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Abstract

Two sets are non-crossing if they are disjoint or one contains the other. The non-
crossing graph NCn is the graph whose vertex set is the set of nonempty subsets of
[n] = {1, . . . , n} with an edge between any two non-crossing sets.

Various facts, some new and some already known, concerning the chromatic
number, fractional chromatic number, independence number, clique number and
clique cover number of this graph are presented. For the chromatic number of this
graph we show:

n(loge n − Θ(1)) ≤ χ(NCn) ≤ n(dlog2 ne − 1).

1 Introduction

Two sets are non-crossing if they are disjoint or one contains another. The non-crossing
graph NCn is the graph whose vertex set is the set of nonempty subsets of [n] = {1, . . . , n},
and whose edge set is {XY : X, Y are non-crossing}. The subgraph of NCn induced on
{S ⊆ [n] : |S| = k}, which we denote here by NCn[k] is the well known Kneser graph
(see, e.g. [9, 4]). For 1 ≤ j ≤ k ≤ n NCn[j, k] denotes the subgraph of NCn induced on
{S ⊆ [n] : j ≤ |S| ≤ k}. For W ⊆ [n], NCn[W ] denotes the subgraph induced on the set
of subsets whose size lies in W .

In this note, we collect some facts, some new and some previously known, about
various basic parameters associated with these graphs: the chromatic number, fractional
chromatic number, independence number, clique number and clique cover number.

One reason for studying these graphs is as a first step towards understanding the fol-
lowing abstract simplicial complex. A set {X1, . . . , Xk} of subsets of [n] is a shattering
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family if for each choice of Y1, . . . , Yk with Yi ∈ {Xi, [n] − Xi} we have ∩k
i=1Yi 6= ∅. This

is a standard definition in machine learning [6] which first emerged out of fundamental
work of Vapnik and Chervonenkis [13], and has become of great interest in combinatorics,
especially discrete geometry [8]. Shattering is a hereditary property, i.e., any subfamily of
a shattering family is shattering and so the set of all shattering families of subsets of [n] is
an abstract simplicial complex SFn with vertex set 2[n]−{∅}. Restricting attention to the
1-skeleton of this complex, i.e., the set of to shattering families of size 2 (shattering pairs)
yields a graph SGn on vertex set 2[n] − {∅}. This graph has the property that vertices
corresponding to complementary subsets are nonadjacent and have identical neighbor-
hoods. Thus the structure of SGn is completely captured by restricting the vertex set to
subsets of [n − 1]. The resulting graph is the complement of the graph NCn−1 that we
are studying here.

2 Independence number

A set of vertices in NCn is an independent set if and only if it is a collection of subsets
with no one containing another and no two disjoint. Such collections are well-studied in
the hypergraph literature where they are called intersecting antichains. Two fundamental
results are:

Lemma 2.1. (Milner [10]) The largest intersecting antichain of [n] has size
(

n
bn

2
c+1

)
.

Equality holds uniquely for the set of (bn
2
c + 1)-sets of [n].

Lemma 2.2. (see [1] chapters 9 and 11) Let F ⊆ 2[n] be an intersecting antichain and
for 1 ≤ k ≤ n, let fk be the number of subsets of F of size k. Then:

∑

k≤n/2

fk(
n−1
k−1

) ≤ 1. (1)

Equality holds iff F consists of all k-tuples that contain a given element for some
k ≤ dn

2
e − 1,

These lemmas imply the following bounds on the independence number of NCn and
its induced subgraphs:

Theorem 2.3. Let n ≥ k ≥ 1,

1. α(NCn) =
(

n
bn

2
c+1

)
.

2. If k > n/2 then α(NCn[1, k]) =
(

n
bn

2
c+1

)
.

3. If k ≤ n/2 then α(NCn[1, k]) =
(

n−1
k−1

)
.

Proof. The first two parts are just Theorem 2.1. The third part, which was noted in [1],
is a corollary of Theorem 2.2, i.e., for k ≤ n/2, f1 + . . . + fk ≤ (

n−1
k−1

)
.
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3 Fractional chromatic number

Recall that a fractional coloring of a graph G is a nonnegative function λ on the inde-
pendent sets such that for each vertex v the sum of λ(I) over I containing v is at least 1.
The weight of λ is defined to be

∑
I λ(I). The fractional chromatic number χ∗(G) is the

minimum weight of a fractional coloring. A fractional clique of G is a nonnegative func-
tion f on the vertices, satisfying that the sum of f(v) over any independent set is at most
1. The weight of f is

∑
v∈V f(v). The fractional clique number ω∗(G) is the maximum

weight of any fractional clique. Linear programming duality implies that ω∗(G) = χ∗(G).
For positive integer t, let H(t) =

∑t
i=1

1
i
. Also parity(t) is 1 if t is odd and 0 otherwise.

