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Abstract

A non-empty set F of n-bit vectors over alphabet {0, 1} is called singly re-
pairable, if every vector u ∈ F satisfies the following conditions:

(i) if any bit of u is changed (from 0 to 1 or vice versa), the new vector does not
belong to F

(ii) there is a unique choice of a different bit that can then be changed to give
another vector 6= u in F .

Such families F exist only for even n and we show that 2n/2 ≤ |F| ≤ 2n+1

(n+2) . The
lower bound is tight for all even n and we show that the families of this size are
unique under a natural notion of isomorphism (namely, translations and permuta-
tion of coordinates). We also construct families that achieve the upper bound when
n is of the form 2m − 2. For general even n, we construct families of size at least
2n/n. Of particular interest are minimal singly-repairable families. We show that
such families have size at most 2n/n and we construct families achieving this upper
bound when n is a power of 2. For general even n, we construct minimal fami-
lies of size Ω(2n/n2). The study of these families was inspired by a computational
scheduling problem.

1 Introduction

In this paper, we study the extremal combinatorics of a family F of n-bit vectors from
{0, 1}n such that every vector u ∈ F satisfies the following properties:

(a) negating any bit of u in F produces a vector v not in F (we call such a bit flip a
“break”).
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(b) there is a unique choice of some other bit (we call this the “repair” bit) of v which
when negated produces a vector in F .

By “negating a bit” we mean flipping the value from 0 to 1 (or from 1 to 0). These
families, which we call singly repairable, arise in the context of fault-tolerant solutions
(formulated by [2]) for scheduling problems. These are special solutions to optimization
problems (e.g., resource allocation) that are tolerant to unforeseen events, e.g., a resource
suddenly becoming unavailable. In the event of such a “break”, there is some other
resource which could be brought into play as a “repair” and maintain optimality. In this
paper, we are concerned with the combinatorics of families of vectors which admit the
break-repair property.

We prove the following:

Theorem 1.1. Let n > 0 be even and let F be a collection of vectors from {0, 1}n. If F
is singly repairable, then

2n/2 ≤ |F| ≤ 2n+1

n + 2
.

The lower bound is achieved for all even n. Moreover, the families achieving the lower
bound are unique up to permutation of coordinates and translations. The upper bound is
achieved when n is of the form 2m−2. For arbitrary even n, there exists a singly-repairable
family of size at least 2n/n.

Of particular interest are minimal singly-repairable families. In terms of our applica-
tions, minimal singly-repairable families connect any two fault tolerant solutions via some
sequence of breaks and repairs.

Theorem 1.2. Let n > 0 be even and let F be a family of vectors from {0, 1}n. If F is
minimal singly repairable, then

2n/2 ≤ |F| ≤ 2n/n.

The lower bound is achieved for all even n. The upper bound is achieved when n is a
power of 2. For general even n, there exists a minimal singly-repairable family of size
Ω(2n+1−r/n) where r is the number of 1’s in the binary representation of n.

More generally, one may consider repairable families where we place no restriction on
the number of repairs. We intend to study the combinatorics of these families in a future
paper. The computational complexity of finding robust solutions, inspired by research
in [2], appears in [4].

Organization of the paper : In Section 2, we introduce definitions and notation used in the
rest of the paper. In Section 3, we prove upper and lower bounds on the sizes of singly-
repairable families and construct families achieving these bounds. Then in Section 4, we
consider minimal singly-repairable families and give constructions for families achieving
the largest possible size.
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2 Definitions and Notation

The intended objects of study are n-bit vectors over {0, 1}. The collection of all such
vectors is denoted as Z

n
2 or {0, 1}n. Frequently, we shall consider Z

n
2 as a vector space

(and not just as a collection of vectors) over {0, 1}. We assume that vectors are indexed
by i ∈ {0, 1, . . . , n − 1}, where vi refers to the i-th bit of v.

A translation of F ⊆ Z
n
2 by a vector v ∈ Z

n
2 is the set F + v = {u + v| u ∈ F}. Two

families of vectors are said to be isomorphic if they are related by an element of the group
generated by permutations of coordinates and translations.

The (Hamming) weight of a vector is the number of coordinates with a 1. A vector
has even (resp. odd) parity if its weight is even (resp. odd). Let E(n) (resp. O(n))
denote all the even weight (resp. odd weight) vectors of length n. Given two vectors
u, v ∈ Z

n
2 , the (Hamming) distance between u and v, denoted by d(u, v), is the weight of

u + v (equivalently, it is the number of positions where u and v differ).
Let Xi ⊆ Z

ni
2 for 1 ≤ i ≤ r be non-empty families of vectors. Define (X1 | X2 · · · |

Xr) ⊆ Z

P
i ni

2 to be the collection of
∏r

i=1 |Xi| vectors, each denoted by (x1 | x2 . . . | xr)
formed by concatenating, in order, vectors x1 ∈ X1, x2 ∈ X2, . . . , xr ∈ Xr.

The basic operations on vectors are bit flips (negations): changing a specified bit from
a one to a zero (or from zero to one). Given an n-bit vector u, let ∂i(u) denote the vector
u with the i-th bit flipped. We can extend this definition to a set of bit flips: ∂S(u)
represents the vector with bits in the set S ⊆ {0, 1, . . . , n−1} flipped. When |S| = 2 (say
S = {i, j}), we write ∂ij(u) for simplicity (and when we write ∂ij(u) it will be implicitly
understood that i 6= j).

