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Abstract

We use graceful labellings of paths to give a new way of constructing terraces
for cyclic groups. These terraces are then used to find cyclic solutions to the three
table Oberwolfach problem, OP(r, r, s), where two of the tables have equal size. In
particular we show that, for every odd r ≥ 3 and even r with 4 ≤ r ≤ 16, there is
a number Nr such that there is a cyclic solution to OP(r, r, s) whenever s ≥ Nr.
The terraces we are able to construct also prove a conjecture of Anderson: For all
m ≥ 3, there is a terrace of Z2m which begins 0, 2k, k, . . . for some k.

1 Introduction

The Oberwolfach problem [6] is to decompose the complete graph Kv, for odd v, into
mutually isomorphic 2-factors. If the lengths of the cycles in each 2-factor are r1, r2, . . . , rt

(where r1 + r2 · · · + rt = v) then the problem is denoted OP(r1, r2, . . . , rt).
Label the vertices of Kv with the symbols of Zv−1 ∪ {∞}, and let x + ∞ = ∞ for

x ∈ Zv−1. A solution to OP(r1, r2, . . . , rt) is called cyclic if x + F is a 2-factor whenever
F is a 2-factor and x ∈ Zv−1.

The goal of this paper is to find cyclic solutions for OP(r, r, s). Hilton and Johnson [9]
have shown that OP(r, r, s) has a solution for all odd s when r ∈ {3, 4}, excluding the
insoluble case OP(3, 3, 5), and for all odd s ≥ 12r − 1 when r ≥ 5. These solutions are
not, in general, cyclic.

In this paper we show that for every odd r ≥ 3 and even r with 4 ≤ r ≤ 16 there is
a number Nr such that OP(r, r, s) has a cyclic solution whenever s ≥ Nr. Our value for
Nr is less than 12r − 1, so many of our solutions are to previously unsolved problems.
In particular, we show that OP(r, r, s) has a cyclic solution for every odd s ≥ 5 when
3 ≤ r ≤ 13, excluding OP(3, 3, 5).

We now define terraces and graceful labellings—the two concepts that allow us to find
the solutions.
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Let G be a group of order n and a = (a1, a2, . . . , an) an arrangement of the elements
of G. Define b = (b1, b2, . . . , bn−1), where bi = a−1

i ai+1. If b contains each involution of G
exactly once and two occurrences (not necessarily distinct) from each set {g, g−1 : g2 6= e},
then a is called a terrace for G and b is the associated 2-sequencing. Terraces were
introduced in [3] to construct quasi-complete Latin squares. Elementary abelian 2-groups
of order at least 4 do not have terraces—Bailey’s Conjecture [3] is that these are the only
groups without terraces, see [11] for more details.

Let T be a tree on n vertices. Label the vertices of T with the integers 1, 2, . . . , n.
The labelling is called graceful if

{|u − v| : uv is an edge} = {1, 2, . . . , n − 1} .

The Ringel-Kotzig graceful tree conjecture is that all trees have a graceful labelling, see
[5] for the current state of knowledge.

2 Terraces from Graceful Labellings

For the remainder of the paper we consider only terraces for the additive cyclic groups
Zn (arithmetic modulo n) and graceful labellings of paths Pn.

Given a terrace a of Zn then the translate x + a is a terrace, and has the same 2-
sequencing [3]. If the first element of a terrace is 0, then the terrace is called basic. Every
terrace may be translated to a basic terrace.

Example 2.1 The sequence (0, 1, n − 1, 2, n − 2, . . .) is a basic terrace for Zn [10, 13],
called the Lucas-Walecki-Williams terrace or LWW terrace. The associated 2-sequencing
is (1, n − 2, 3, n − 4, 5, . . .).

There is an easy way to get from a graceful labelling of Pn, the path of length n,
to a terrace for the cyclic group Zn. Simply take the list of integers from the graceful
labelling, and consider them modulo n. The only change in symbols is that n becomes
0. The differences in the graceful labelling are exactly one of ±i (as integers) for each
integer i in the range 1 ≤ i ≤ n − 1. This satisfies the requirements of a terrace (when
taken modulo n). For example, the graceful labelling (n, 1, n − 1, 2, n − 2, . . .) becomes
the LWW terrace.

For Zn, if a is a terrace, then −a and the reverse of a are also terraces [3]. Similarly
for Pn, the reverse of a graceful labelling and the complementary labelling which replaces
i with n − i are also graceful.

A graceful labelling is called y-pendant if one of the pendant vertices is labelled y. The
following result gives a new construction of terraces.

Theorem 2.1 Suppose that Pm and Pn have y-pendant graceful labellings. Then Zm+n

has a terrace.
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Proof: Suppose that the labelling of Pm ends with y and that the labelling of Pn starts
with y (this can be arranged by taking the reverses of given labellings if required), say
g = (g1, g2, . . . gm) and h = (h1, h2, . . . , hn) where gm = y = h1.