Theorem 3.1. Let 1 ≤ k ≤ n. Then:

1. For 1 ≤ k ≤ n/2, χ∗(NCn[1, k]) = nH(k).

2. For n/2 < k ≤ n, nH(bn/2c) ≤ χ∗(NCn[1, k]) ≤ (n + 1)H(bn/2c) − H(n − k) +
parity(n).

In particular, nH(bn/2c) ≤ χ∗(NCn) ≤ (n + 1)H(bn/2c) + parity(n).

Proof. For the first part, suppose k ≤ n/2. To prove the upper bound we combine

the well-known fractional colorings of Kneser graphs. Let T
(j)
i be the independent set

consisting of all the j-tuples that contain the element i. We define the fractional coloring
λ of NCn[1, k] by placing weight 1

j
on T

(j)
i for each i and 1 ≤ j ≤ k and zeros elsewhere.

It is easy to verify that λ is a proper fractional coloring of total weight nH(k).
For the lower bound, Lemma 2.2 implies that the function f on subsets S of [n] of size

at most n/2 given by f(S) = 1/
(

n−1
|S|−1

)
if |S| ≤ n/2 is a fractional clique. The restriction

of this clique to NCn[1, k] has weight nH(k).
For the second part of the theorem, assume k > n/2. The lower bound is the same

as the lower bound for k = bn/2c. For the upper bound, define S
(j)
i , for j ≤ n/2 and

i ∈ [n] to be the union of T
(j)
i and the set of subsets of size n − j + 1 that don’t contain

i. S
(j)
i is independent. If we put weight 1/j on each S

(j)
i for each 1 ≤ j ≤ n/2 and i ∈ [n]

then the total weight on any set of size at most n/2 is 1, while the total weight on a set
of size j > (n + 1)/2 is (n − j)/(n − j + 1), and in the case that n is odd, there is no
weight on sets of size (n + 1)/2. To get a fractional coloring of NCn[1, k], it suffices to
put weight 1/(n − j + 1) on the independent set consisting of all j element sets of n, for
each (n +1)/2 < j ≤ k and when n is even, weight 1 on the independent set consisting of
all (n + 1)/2 element sets. The total weight of this coloring is the upper bound stated in
the theorem.

4 Chromatic Number

For any graph G, the chromatic number χ(G) is at least χ∗(G), so Theorem 3.1 implies
χ(NCn) ≥ nH(min{k, n/2}) = n lnn + O(n). Here we prove:
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Theorem 4.1. Let 1 ≤ k ≤ n be an integer. Then χ(NCn[1, k]) ≤ dlog2(k + 1)en. In
particular, χ(NCn) ≤ nblog2(n + 1)e.

The theorem follows easily from the following lemma:

Lemma 4.2. Let W ⊆ [n] where all elements of W are at least |W |. Then χn(NCn[W ]) ≤
n.

Proof. We describe a coloring of NCn[W ] with color set [n]. Let w1 < . . . < w|W | denote
the elements of W . For A ⊆ [n] with |A| ∈ W , let i(A) be the index such that |A| = wi(A).
For a ∈ A, the rank of a in A, rA(a), is defined to be |A∩ [1, a]|. Color A by the element
c(A) of rank w1 + 1− i(A) in A; w1 + 1 − i(A) ≥ 1 since w1 ≥ |W | ≥ i(A). To see that c
is a proper coloring, let S ⊆ T with |S|, |T | ∈ W . Then:

rT (c(T )) = w1 + 1 − i(T ) < w1 + 1 − i(S) = rS(c(S)) ≤ rT (c(S)),

which implies c(T ) 6= c(S).

As an immediate corollary we get:

Corollary 4.3. If k and n are positive integers with 2k − 1 ≤ n, then

χ(NCn[k, 2k − 1]) ≤ n

.

Proof of Theorem 4.1. Given 1 ≤ k ≤ n, let m = dlog2(k + 1)e and partition the set
[1, k] into sets W1, . . . , Wm with Wi = [2i−1, 2i − 1] for i < m and Wm = [2m−1, k]. By
Corollary 4.3 each of the graphs NCn[Wi] can be colored with n colors so NCn[1, k] can
be colored with at most mn colors.

Theorems 3.1 and 4.1 show that n ln n + O(n) ≤ χ(NCn) ≤ n log2 n + O(n). This
gives a constant factor gap between the upper and lower bounds.

