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Abstract

The group PGL(2, q), q = pn, p an odd prime, is 3-transitive on the projective
line and therefore it can be used to construct 3-designs. In this paper, we determine
the sizes of orbits from the action of PGL(2, q) on the k-subsets of the projective line
when k is not congruent to 0 and 1 modulo p. Consequently, we find all values of
λ for which there exist 3-(q + 1, k, λ) designs admitting PGL(2, q) as automorphism
group. In the case p ≡ 3 (mod 4), the results and some previously known facts are
used to classify 3-designs from PSL(2, p) up to isomorphism.
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1 Introduction

Let q = pn, where p is an odd prime and n is a positive integer. The group PGL(2, q)
is 3-transitive on the projective line and therefore, a set of k-subsets of the projective
line is the block set of a 3-(q + 1, k, λ) design admitting PGL(2, q) as an automorphism
group for some λ if and only if it is a union of orbits of PGL(2, q). There are some known
results on 3-designs from PGL(2, q) in the literature, see for example [1, 4, 6]. In this
paper, we first determine the sizes of orbits from the actions of subgroups of PGL(2, q) on
the projective line. Then we use the Möbius inversion to find the sizes of orbits from the
action of PGL(2, q) on the k-subsets of the projective line when k is not congruent to 0
and 1 modulo p. Consequently, all values of λ for which there exist 3-(q + 1, k, λ) designs
admitting PGL(2, q) as automorphism group are identified. We also use the results and
some previously known facts to classify 3-designs from PSL(2, p) up to isomorphism when
p ≡ 3 (mod 4). We note that similar methods have been used in [7].
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2 Notation and Preliminaries

Let t, k, v and λ be integers such that 0 ≤ t ≤ k ≤ v and λ > 0. Let X be a v-set and
Pk(X) denote the set of all k-subsets of X. A t-(v, k, λ) design is a pair D = (X, D) in
which D is a collection of elements of Pk(X) (called blocks) such that every t-subset of X
appears in exactly λ blocks. If D has no repeated blocks, then it is called simple. Here,
we are concerned only with simple designs. If D = Pk(X), then D is said to be the trivial
design. An automorphism of D is a permutation σ on X such that σ(B) ∈ D for each
B ∈ D. An automorphism group of D is a group whose elements are automorphisms of
D.

Let G be a finite group acting on X. For x ∈ X, the orbit of x is G(x) = {gx| g ∈ G}
and the stabilizer of x is Gx = {g ∈ G| gx = x}. It is well known that |G| = |G(x)||Gx|.
The orbits of size |G| are called regular and the others non-regular. If there is an x ∈ X
such that G(x) = X, then G is called transitive. The action of G on X induces a natural
action on Pk(X). If this latter action is transitive, then G is said to be k-homogeneous.

Let q be a prime power and let X = GF (q) ∪ {∞}. Then, the set of all mappings

g : x 7→ ax + b

cx + d
,

on X such that a, b, c, d ∈ GF (q), ad − bc is nonzero and g(∞) = a/c, g(−d/c) = ∞
if c 6= 0, and g(∞) = ∞ if c = 0, is a group under composition of mappings called the
projective general linear group and is denoted by PGL(2, q). If we consider the mappings g
with ad−bc a nonzero square, then we find another group called the projective special linear
group which is denoted by PSL(2, q). It is well known that PGL(2, q) is 3-homogeneous
(in fact it is 3-transitive) and |PGL(2, q)| = (q3 − q). Hereafter, we let p be a prime,
q = pn and q ≡ ε (mod 4), where ε = ±1. Since PGL(2, q) is 3-homogeneous, a set of
k-subsets of X is a 3-(q + 1, k, λ) design admitting PGL(2, q) as an automorphism group
if and only if it is a union of orbits of PGL(2, q) on Pk(X). Thus, for constructing designs
with block size k admitting PGL(2, q), we need to determine the sizes of orbits from the
action of PGL(2, q) on Pk(X).

Let H ≤ PGL(2, q) and define

fk(H) := the number of k-subsets fixed by H,

gk(H) := the number of k-subsets with the stabilizer group H.

Then we have
fk(H) =

∑
H≤U≤PGL(2,q)

gk(U). (1)

The values of gk can be used to find the sizes of orbits from the action of PGL(2, q) on
Pk(X). So we are interested in finding gk. But it is easier to find fk and then to use it to
compute gk. By the Möbius inversion applied to (1), we have

gk(H) =
∑

H≤U≤PGL(2,q)

fk(U)µ(H, U), (2)
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where µ is the Möbius function of the subgroup lattice of PGL(2, q).
For any subgroup H of PGL(2, q), we need to carry out the following:

(i) Find the sizes of orbits from the action of H on the projective line and then compute
fk(H).

(ii) Calculate µ(H, U) for any overgroup U of H and then compute gk(H) using (2).

Note that if H and H ′ are conjugate, then fk(H) = fk(H
′) and gk(H) = gk(H

′). There-
fore, we need to apply the above steps only to the representatives of conjugacy classes of
subgroups of PGL(2, q).