Definition 2.1. Let F ⊆ Z
n
2 be a family of vectors. We say that F is singly repairable if

every vector u ∈ F satisfies the following conditions:

(i) for all i, 0 ≤ i ≤ n − 1, ∂i(u) 6∈ F .

(ii) for all i, 0 ≤ i ≤ n− 1, there exists a unique j where 0 ≤ j ≤ n− 1 and j 6= i such
that ∂ij(u) ∈ F .

Remark. (i) We interpret bit flips as breaks and repairs. Let u ∈ F and suppose the
i-th bit of u is flipped, we refer to ∂i as a break since ∂i(u) 6∈ F . The repair to
that break is flipping the j-th bit for some unique coordinate j, j 6= i such that
∂ij(u) ∈ F . In other words, singly-repairable families are such that every member
of the family has a unique repair for every break.

(ii) The set of all singly-repairable subfamilies of Z
n
2 is closed under isomorphisms. For

simplifying proofs, we often translate a given F ⊆ Z
n
2 by a suitable vector to obtain

an isomorphic copy which contains 0n.

We disallow vectors at Hamming distance 1 from each other in any singly-repairable
family. To emphasize this crucial property, we call any family F (not necessarily singly-
repairable) in Z

n
2 diffuse if no pair of distinct vectors in F are at distance 1 from each

other.
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Example 2.1. Let n ≥ 2 be even. The set of n-bit vectors v that satisfy the formula

(v0 = v1) ∧ (v2 = v3) ∧ · · · ∧ (vn−2 = vn−1)

is a singly-repairable family of size 2n/2. This easy example achieves a lower bound (see
Theorem 3.7) on the size of singly-repairable subfamilies of Z

n
2 . Even more strikingly, it is

the unique family, up to isomorphisms, that achieves this lower bound (see Theorem 3.10).

3 General Bounds

In the following discussion, let F ⊆ Z
n
2 be singly repairable. A vector u ∈ F induces a

relation on {0, 1, . . . , n − 1} as follows: i ∼u j if ∂ij(u) ∈ F . This implies that ∼u is a
symmetric relation on {0, 1, . . . , n − 1} which partitions it into break-repair sets, each of
size 2. This also implies that n has to be even, a fact which we will henceforth assume
throughout the paper unless explicitly mentioned otherwise.

We will, on occasion, treat a singly-repairable family F as an undirected graph: the
vertices are the vectors in F and the edges are {u, v} where v = ∂ij(u), u, v ∈ F for some
i 6= j, 0 ≤ i, j ≤ n−1. We shall refer to this graph as the break-repair graph of F . Without
risk of confusion, we sometimes call F a graph (when we really mean the break-repair
graph of F) and refer to vertices, paths, cycles etc., in F . This graph theoretic view of
F enables us to study the lattice of singly-repairable subfamilies of F . In particular, the
connected components of this graph correspond to minimal singly-repairable subfamilies.
Lemma 3.1 below records these easily provable facts.

Lemma 3.1. Let F ⊆ Z
n
2 be a non-empty singly-repairable family. Then the following

hold:

a) n is even.

b) If v = ∂ij(u) and w = ∂kl(u) where u, v, w are three distinct vectors in F , then
{i, j} ∩ {k, l} = ∅.

c) F is minimal iff it is connected (as a graph).

Remark. Note that it is important to include u in the definition of the relation ∼u,
different u’s might give rise to different relations. In Section 3.2, we show the special role
of ∼u by showing that the smallest minimal families are essentially unique.

3.1 Upper Bounds

We now prove upper bounds on the size of singly-repairable subfamilies of Z
n
2 .

Proposition 3.1. If F ⊆ Z
n
2 is a singly-repairable family consisting of vectors of even

weight, then |F| ≤ 2n

n
.
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Proof. Each vector in F has n neighbors at distance 1 and since F is singly repairable,
each such neighbor is counted exactly twice (otherwise Lemma 3.1 (b) would be violated).
Thus F has |F|n/2 neighbors of odd weight. So we have |F|n/2 ≤ 2n−1, from which the
result follows.

Corollary 3.2. If F ⊆ Z
n
2 is a minimal singly-repairable family, then |F| ≤ 2n

n
.

Proof. We can translate F by a suitable vector in Z
n
2 to ensure that 0n ∈ F . Since F is

connected (Lemma 3.1 (c)), every vector in F has even weight. The result now follows
from Proposition 3.1.

More generally, we have the following bound.

Corollary 3.3. If F ⊆ Z
n
2 is singly repairable, then |F| ≤ 2n+1

n+2
.

Proof. Let F = F0 ∪ FE ⊆ Z
n
2 be singly repairable, where FO (resp. FE) consist of the

odd weight (resp. even weight) vectors in F . Then consider F ′ ⊆ Z
n+2
2 where

F ′ = (FO | {01, 10}) ∪ (FE | {00, 11})
Observe that there is no vector in FE at distance 1 from a vector in F0. Thus F ′ is singly
repairable and consists of vectors of even weight. Since |F ′| = 2|F|, the result follows
from Proposition 3.1.