Let a = (a1, a2, . . . , am+n), where

ai =

{
gi if i ≤ m
hi−m + m if i > m.

The sequence a contains each of the numbers from 1 to m + n. Considering the elements
of a as integers, we have the differences ±i for 1 ≤ i ≤ m − 1 (as g is graceful), followed
by m, and then the differences ±i for 1 ≤ i ≤ n − 1 (as h is graceful). Taken modulo
m + n, this last is equivalent to ±i for m + 1 ≤ m + n − 1. Altogether we have the
differences ±i for 1 ≤ i ≤ m + n − 1 and so a is a terrace for Zm+n. 2

The following result answers the existence question for y-pendant graceful labellings
of paths.

Theorem 2.2 [4, 7] There is a y-pendant graceful labelling of Pn for every y ≤ n.

In [1], Anderson conjectured that for all even n the cyclic group Zn has a terrace which
begins 0, 2k, k, . . . for some k ∈ Zn. It was shown that the truth of the conjecture implies
the existence of terraces for all dihedral groups. Later work [2] gave more complicated
constructions and proved that all dihedral groups have terraces without needing to prove
the conjecture. Theorem 2.3 implies that the conjecture is true, and hence the original
constructions are sufficient.

Theorem 2.3 There is a terrace which begins 0, 2, 1, . . . for Zn if and only if n ≥ 3 and
n 6= 4.

Proof: Clearly there is no terrace of the required form for n ∈ {1, 2} and it is easy to
check that there is no such terrace for Z4. For Z3, we have the terrace (0, 2, 1).

Now consider n ≥ 5. Let g be the 2-pendant graceful labelling (1, 3, 2) of P3 and
let h be a 2-pendant graceful labelling of Pn−3 (such a labelling exists for all n ≥ 5 by
Theorem 2.2).

Apply Theorem 2.1 to g and h with y = 2. We obtain a terrace for Zn of the form
(1, 3, 2, 5, . . .). The translate (n − 1) + (1, 3, 2, 5, . . .) is then (0, 2, 1, 4, . . .). 2

3 The Oberwolfach Problem

Before stating Theorem 3.1, which links terraces to the Oberwolfach Problem, we need
some more definitions.

Let a = (a1, a2, . . . , an) be a basic terrace for Zn with 2-sequencing b = (b1, b2, . . . , bn−1).
If br = ar then r is a left match-point of b. A left match-point is right-flexible if at least
one of the following is true.
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• n is even and n
2

occurs somewhere to the right of br in b

• There is an element x with ±x occuring to both somewhere to the left and somewhere
to the right of br in b.

There are also the notions of right match-points and left-flexibility [12], but we do not
need them here.

Theorem 3.1 [12] If Zn has a 2-sequencing with a right-flexible left match-point r then
there is a cyclic solution to OP(r, r, s), where s = 2(n − r) + 1.

The construction which proves this theorem involves the “lifting” of a 2-sequencing to
a “symmetric sequencing” for the cyclic group of twice the size and then showing that the
associated terrace of this is a “symmetrically sectionable directed terrace.” The details
can be found in [12].

We now need to be able to construct terraces with left match-points (their right-
flexibility will be considered later).

Theorem 3.2 Let g = (g1, g2, . . . , gm) be a graceful labelling of Pm with gr−g1 = gr+1−gr,
for some r. Then Zm+n has a basic terrace with r as a left match-point of the associated
2-sequencing for n = 0 or n ≥ gm.

Proof: If n = 0, consider the elements of g modulo n and let a be the translate which is
basic. Then the 2-sequencing of a has r as a left match-point.

Now consider a fixed n ≥ gm. Let h be a gm-pendant graceful labelling of Pn (this
exists by Theorem 2.2). Apply Theorem 2.1 to g and h to obtain a terrace for Zm+n.
Again, letting a be the translate which is basic, we get that the associated 2-sequencing
has r as a left match-point. 2

We are now in position to prove our main result.

Theorem 3.3 Let r = 2k + 1 and set Nr = 2b3k+1
2

c + 2k + 3. There is a cyclic solution
to OP(r, r, s) whenever s ≥ Nr.

Proof: Let g be the complementary labelling to the graceful labelling for Pm which gives
the LWW terrace:

g = (1, n, 2, n − 1, 3, n − 2, . . . , bm

2
c + 1)

If m = 3k + 1 then we have g2k+1 = k + 1 and g2k+2 = 2k + 1. Hence

g2k+2 − g2k+1 = k = g2k+1 − g1.

Take n ≥ bm
2
c + 1. By Theorem 3.2 we can construct a basic terrace whose 2-sequencing

b has 2k + 1 as a left match-point. This left match-point is right flexible as −(k + 1)
occurs in position 2k and ±(k + 1) occurs somewhere after position m.

Applying Theorem 3.1 now gives the result. 2
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To prove an analogous result for even r it would suffice to give a graceful labelling
(g1, g2, . . . gm) of Pm with gr+1−gr = gr−g1, and to check that the required right-flexibility
property holds.