In the next section, we will review the structure of subgroups of PGL(2, q) and their
overgroups. Then, Step (i) of the above procedure will be carried out in Section 4 for
any subgroup of PGL(2, q). For Step (ii), we will make use the values of Möbius function
of the subgroup lattice of PSL(2, q) given in [2]. The results will be used to find new
3-designs with automorphism group PGL(2, q) in Section 7.

3 The subgroups of PGL(2, q)

The subgroups of PSL(2, q) are well known and are given in [3, 5]. These may also be
found in [2] together with some results on the overgroups of subgroups. Since PGL(2, q) is
a subgroup of PSL(2, q2) and it has a unique subgroup PSL(2, q), we can easily extract all
necessary information concerning the subgroups of PGL(2, q) and their overgroups from
the results of [2].

Theorem 1 Let g be a nontrivial element in PGL(2, q) of order d and with f fixed points.
Then d = p, f = 1 or d|q ± ε, f = 1 ∓ ε.

Theorem 2 The subgroups of PGL(2, q) are as follows.

(i) Two conjugacy classes of cyclic subgroups C2. One (class 1) consisting of q(q + ε)/2
of them which lie in the subgroup PSL(2, q), the other one (class 2) consisting of
q(q − ε)/2 subgroups C2.

(ii) One conjugacy class of q(q ∓ ε)/2 cyclic subgroups Cd, where d|q ± ε and d > 2.

(iii) Two conjugacy classes of dihedral subgroups D4. One (class 1) consisting of q(q2 −
1)/24 of them which lie in the subgroup PSL(2, q), the other one (class 2) consisting
of q(q2 − 1)/8 subgroups D4.

(iv) Two conjugacy classes of dihedral subgroups D2d, where d| q±ε
2

and d > 2. One (class
1) consisting of q(q2−1)/(4d) of them which lie in the subgroup PSL(2, q), the other
one (class 2) consisting of q(q2 − 1)/(4d) subgroups D2d.

(v) One conjugacy class of q(q2 − 1)/(2d) dihedral subgroups D2d, where (q ± ε)/d is an
odd integer and d > 2.
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(vi) q(q2−1)/24 subgroups A4, q(q2−1)/24 subgroups S4 and q(q2−1)/60 subgroups A5

when q ≡ ±1 (mod 10). There is only one conjugacy class of any of these types of
subgroups and all lie in the subgroup PSL(2, q) except for S4 when q ≡ ±3 (mod 8).

(vii) One conjugacy class of pn(p2n −1)/(pm(p2m−1)) subgroups PSL(2, pm), where m|n.

(viii) The subgroups PGL(2, pm), where m|n.

(ix) The elementary Abelian group of order pm for m ≤ n.

(x) A semidirect product of the elementary Abelian group of order pm, where m ≤ n and
the cyclic group of order d, where d|q − 1 and d|pm − 1.

Here, we are specially interested in the subgroups (i)-(vi) in Theorem 2. For any
subgroup of types (i)-(vi), we may find the number of overgroups which are of these types
using Theorem 2 and the next two lemmas.

Lemma 1 Cd has a unique subgroup Cl for any l > 1 and l|d. The nontrivial subgroups
of the dihedral group D2d are as follows: d/l subgroups D2l for any l|d and l > 1, a unique
subgroup Cl for any l|d and l > 2, d subgroups C2 if d is odd and d + 1 subgroups C2

otherwise. Moreover D2d has a normal subgroup C2 if and only if d is even.

Lemma 2 The conjugacy classes of nontrivial subgroups of A4, S4 and A5 are as follows.

group C2 C2 C3 C4 C5 D4 D4 D6 D8 D10 A4

A4 3 4 1

S4 3 6 4 3 1 3 4 3 1

A5 15 10 6 5 10 6 5

Lemma 3 The numbers of proper cyclic and dihedral overgroups of C2 and D4 are given
in the following table, where c1 and c2 refer to classes 1 and 2, respectively.

overgroups C2 (c1) C2 (c2) D4 (c1) D4 (c2)

C2f (f | q+ε
2

, f > 1) 0 1 − −
C2f (f | q−ε

2
, f > 1) 1 0 − −

D4 (c1) q−ε
4

0 − −
D4 (c2) q−ε

4
q+ε
2

− −
D2f (f | q±ε

2
, f even, f > 2) (c1) (q−ε)(f+1)

2f
0 3 0

D2f (f | q±ε
2

, f even, f > 2) (c2) q−ε
2f

q+ε
2

0 1

D2f (f | q±ε
2

, f odd, f > 2) (c1) q−ε
2

0 0 0

D2f (f | q±ε
2

, f odd, f > 2) (c2) 0 q+ε
2

0 0

D2f (f 6 | q±ε
2

, f |q ± ε, 4|f) (q−ε)(f+2)
2f

q+ε
2

3 1

D2f (f 6 | q±ε
2

, f |q ± ε, 4 6 |f, f > 2) q−ε
2

(q+ε)(f+2)
2f

0 2
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Lemma 4 Let ld|q ± ε and d > 2.

(i) Any Cd is contained in a unique subgroup Cld.