Remark. Single repairability implies the absence of equilateral triangles of side length
2 but the latter is a weaker condition. In fact, Problem B-6 of the 61st William Lowell
Putnam Examination (2000) essentially established a bound of 2n+1/n for families that
exclude equilateral triangles of side length 2. 1

We now describe a class of examples of singly-repairable subfamilies of Z
n
2 of size

2n/2. These families are then used to construct singly-repairable families that achieve the
maximum size of 2n+1/(n + 2) (from Corollary 3.3) for infinitely many values of n.

Example 3.1. Let s ∈ Z
n/2
2 . Let Bs ⊆ Z

n
2 denote the set of vectors v such that

si = 0 ⇒ v2i+1 6= v2i

si = 1 ⇒ v2i+1 = v2i

where 0 ≤ i ≤ n/2 − 1. Each Bs is singly repairable and has size 2n/2. Moreover, any
pair of families Bs,Bt are isomorphic (they are related by a translation).

Recall that an [n, d] code [3] is a subset of Zn
2 such that the minimum Hamming

distance between any two distinct vectors is d. An [n, k, d] linear code is an [n, d] code
that is a k-dimensional subspace of Z

n
2 .

1The first author served on the 2000 Putnam Questions Committee.
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Lemma 3.4. Let F be an [n/2, 3] code. Then
⋃

s∈F Bs is a singly-repairable subfamily
of Z

n
2 .

Proof. Let s, t ∈ F be two distinct vectors in F . Any vector v ∈ Z
n
2 that satisfies

v2i+1 = v2i is at least distance 1 away from any vector w ∈ Z
n
2 that satisfies w2i+1 6= w2i,

where 0 ≤ i ≤ n/2 − 1. Since d(s, t) ≥ 3, v ∈ Bs is at least distance 3 away from w ∈ Bt.
Hence, Bs ∪ Bt is singly repairable and more generally,

⋃
s∈F Bs is singly repairable.

Theorem 3.5.

(i) There exist singly-repairable subfamilies of Z
n
2 of size Θ(2n/n) for all even n.

(ii) There exist singly-repairable subfamilies of Z
n
2 of size 2n+1

n+2
when n is of the form

2m − 2.

Proof. (i) There is a [m, m − blog2 mc − 1, 3] linear code (also called the shortened
Hamming code, see [1], section 2.6, page 47) which, for m = n/2, is a linear code

in Z
n/2
2 of size at least 2n/2

n
. Using this code as the family F in Lemma 3.4, we

construct a singly-repairable subfamily of Z
n
2 of size at least 2n/n.

(ii) It is well-known via the Gilbert Varshamov bound [[3], page 33, Theorem 12], that
a linear code with parameters [n, k, d] exists if

d−2∑
i=0

(
n − 1

i

)
≤ 2n−k.

Hence there is a [n/2, k, 3] linear code when n = 2m − 2 and k = 2m−1 − m for
some integer m. Using this code as F in Lemma 3.4, our construction produces a
singly-repairable family of size (2n/2) 2k = 2n+1/(n + 2).

While we have achieved the theoretical upper bound for singly-repairable families, we
were particularly interested in what can happen for minimal singly-repairable families.
In Section 4, we show that the upper bound for minimal families is achievable for every
value of n which is a power of 2.

3.2 Lower Bounds

In this section, we prove that any singly-repairable subfamily of Z
n
2 has size at least 2n/2.

We first introduce a notion of partial repairable subfamilies of Z
n
2 . This concept makes

sense even when n is odd and we temporarily suspend the restriction that n is even in
our discussions involving partial repairability.

Recall that a diffuse family is a family F ⊆ Z
n
2 such that no two vectors in F are at

distance 1 from each other.
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Definition 3.1. Let F ⊆ Z
n
2 be a diffuse family. Then a break-repair pair for u ∈ F is a

pair {i, j} ⊆ {0, 1, . . . , n − 1}, with i 6= j, such that

(i) ∂ij(u) ∈ F and

(ii) for all k, 0 ≤ k ≤ n − 1 where k 6= i, j, ∂ik(u) 6∈ F and ∂jk(u) 6∈ F .

Notation: If F is a diffuse subfamily of Z
n
2 , we denote:

EF(u) = {{i, j}|{i, j} is a break-repair pair for u in F}.

Definition 3.2. Let F ⊆ Z
n
2 , r ≤ n/2. Then F is called r-singly repairable if F is diffuse

and |EF(u)| ≥ r for all u ∈ F (i.e., every vector in F has at least r break-repair pairs).

Note that when n is even, an n/2-singly repairable family is our usual singly-repairable
family (Definition 2.1).

Remark. Every diffuse subfamily in Z
n
2 is r-singly repairable for some r, where 0 ≤ r ≤

n/2.

Lemma 3.6. If F ⊆ Z
n
2 is a non-empty r-singly repairable family (r ≥ 1), then |F| ≥ 2r.

Proof. By induction on r. The result is clear for r = 1: a 1-singly repairable family has
to have a vector u which has at least one break-repair pair, thereby forcing another vector
v = ∂ij(u) (for some 0 ≤ i, j ≤ n − 1) to also be a member of the family. Then assume
that the result is true for r = s − 1 where s ≥ 2. We prove it true for r = s.