Problem 4.4. What is the asymptotic behavior of χ(NCn)?

We believe that the upper bound is the truth. The result in Theorem 4.1 can be
improved slightly for some values of k, by choosing a better coloring of the final group
Wm of vertices but this only affects the constant in the O(n) term.

One possible way to improve the upper bound more significantly would be to improve
the result of Corollary 4.3. This result can be improved somewhat if k is very close to
n/2, but for k sufficiently less than n/2 we conjecture that such an improvement is not
possible:

Conjecture 4.5. For every k and n with 4k ≤ n, χ(NCn[k, 2k − 1] = n.
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The condition 4k ≤ n is somewhat arbitrary here; some condition is needed to avoid
k being to close to n/2.

We can prove two special cases of this conjecture. Say that a coloring of subsets is
elemental if the color assigned to each subset is an element of the subset. (For example,
the coloring in the proof of Lemma 4.2 is elemental.)

Theorem 4.6. For k, n with 2k−1 ≤ n, every proper elemental coloring of NCn[k, 2k−1]
uses n colors.

Theorem 4.7. χ(NCn[2, 3]) = n for every n ≥ 6.

Proof of Theorem 4.6. For A ⊆ [n] we denote by NCA[k, 2k − 1], the induced subgraph
of NCn[k, 2k − 1] restricted to subsets of A.

Fix an elemental coloring c of NCn[k, 2k − 1] We will show that for each A of size
2k − 1, the restriction of c to the subgraph NCA[k, 2k − 1] uses all colors in A; it follows
immediately that c uses all n colors.

To this end we will prove a stronger claim, namely that for each i ∈ [0, k − 1] and S
of size k + i, the restriction of c to NCS[k, 2k − 1] uses at least 2i + 1 colors. The basis
i = 0 is trivial. Suppose S has size k + i with i ≥ 1. Let α = c(S) and β = c(S − {α}).
By induction, the restriction of c to NCS−{β}[k, 2k − 1] uses at least 2i− 1 colors. These
colors can’t include α or β, so NCS−{β}[k, 2k − 1] uses at least 2i + 1 colors.

Proof of Theorem 4.7. The proof is by induction on n. For the basis case n = 6, let c
be an optimal coloring of NC6[2, 3]. For T ⊆ [6] of size 3 let µ(T ) denote the induced
subgraph whose vertex set is the six pairs contained in T or T . Since T and T are adjacent
to each other and to each vertex of µ(T ) it suffices to show that for some T , c uses 4 colors
on µ(T ) since then c must use at least 6 colors.

Call T good if µ(T ) has fewer then 4 colors. If T is good then either all three pairs
in T are the same color or all three pairs in T are the same color. The color used for
these three pairs can’t be used for any other pair. Since there are 1

2

(
6
3

)
= 10 different

subgraphs µ(T ), if all T are good then we need at least 10 colors. Thus some T is not
good, completing the basis case.

For the induction step, let n ≥ 7. If we can show that there is a color class C and
element i such that every set in C contains i then we can restrict the vertex set to [n]−{i}
and finish by induction. We may assume that at most n − 1 colors are used for pairs.
Since n ≥ 7,

(
n
2

)
> 3(n− 1), so there is a color class with at least 4 pairs. It is easy to see

that a color class of pairs and triples that includes at least 4 pairs must have an element
i that belongs to all of the sets, so we are done.

5 The clique number

A clique in NCn is a collection of sets such that any two are either disjoint or comparable
under inclusion. Such a family is sometimes called laminar in the literature. It is well
known and easy to show that in a laminar collection C of sets that does not contain the
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empty set, the relation X −→ Y if Y ⊂ X and there is no Z ∈ C with Y ⊂ Z ⊂ X is
a collection of directed rooted trees whose roots are maximal sets and whose leaves are
minimal sets of C. From this it is easy to deduce:

Proposition 5.1. For any 1 ≤ k ≤ n, ω(NCn[1, k]) = 2n − dn/ke, In particular,
ω(NCn) = 2n

The case k = n is exercise 11.19 in [7]. The general case is similar.

Proof. For the lower bound, we may assume that the union of all of the sets in C is [n].
The number of nodes in a directed forest is at most 2L − R where L is the number of
leaves and R is the number of roots. The maximal sets of C partition [n] so there are at
least dn/ke of them and the minimal sets are disjoint so there are at most n of them, so
the lower bound follows.