Table 1 gives some graceful labellings of Pm for which gr+1 − gr = gr − g1. As we have
all even values of r in the range 4 ≤ r ≤ 16, we have the result that there is a number
Nr such that a cyclic solution to OP(r, r, s) exists whenever s ≥ Nr for these values of
r. The table also includes some odd values of r for which the value of Nr improves on
that of Theorem 3.3. Right-flexibility in the appropriate 2-sequencing is straightforward
to confirm.

Table 1: Some graceful labellings

r m A graceful labelling of Pm Nr

4 5 (2, 5, 1, 3, 4) 11
5 7 (3, 7, 1, 6, 4, 5, 2) 9
6 8 (4, 7, 1, 8, 3, 5, 6, 2) 9
7 9 (5, 2, 8, 1, 9, 4, 6, 7, 3) 11
8 10 (4, 7, 1, 10, 2, 9, 5, 6, 8, 3) 11
9 11 (5, 4, 10, 2, 11, 1, 8, 3, 7, 9, 6) 17

10 12 (3, 10, 4, 12, 1, 11, 2, 7, 8, 6, 9, 5) 15
11 13 (8, 3, 11, 5, 7, 4, 13, 1, 12, 2, 9, 10, 6) 17
12 14 (2, 12, 3, 14, 1, 13, 5, 11, 4, 9, 8, 6, 10, 7) 19
13 15 (4, 11, 3, 13, 2, 14, 1, 15, 6, 12, 8, 9, 7, 10, 5) 15
14 16 (8, 9, 5, 15, 3, 14, 1, 16, 2, 11, 6, 13, 7, 10, 12, 4) 13
16 17 (9, 5, 14, 4, 7, 12, 6, 13, 2, 15, 3, 17, 1, 16, 8, 10, 11) 25

To conclude, we collect together the old and new results on cyclic solutions to OP(r, r, s)
for small values of r.

Theorem 3.4 Except for the insoluble case OP(3, 3, 5), there is a cyclic solution to
OP(r, r, s) for all odd s ≥ 5 and each r in the range 3 ≤ r ≤ 13.

Proof: For r = 3, Theorem 3.3 gives Nr = 9 and [12, Theorem 12] covers the case s = 7.
Consider r in the range 4 ≤ r ≤ 8. Table 2 of [12] gives cyclic solutions for all s in

the range 5 ≤ s ≤ Nr, where Nr is taken from Table 1.
For r in the range 9 ≤ r ≤ 13, Table 2 of [12] gives cyclic solutions for 5 ≤ s ≤ 31−2r.

Comparing with our Table 1, this leaves 14 outstanding cases. Of these, OP(11, 11, 11)
and OP(13, 13, 13) are covered in [8] and OP(12, 12, 13) by the comments on p. 408 of [12].
The remaining 11 cases can be solved by applying Theorem 3.1 to the terraces (whose
2-sequencings have right-flexible left match-points r) in Table 2. Several of these terraces
were found using the techniques and examples of [12]—where this is the case we indicate
the notation which describes them in that paper. 2
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Table 2: Some terraces for Zm

r m A terrace for Zm s Notation
9 16 (0, 14, 5, 9, 4, 11, 3, 13, 1, 2, 15, 10, 7, 8, 6, 12) 15 −

10 16 (0, 1, 3, 13, 2, 6, 15, 12, 4, 7, 14, 10, 5, 11, 9, 8) 13 T1(8)↑

11 17 (0, 8, 9, 14, 5, 3, 1, 7, 11, 4, 16, 15, 12, 2, 13, 10, 6) 13 −
18 (0, 4, 11, 15, 9, 1, 16, 17, 14, 7, 5, 10, 2, 3, 12, 6, 8, 13) 15 −

12 16 (0, 3, 5, 4, 13, 15, 11, 1, 6, 10, 2, 7, 14, 8, 9, 12) 9 −
17 (0, 13, 10, 8, 7, 2, 14, 4, 6, 3, 12, 16, 15, 9, 1, 11, 5) 11 rev(∆1

12(17))
19 (0, 1, 3, 6, 10, 15, 2, 9, 17, 7, 14, 16, 13, 5, 11, 12, 8, 18, 4) 15 ∆14(19)
20 (0, 3, 11, 12, 16, 7, 5, 18, 4, 9, 19, 14, 8, 15, 17, 6, 2, 1, 13, 10) 17 T2(10)↑

13 16 (0, 10, 8, 11, 6, 4, 3, 12, 15, 7, 1, 5, 9, 2, 13, 14) 7 −
17 (0, 1, 3, 6, 10, 15, 4, 11, 2, 9, 13, 14, 12, 7, 16, 5, 8) 9 ∆14(17)
18 (0, 5, 7, 9, 15, 14, 6, 17, 12, 16, 13, 10, 4, 8, 1, 2, 11, 3) 11 −
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