Let F be s-singly repairable. Choose a coordinate i, where 0 ≤ i ≤ n − 1 for which
there is some vector u ∈ F such that ui = 1 and some v ∈ F such that vi = 0. Such an
i must exist since s ≥ 2. So Fi,1 = {w ∈ F | wi = 1} and Fi,0 = {w ∈ F | wi = 0} are
both non-empty. They are clearly diffuse.

Observe that both Fi,0 and Fi,1 are (s− 1)-singly repairable (since i can be a member
of at most one break-repair pair for each vector w in F). By the induction hypothesis,
this means that |Fi,0| ≥ 2s−1 and Fi,1 ≥ 2s−1. Since Fi,0 ∩ Fi,1 = ∅, |F| ≥ 2s.

Theorem 3.7. If F ⊆ Z
n
2 is singly repairable, then |F| ≥ 2n/2.

Proof. When F ⊆ Z
n
2 is singly repairable, it is n/2-repairable and hence the desired bound

follows from Lemma 3.6.

Remark. It is worth noting that a more direct inductive approach, whereby we take a
singly-repairable family F ⊆ Z

n
2 and consider

F1 = {u ∈ F| {0, 1} is a break-repair pair for u ∈ F}
and F2 = F \F1 and inducting on F1 or F2 fails, as neither may be singly repairable (the
family in Figure 1 is the smallest counterexample).
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3.3 Uniqueness of Family Achieving Lower Bound

In this section, we prove that a singly-repairable family in Z
n
2 of size 2n/2 is isomorphic

(under permutations of coordinates or affine translations) to any Bs, where s ∈ Z
n/2
2 .

This will imply that there is one canonical smallest singly-repairable family up to
isomorphisms, for example, B1n .

Definition 3.3. A family F ⊆ Z
n
2 is called pure if it is diffuse and if for every u, v ∈ F ,

EF(u) = EF(v). A diffuse family that is not pure is called impure.

Lemma 3.8. Let F ⊆ Z
n
2 be pure, singly repairable and of size 2n/2. Then F is isomorphic

to B1n,

Proof. Translating and permuting coordinates in F , if necessary, we obtain an isomorphic
family F ′ such that 0n ∈ F ′ and {2i + 1, 2i} ∈ EF ′(u) for every vector u ∈ F ′ where
0 ≤ i ≤ n/2 − 1. Since F ′ has size 2n/2, it is connected and hence F ′ is isomorphic to
B1n .

Let F ⊆ Z
n
2 be impure r-singly repairable. Similar to the proof of Lemma 3.6, we

define for 0 ≤ i ≤ n − 1, the family Fi,1 = {w ∈ F| wi = 1} and Fi,0 = {w ∈ F| wi = 0}.
Both Fi,1 and Fi,0 are diffuse and the argument used in the proof of Lemma 3.6 shows
that if u ∈ F , EF(u) ⊃ EFi,j

(u) for j = 0, 1 and if both Fi,0 and Fi,1 are non-empty, then
they are both (r − 1)-singly repairable (however, they may be pure).

Lemma 3.9. Let F ⊆ Z
n
2 be a non-empty r-singly repairable impure family where r ≥ 1.

Then |F| ≥ 2r + 1.

Proof. (By induction) If r = 1: without loss of generality, an impure 1-singly repairable
family includes vectors u, v, w ∈ Z

n
2 , where v = ∂12(u) and w = ∂34(z) (where either z = u

or v or some fourth vector in F). Since there are at least 3 vectors in F , the result holds
for r = 1.

Assume that r ≥ 2. We show that there must be a coordinate i, 0 ≤ i ≤ n − 1, such
that Fi,0 and Fi,1 are both non-empty, (r − 1)-singly repairable and at least one of them
is impure. Then |F| = |Fi,0| + |Fi,1| ≥ (2r−1 + 1) + 2r−1 = 2r + 1 (by induction), thereby
establishing the bound for impure r-singly repairable families.

Suppose first that for some distinct indices i, j, k ∈ {0, 1, . . . , n−1}, there exist vectors
u, v ∈ F such that {i, j} ∈ EF(u) and {j, k} ∈ EF(v). Then u and ∂ij(u) are split between
Fi,0 and Fi,1 and whichever of these contains v is impure since {j, k} is not in EF(u) or
EF(∂ij(u)). So we may assume that for all X, Y ∈ ⋃

u∈F EF(u), either X = Y or X ∩Y =
∅.

Since F is impure, there is some pair {i, j} ⊆ {0, 1, . . . , n− 1} that belongs to at least
one EF(u) for some u ∈ F but does not belong to all EF(w) for all w ∈ F . Without loss
of generality, assume that such a vector u is (0, 0, . . . , 0) ∈ F . Since r ≥ 2, there is some
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other break-repair pair in EF(u). Again, without loss of generality, assume that {0, 1} is
such a break-repair pair (so that {0, 1} 6= {i, j} and both {0, 1} and {i, j} are in EF(u)).
Let v = (1, 1, 0, . . . , 0) so that v ∈ F and {0, 1} ∈ EF(v). Then v ∈ F0,1 and u ∈ F0,0 so
that both F0,0 and F0,1 are non-empty. If either F0,0 or F0,1 is impure, we are done.