For the upper bound, choose a partition A1, . . . , Ar of [n] with r = dn/ke and each
Ai at most k. Let Ci be a maximal chain of sets having largest set Ai. Take C to be the
union of Ci together with the remaining n − r singletons.

6 Clique cover number

Recall that θ(G) is the minimum number of cliques needed to cover the vertices of G. We’ll
need the following well known fact (which follows easily from the construction of de Bruijn,
Tengburgen and Kruyswijk about the existence of a symmetric chain decomposition of
2[n] (see, e.g., [5]).

Lemma 6.1. 1. For W ⊆ [1, bn/2c], it is possible to partition {A ⊆ [n] : |A| ∈ W}
into chains (under inclusion) such that the largest set of each chain has size max{w :
w ∈ W}.

2. For W ⊆ [bn/2c + 1, n], it is possible to partition {A ⊆ [n] : |A| ∈ W} into chains
(under inclusion) such that the smallest set of each chain has size min{w : w ∈ W}.

3. For j, k ∈ [n], with
(

n
j

) ≤ (
n
k

)
there is a matching from the j-sets to the k-sets such

that each matched pair is comparable under inclusion.

The following proposition reduces the problem of computing θ(NCn[W ]) for arbitrary
W to the case that |W | is a singleton or is a two element set with one element ≤ n/2 and
the other > n/2.

Proposition 6.2. Let W ⊆ [n] be nonempty.

• If W ⊆ [1, bn/2c] then θ(NCn[W ]) = θ(NCn[{wmax}], where wmax is the largest
element of W .

• If W ⊆ [bn/2c+1, n] then θ(NCn[W ]) = θ(NCn[{wmin}], where wmin is the smallest
element of W .
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• Otherwise, let W ′ be the set consisting of the largest element of W ∩ [1, bn/2c] and
the smallest element of W ∩ [1 + bn/2c, n] Then θ(NCn[W ]) = θ(NCn[W ′].

Proof. For the first part, let Π be a clique partition of NCn[{wmax}]. By Lemma 6.1 we
can cover all sets whose size belongs to W by chains whose largest member has size wmax.
For each clique C ∈ Π, let C ′ be the union of the chains in the cover whose maximal set
is in C. C ′ is a clique and the collection Π′ of all such cliques is a cover of NCn[W ].

The proofs of the second and third parts are obtained by the obvious modification of
the above proof.

In light of this proposition, to analyze θ(NCn[W ]) for arbitrary W it suffices to consider
the case that W is a singleton or is a two element set with one element ≤ n/2 and the
other > n/2.

Theorem 6.3. Let 1 ≤ j ≤ n/2 < k ≤ n. Then:

1. θ(NCn[{k}]) =
(

n
k

)
.

2. If j divides n then θ(NCn[{j}]) =
(

n−1
j−1

)
.

3. If n/3 < j < n/2 then θ(NCn[{j}]) = d1
2

(
n
j

)e.

4. If j + k ≤ n then θ(NCn[{j, k}]) =
(

n
k

)
.

Proof. The first part is trivial. The second part is precisely Baranyai’s theorem [12]. The
third part is the fact that NCn[{k}] has a matching that misses at most one set. This is
a simple corollary from Tutte’s matching theorem (theorem 2.2.1 in [2]). Details of the
proof can be found in Problem 12.16 in [7]. The last part follows from the last part of
Lemma 6.1.

7 Quo vadis

It seems very interesting to consider higher-dimensional analogues of the questions con-
sidered here. We recall the general notion of shattering as mentioned in the Introduction,
and consider the problem of largest independent set in the d-dimensional case. This trans-
lates into the following question: Given n and d determine the smallest m such that every
m × n 0, 1 matrix with distinct rows contains a d × 2d block with no repeated columns.
The same problem with 2d × d block with no repeated rows is answered by a classical
theorem of Sauer. Indeed using this very same theorem and a very simple construction, it
is easy to provide bounds where the upper bound is about quadratic in the lower bound.
It seems reasonable that the lower bound m ≥ Ω(n2d−1) is closer to the truth, but this
does not seem easy.

Another point worth a look is, a conjecture due to Karzanov and Lomonosov. It says
(translated to the terminology of this paper) that if F is a set of vertices in NCn, and if
it does not contain a clique of size k, then |F| = O(kn). For k = 2, the conjecture follows
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from the tree representation of laminar families. The case k = 3 was proved in [11] by
Pevzner and was simplified by Fleiner [3]. For k > 3 the question is still open. The best
known bound due to Lomonosov is F = O(kn logn). This bound also follows easily from
our bound on χ(NCn). At the moment there is no known better bound.
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