w-trees leaves behind vertices weighted

a

25
a

b

12

b

c

11 b22 c c

a

17
c

a

b

2

1
b c

a b

ac
13c

b

a

21

b a

19

a

c

b

23

b
c

b
c

c
a

c a9

5
20

Figure 6: Components with cycles with w-trees eliminated
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a
12

b

c

17
a

b

2

1
b c

a b

a
c 13

c

b

a
19

a
c

b

c

Figure 7: Graph in Figure 6 with bivalent vertices eliminated

with z which are now bivalent. We further reduce the components by eliminating these
newly created bivalent vertices. Figure 7 shows what we get after this further reduction.
Thus we get either circles with no vertices or components (with multiple edges and loops)
in which each vertex is trivalent. We will consider the two cases separately.

3.5. Components with one cycle.

If the reduction of a component of a graph in G results in a circle, then the original
component has exactly one cycle and each trivalent vertex on the cycle has a w-tree
attached at its third half-edge. The exponential generating function for directed cycles is∑∞

n=1 zn/n. To count directed cycles with w-trees attached, we replace z by wz, and to
add three marks to the half-edges of each vertex in the cycle, we multiply (wz)n by 6n.
Finally, to undirect the cycles, we divide by 2. (Note that marking the half-edges for the
cases n = 1 and 2 destroys the symmetry that would prevent us from dividing by 2 before
the marks are added.)

Thus the exponential generating function for cycles of w-trees is

1

2

∞∑
n=1

(6wz)n

n
= 1

2
log (1 − 6wz)

and so the exponential generating function for graphs whose connected components are
cycles of w-trees is

e
1
2

log (1−6wz) =
1√

1 − 6wz
. (10)
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3.6. Components with more than one cycle.

The components of graphs in G with more than one cycle reduce to connected graphs with
only trivalent vertices. The connected graph on the left in Figure 7 is of this type. Rather
than counting connected graphs of this type, as we did in the previous two sections, and
then exponentiating, we count graphs, not necessarily connected, whose connected com-
ponents are of this type. These graphs with m labeled vertices are precisely the graphs
counted by h3m(u) with no monovalent vertices. To see this, recall that in section 3.2
we described how each labeled vertex has three marked vertices attached to it and after
constructing the matching on the marked vertices, the bivalent (or matched) marked ver-
tices are eliminated as a preliminary simplification. If there are no unmatched marked
vertices, the preliminary simplification gives a graph with only trivalent labeled vertices
which have marks on their half-edges. Thus these graphs are counted by h3m(0), the num-
ber of complete matchings of 3m vertices. This number is 0 for m odd and (6n)!/23n(3n)!
for m = 2n.

We can recover the original graph from the reduced graph by introducing an ordered
sequence of trivalent vertices on each edge, giving each new vertex marked half-edges
and attaching a w-tree to one of the half-edges. We can see this for the component with
trivalent vertices in Figure 7 by tracing it back to its original component in Figure 3. Thus
we get a factor

∑∞
k=0 (6wz)k = 1/(1−6wz) for each of the 3n edges in the reduced graph,

where the 6 is the number of ways to specify the marks at a trivalent vertex. Hence the
exponential generating function for graphs whose components have more than one cycle
is ∞∑

n=0

(6n)!

23n(3n)!

1

(1 − 6wz)3n

z2n

(2n)!
. (11)

By the product formula for exponential generating functions, we multiply (8), (10),
and (11) to get

e(w−u)(3u−w)/6 1√
1 − 6wz

∞∑
n=0

(6n)!

23n(3n)!(1 − 6wz)3n

z2n

(2n)!
,

as the exponential generating function for all graphs in G, and this is the right side of (7).
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