So assume that F0,0 and F0,1 are both pure. Since {i, j} is a break-repair pair for
u ∈ F0,0, this means that {i, j} is a break-repair pair for every vector in F0,0. Moreover,
{i, j} cannot be a break-repair pair for any vector in F0,1: if so, then it would be a break-
repair pair for every vector in the pure family F0,1. This in turn would make {i, j} a
break repair pair for every vector in F and that contradicts the choice of {i, j}. Our
assumption that break-repair pairs are disjoint in

⋃
u∈F EF(u) implies that i does not

participate in any break-repair pair for v in F0,1. In this situation, choose any coordinate
l ∈ {0, 1, . . . , n − 1} \ {0, 1, i, j}, which takes part in a break-repair pair for v in F , such
an l (in another break-repair pair) exists since r ≥ 2. Furthermore, if {l, l′} ∈ EF(v) then
l′ 6∈ {0, 1, i, j, l}. Then Fl,0 and Fl,1 are both non-empty (since coordinate l is broken in
some vector in F) and u and v belong to Fl,0. Since u and v have different break-repair
pairings in Fl,0, it follows that Fl,0 is an impure family.

Theorem 3.10. A singly-repairable family F ⊆ Z
n
2 of size 2n/2 is isomorphic to B1n.

Proof. Lemma 3.9 implies that any impure singly-repairable family F ⊆ Z
n
2 has size >

2n/2. Hence, ∼u must be constant for all u ∈ F and Lemma 3.8 implies that F ∼= B1n .

4 Minimal Singly-Repairable Families

The singly-repairable families constructed in Theorem 3.5 have a large number of con-
nected components, each component being a minimal singly-repairable family. We now
consider the problem of finding whether we can attain these bounds with just one con-
nected component. Corollary 3.2 tells us the best we can hope to do and we show that
we can indeed achieve this upper bound for infinitely many n.

More specifically, we prove that when n is a power of 2, there are minimal singly-
repairable subfamilies of Z

n
2 of size 2n/n (Section 4.1). For general even n, we construct

a minimal singly-repairable family of size Ω(2n/n2) (Section 4.2).

Notation. For an integer s ∈ {0, 1, . . . 2r − 1}, we let si (0 ≤ i ≤ r − 1) denote the i-th
least-significant bit in the binary representation of s. For 0 ≤ i ≤ r − 1, er(i) ∈ Z

r
2 is a

vector such that er(i)j = 1 iff i = j.

An m-bit binary Gray code [3] is an ordering (u0, u1, . . . , u2m−1) of vectors in Z
m
2 such

that any two successive vectors differ in exactly one bit. A Gray code is cyclic if u2m−1

also differs from u0 in one bit. There are many constructions known for non-isomorphic
cyclic Gray codes; two such examples are the binary reflected Gray code and the balanced
Gray code [5].
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Definition 4.1. A bipartite singly-repairable system (BSR) is a pair (U ,V) of disjoint
subsets of Z

n
2 such that U ∪ V is singly repairable with breaks in U repaired in V, and

vice-versa. That is, we require that U ∪ V is singly repairable and for all u ∈ U ,

∂ij(u) ∈ U ∪ V → ∂ij(u) ∈ V
and for all v ∈ V,

∂ij(v) ∈ U ∪ V → ∂ij(v) ∈ U
for all distinct i, j ∈ {0, 1, . . . , n − 1}.

A minimal BSR is a BSR (U ,V) such that U ∪ V is minimal singly repairable. The
size of a BSR (U ,V) is |U ∪ V|.

4.1 Construction when n is a power of 2

We will now provide an explicit construction for minimal singly-repairable subfamilies of
Z

n
2 of size 2n/n (the largest possible size, via Proposition 3.1).

Fix m > 0, n = 2m. Let G(0), G(1), . . . , G(n − 1) be some fixed m-bit cyclic Gray
code.

Notation. Define the function f : {0, 1, . . . , n− 1} → {0, 1, . . . , m− 1} such that G(j +
1) = G(j)+em(f(j)) (we assume that the index j is taken modulo n so that G(n) = G(0)).
Note that f(j) specifies which bit in G(j) has to be flipped to get G(j +1), the next term
in the Gray code.

Recall that E(n) refers to the set of all even weight {0, 1} vectors of length n.
Define the m × n matrix A with columns indexed {0, 1, . . . , n − 1} and rows indexed

by {0, 1, . . . , m − 1} as follows. The j-th column of A, where 0 ≤ j ≤ n − 1 is the m-bit
binary representation of the integer j, with the least significant bit appearing in row 0.

For 0 ≤ i ≤ n − 1, we let

G(n)
i = {v ∈ E(n) | A vT = G(i)T mod 2}. (1)

When n is obvious from the context, we simply write Gi.

Remark. Interpret each Gi as follows. Equation (1) is equivalent to saying that v ∈ Gi

iff v ∈ E(n) and

∑
0≤k≤n−1

vkkj ≡ G(i)j (mod 2), for 0 ≤ j ≤ m − 1

For any 0 ≤ j ≤ m− 1, half of the k’s in 0, 1, . . . , n− 1 have kj = 1. The sum determines
the number of 1’s in the corresponding positions of v, and we want the parity of this sum
to be coordinated with the j-th bit of G(i). Since the total number of 1’s is even, one has
the same parity for the number of 1’s in the rest of the positions of v.
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Lemma 4.1. Any vector w of odd weight in Z
n
2 is at Hamming distance 1 from a unique

element of each Gr, where 0 ≤ r ≤ n − 1.

Proof. Let l, 0 ≤ l ≤ n − 1 be such that

lj = 1 iff
∑

0≤k≤n−1

wkkj 6≡ G(r)j (mod 2)

for each j, 0 ≤ j ≤ m − 1. Then ∂l(w) ∈ Gr is the unique element at distance 1 from
w.

We have E(n) =
⋃n−1

i=0 Gi, a disjoint union and for each i, |Gi| = |E(n)|
n

= 2n−1

n
. Define

Hj =
n−1⋃
i=0

(Gi+j | Gi)

where we assume that the indices j, 0 ≤ j ≤ n−1, are taken modulo n (so that Hn = H0).
Note that |Hj | = 22n−2

n
. We will now show that Hi ∪ Hi+1 is a minimal singly-repairable

family for all i, 0 ≤ i ≤ n − 1.

Lemma 4.2. For 1 ≤ i, j ≤ n − 1 with i 6= j, (Hi,Hj) is a BSR.

(Observe that Hi ∪ Hj will then be a singly-repairable subfamily of Z
2n
2 of size 22n

2n
.)

Proof. Given a odd-weighted string u ∈ Z
2n
2 , we claim that u is at distance 1 from precisely

two elements of Hi ∪ Hj (this implies a unique repair for every break). To see this, say
u = (v | w) with v, w ∈ Z

n
2 . Then exactly one of v, w is in E(n). Say, for example,

v ∈ E(n). Then v ∈ Gr for some unique r. If u is at distance 1 from u′ ∈ Hi, then
u′ = (v | w′) with w′ the unique element of Gr−i of distance 1 from w (Lemma 4.1). The
analysis for w ∈ E(n) is similar. Similarly u is at distance 1 from a unique element of Hj .

It follows then that Hi ∪ Hj is singly repairable and since breaks in Hj are repaired
in Hi (and vice versa), (Hi,Hj) is a BSR.

Remark. More generally, consider families

A =
n−1⋃
j=0

(Gjσ | Gj), B =
n−1⋃
j=0

(Gjτ | Gj)

where σ, τ ∈ Sym(n) with jσ 6= jτ for any j (where Sym(n) refers to the symmetric group
acting on the elements of {0, 1, . . . , n − 1}). Then the same proof shows that (A,B) is a
BSR.
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Remark. We can also explicitly state the break-repairs pairs for each vector in F =
Hi∪Hi+1. Say (v | w) ∈ Hi and then specifically (v | w) ∈ (Gi+j | Gj) for some j. Given a
break in the k-th bit of v, repair in the k′-th bit where k′ is obtained from k by changing
the bit kf(i+j); the repair is then in (Gi+j+1 | Gj) ⊆ Hi+1. Given a break in the k-th bit
of w, repair in the k′-th bit where k′ is obtained from k by changing the bit kf(j−1); the
repair is then in (Gi+j | Gj−1) ⊆ Hi+1. The repairs for breaks in Hi+1 are viewed similarly.

We want to establish that (Hi,Hi+1) is a minimal BSR, for 0 ≤ i ≤ n − 1. We prove
that F01 = H0 ∪H1 is minimal (the general case can be proved using similar arguments).
We first prove a limited form of connectivity in F01 in Lemmas 4.3 and 4.4.

Lemma 4.3. Let u0, v0 ∈ G0 and let p, q, r, s (0 ≤ p, q, r, s ≤ n − 1) be such that p and
q differ only in the k-th bit of their m-bit binary representation, and r and s also differ
only in the k-th bit of their m-bit binary representation where 0 ≤ k ≤ m− 1. Then there
is a path in F01 between (u0 | v0) ∈ (G0 | G0) and (u0 | v′

0) ∈ (G0 | G0) where v′
0 is obtained

from v0 by flipping the bits in positions p, q, r, s (i.e., v′
0 = ∂{p,q,r,s}(v0)).

Proof. We may assume that p 6= r (otherwise, v0 = v′
0 and the start and end vertex are

the same, so we have nothing to prove). We exhibit a path in F01 between (u0 | v0) and
(u0 | v′

0) below:

(u0 | v0) ∈ (G0 | G0)

→ (u1 | v0) ∈ (G1 | G0)

→ (u1 | v1) ∈ (G1 | G1)

→ (u2 | v1) ∈ (G2 | G1)
...

...

→ (un−1 | vn−1) ∈ (Gn−1 | Gn−1)

→ (u0 | vn−1) ∈ (G0 | Gn−1)

→ (u0 | v′
0) ∈ (G0 | G0)

We now define the intermediate vertices ui, vi. Fix a coordinate t, where 0 ≤ t ≤ n−1.
We set ui = ∂tt′(ui−1) where t′ is obtained from t by flipping the f(i − 1)-th bit of t, so
that ui ∈ Gi. That is, when we break on the left half, we always choose to do so at
coordinate t. The repair, dictated by the next sequence in the Gray code, is made by
flipping coordinate t′. For any i, 0 ≤ i ≤ m − 1, consider the changes of bit i. Since i
gets changed an even number of times in the cycle (G0 | G0) → · · · → (G0 | G0), every
coordinate is flipped an even number of times. Thus the final vector will be of the form
(u0 | ·).

On the right side, we will almost do the same thing. We always break at the p-th
position, except only during one transition. We pick one instance when successive terms
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in the Gray code are related by the k-th bit, where instead of breaking in the p-th bit
(and being forced to repair in q-th bit), we break in the r-th bit (and hence are forced to
repair by flipping the s-th bit). The choice of which transition to choose is arbitrary; for
example, we choose it to be the last time that the k-th bit is involved. So let j be the
largest index where 0 ≤ j ≤ n − 1 such that f(j) = k. Then we let

vj+1 = ∂rs(vj)

and for all i such that i 6= j, 0 ≤ i ≤ n − 1, we let

vi+1 = ∂pp′(vi)

where p′ is obtained from p by flipping the f(i)-th bit in the binary representation of p
(so that p′ = q exactly when f(i) = k).

Then p, q, r, s will be flipped an odd number of times, every other coordinate being
flipped an even number of times. Thus the final vector in the path is of the form (u0 | v′

0)
where v′

0 is obtained from v0 by flipping coordinates p, q, r, s.

Lemma 4.4. Any two vectors in (G0 | G0) are in the same connected component in F01.

Proof. Let (u0 | v0) and (u1 | v1) be any two distinct vertices in (G0 | G0). We show that
there is a path in F01 joining the two vertices.

We first show that one can go from (u0 | v0) to (u0 | v1) in F01 using a sequence of
cycles in F01 each cycle changing v0 in exactly 4 places (p, q, r, s) (where the integers in
each pair (p, q) and (r, s) differ by the same bit, as required by Lemma 4.3). Without
loss of generality, we take v1 = 0n. It is therefore enough to show that there is a partial
ordering ≺ on G0 such that 0n is the unique minimal element and if 0n 6= w ∈ G0, there
is a choice of (p, q, r, s) as in Lemma 4.3 that moves w to an element ≺ w. For this, let
w ∈ G0 and define α(w) ∈ Z

m by

α(w)j = |{k ∈ {0, 1, . . . , n − 1} | wk · kj = 1}|, for 0 ≤ j ≤ m − 1

(by the definition of G0, α(w)j is even); we say v ≺ w iff α(v) strictly precedes α(w)
lexicographically. Let k be minimal such that α(w)k 6= 0. There exist (at least) two
coordinates p, r such that pk = rk = 1 and wp = wr = 1. Form q and s from p and r
respectively by changing the k-th bit to 0. Say p, q, r, s moves w to ŵ; then ŵ ≺ w.

Repeating the same argument for the first half, (we use the version of Lemma 4.3 that
changes bits on the first half instead of the second) we can then similarly show that there
is a path from (u0 | v1) to (u1 | v1).

Lemma 4.5. For 0 ≤ i ≤ n−1, Hi∪Hi+1 is a minimal singly-repairable subfamily of Z
2n
2 .
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Proof. As before, for ease of notation in our proof, we consider the case F01 = H0 ∪ H1.
The argument easily generalizes.

We need to show that F01 is connected. Since there is a path between any vertex
in F01 to some vertex in (G0 | G0), it clearly suffices to show that there is a break-repair
path between any two elements of (G0 | G0) (the intermediate vertices are not all within
(G0 | G0)). Lemma 4.4 guarantees the existence of such a path.

We thus have an explicit construction for the following theorem.

Theorem 4.6. When n is a power of 2, there exist minimal singly-repairable subfamilies
of Z

n
2 of size 2n/n (the largest possible, via Proposition 3.1).

Remark. Choosing non-isomorphic Gray codes (e.g., the binary reflected Gray code or
the balanced Gray code[5]) for G(i)’s in this construction yields non-isomorphic minimal
singly-repairable families of size 2n/n when n is a power of 2. For small values of n,
we have other examples which indicate that the Gray code construction is not unique.
Since these largest minimal singly-repairable families are not unique up to translations
and permutations, the question is whether one can somehow characterize these families.

4.2 Construction for general n

In this section, we show that for general even n, there exist minimal singly-repairable
subfamilies of Z

n
2 of size Ω(2n/n2).

Definition 4.2. A BSR sequence for n is a sequence A = (A0,A1, . . . ,Ar−1) such that
Ai ⊆ Z

n
2 and

(i) (Ai,Aj) is a BSR for all i 6= j, 0 ≤ i, j ≤ r − 1.

(ii) (Ai,Ai+1) is a minimal BSR for 0 ≤ i ≤ r − 2.

Remark: Observe that we do not require that (Ar−1,A0) is a minimal BSR and so
trivially, we have that (A0,A1, . . . ,As−1) is also a BSR sequence for n for all 2 ≤ s ≤ r.

Our goal is to construct a BSR sequence A = (A0,A1, . . . ,Ar−1) for n, when n is not
necessarily a power of 2. Then A0∪A1 (or more generally, Ai∪Ai+1) is the desired family.
Note first that we already have a construction of BSR sequences when n is a power of 2.

Lemma 4.7. Let n be a power of 2. There exists a BSR sequence

(H0,H1, . . . ,H(n/2)−1)

for n with each |Hi| = 2n−1/n.

Proof. Immediate from Lemmas 4.2 and 4.5.
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We show how to construct a BSR sequence for n + m given a BSR sequence for n
when m is a power of 2.

Lemma 4.8. Let A = (A0,A1, . . . ,Am−1) be a BSR sequence for n where m is a power
of 2 and m ≥ 2. Then B = (B0,B1, . . . ,Bm−1) is a BSR sequence for n + m where
Bj =

⋃m−1
i=0 (Ai+j | Gi) where 0 ≤ j ≤ m − 1 and Am = A0.

Proof. To see that (Bi,Bj) is a BSR, consider x = (a | g) ∈ (Ai+k | Gk) ⊆ Bi. Since
(Ai+k,Aj+k) is a BSR, a break in the a part of x is uniquely repaired in (Aj+k | Gk) ⊆ Bj ;
since a break in Gk is uniquely repaired in Gi+k−j (cf. proof of Lemma 4.2), a break in the
g part of x is uniquely repaired in (Ai+k | Gi+k−j) ⊆ Bj .

We prove that (Bi,Bi+1) is minimal. For simplicity of notation, we consider the case
when i = 0. Since there is an edge from any element of Ai to an element of Ai±1 and
from any element of Gi to an element of Gi±1, there is a break/repair path from any
element of the Bi ∪ Bi+1 to some element of (A0 | G0). So it suffices to show that there
is a break/repair path from any (a | g) ∈ (A0 | G0) to any (a′ | g′) ∈ (A0 | G0) (the
intermediate points are not confined to (A0 | G0)). Using the idea in the connectivity
proof in Lemma 4.3, we know there is a path from (a | g) to (a′′ | g′) for some a′′ ∈ A0 (it
wanders around the Gi cycle to get there, using arbitrary break/repairs on the Ai side).
But since A0 ∪ A1 is connected, there is a break/repair path within A0 ∪ A1 from a′′ to
a′. This path induces a break/repair path from (a′′ | g′) to (a′ | g′).

Remark: Observe that

|Bj| =
2m−1

m

m−1∑
i=0

|Ai| for 0 ≤ j ≤ m − 1 (2)

Corollary 4.9. There exists a minimal singly-repairable subfamily of Z
n
2 of size at least

2n+1−r/n where r is the number of 1’s in the binary representation of n.

Proof. Let n = 2k1 + 2k2 + . . . + 2kr and let ni = 2ki for 1 ≤ i ≤ r where k1 > k2 · · · > kr.
Starting with a BSR sequence B1 = (H0,H1,H2, . . . ,Hn1/2−1) for n1 from Lemma 4.7, we
construct r − 1 sequences Bj for 2 ≤ j ≤ r, where

Bj = (Bj
0,Bj

1,Bj
2, . . . ,Bj

nj−1)

and Bj is a BSR sequence for n1 +n2 +n3 + · · ·+nj , . Each Bj is constructed by choosing
an appropriate prefix of Bj−1 of length nj (such a prefix exists since nj ≤ nj−1 for j ≥ 3
and n1/2 ≥ n2), which is itself a BSR sequence and then applying Lemma 4.8 (with
m = nj).

Equation (2) implies that

|Br
i | =

2n1+n2+...+nr−r

n1
where 0 ≤ i ≤ nr − 1

This provides a minimal BSR (Br
0,Br

1) of size |Br
0 ∪ Br

1| = 2n/2k1+r−1.
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Figure 1: Graph for Singly-Repairable Subfamily of Z
6
2 of size 10

Since r = O(log n), Corollary 4.9 guarantees families of size Ω(2n/n2).

Remark: An explicit formula for Br
i is

Br
i =

⋃
i1∈Zn1/2

⋃
ij∈Znj

(Gn1/2
i1

| Gn1/2
i1−i2

| Gn2
i2−i3

| . . . | Gnr
ir−i)

where i ∈ Znr (where Zm represents the set of integers mod m).

Remark. The construction of a minimal singly-repairable subfamily for general n, in
Corollary 4.9, already falls short of the largest possible size for n = 6. While our con-
struction gives a family of size 8, there is a minimal singly-repairable family of size 10.
Moreover, one can prove that, up to permutation of coordinates and translations, this
family of size 10 is unique. Furthermore, the break-repair graph (Figure 1) of this family
corresponds to the well-known Petersen graph.

5 Remaining Gaps

While it was possible to attain the upper bound of 2n/n (Proposition 3.1) for minimal
singly-repairable subfamilies of Z

n
2 via an explicit construction (Corollary 4.6) when n is

a power of 2, the best construction for arbitrary n, of size 2n/n2 (Corollary 4.9) falls short
of this upper bound when n = 6 (the size 10 singly-repairable family (b26/6c =10) from
Figure 1 already achieves the largest possible size). So this indicates the possibility that
one can do better for arbitrary even n. A similar gap exists for non-minimal families.
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While we could construct non-minimal singly-repairable subfamilies of Z
n
2 of the largest

possible size 2n+1/(n + 2) when n + 2 is a power of 2, our method also falls short of the
maximum possible size for general even n.
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