(ii) Any Cd is contained in (q ± ε)/(ld) subgroups D2ld (if this latter group has more
than one conjugacy classes, then Cd is contained in the same number of groups for
each of classes).

(iii) Any D2d is contained in a unique subgroup D2ld (if this latter group has more than
one conjugacy classes, then its class number must be same as D2d).

Lemma 5

(i) Any C2 of class 1 is contained in (q − ε)/2 subgroups S4 as a subgroup with 6
conjugates (see Lemma 2) when q ≡ ±1 (mod 8).

(ii) Any C2 of class 2 is contained in (q + ε)/2 subgroups S4 as a subgroup with 6
conjugates (see Lemma 2) when q ≡ ±3 (mod 8).

(iii) Any C2 of class 1 is contained in (q − ε)/2 subgroups A5 when q ≡ ±1 (mod 10).

(iv) Let 3|q± ε. Then any C3 is contained in (q± ε)/3 subgroups A4, (q± ε)/3 subgroups
S4 and (q ± ε)/3 subgroups A5 when q ≡ ±1 (mod 10).

(v) Any A4 is contained in a unique S4 and 2 subgroups A5 when q ≡ ±1 (mod 10).

Lemma 6

(i) Any D4 of class 1 is contained in a unique A4 and it is in a unique S4 in which it
is normal.

(ii) Any D6 of class 1 is contained in 2 subgroups S4 when q ≡ ±1 (mod 8) and 2
subgroups A5 when q ≡ ±1 (mod 10).

(iii) Any D6 of class 2 is contained in 2 subgroups S4 when q ≡ ±3 (mod 8).

(iv) Any D8 of class 1 is contained in 2 subgroups S4 when q ≡ ±1 (mod 8).

(v) Any D8 is contained in one subgroup S4 when q ≡ ±3 (mod 8).

(vi) Any D10 of class 1 is contained in 2 subgroups A5 when q ≡ ±1 (mod 10).
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4 The action of subgroups on the projective line

In this section we determine the sizes of orbits from the action of subgroups of PGL(2, q)
on the projective line. Here, the main tool is the following observation: If H ≤ K ≤
PGL(2, q), then any orbit of K is a union of orbits of H . In the following lemmas we
suppose that H is a subgroup of PGL(2, q) and Nl denotes the number of orbits of size l.
We only give non-regular orbits.

Lemma 7 Let H be the cyclic group of order d, where d|q ± ε.

(i) Let d = 2. Then for H in class 1, we have N1 = 1 + ε and for H in class 2,
N1 = 1 − ε.

(ii) Let d > 2. Then N1 = 1 ∓ ε.

Proof. This is trivial by Theorem 1. �

Lemma 8 Let H be the dihedral group of order 2d, where d|q ± ε.

(i) Let d = 2. Then for H in class 1, we have N2 = 3(1 + ε)/2 and for H in class 2,
N2 = (3 − ε)/2.

(ii) Let d > 2. Then N2 = (1 ∓ ε)/2 and

d| q+ε
2

, (c1) d| q+ε
2

, (c2) d| q−ε
2

, (c1) d| q−ε
2

, (c2) d 6 | q+ε
2

d 6 | q−ε
2

Nd 1 + ε 1 − ε 1 + ε 1 − ε 1 1

where c1 and c2 denote classes 1 and 2, respectively.

Proof. (i) We know that H does not stabilize any point. So the orbits are of sizes 2
or 4. Now the assertion follows from solving the equations N2 + N4 = 1

4

∑
g∈H fix(g) and

2N2 + 4N4 = q + 1.
(ii) By Lemma 7, the orbits are of sizes 2, d or 2d. The orbits of size 2 have the unique

subgroup Cd of D2d as their stabilizers. So by Lemma 7, we have N2 = (1 ∓ ε)/2. Now
Nd and N2d are easily found in the same way to (i). �

Lemma 9 Let H be the group A4. Then N6 = (1 + ε)/2 and

(i) if 3|q ± ε, then N4 = 1 ∓ ε,

(ii) if 3|q, then N4 = 1.

Proof. H has D4 as a subgroup and therefore by Lemma 8, the orbit sizes are even.
Since A4 has no subgroup of order 6, there is no orbit of size 2. Hence, the possible orbit
sizes are 4, 6 or 12. A4 has 3 subgroups C2 each fixing 1+ ε points and therefore, we have
N6 = (1 + ε)/2.

(i) H has a subgroup of order 3 fixing 1 ∓ ε points and therefore, N4 = 1 ∓ ε.
(ii) H has a subgroup of order 3 with one fixed point. Hence, N4 = 1. �
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Lemma 10 Let H be the group S4. Then N6 = (1 + ε)/2 and

(i) if 3|q + ε and 8|q − ε, then N8 = 1−ε
2

and N12 = 1+ε
2

,

(ii) if 3|q + ε and 8|q + 3ε, then N8 = 1−ε
2

and N12 = 1−ε
2

,

(iii) if 3|q − ε and 8|q − ε, then N8 = 1+ε
2

and N12 = 1+ε
2

,

(iv) if 3|q − ε and 8|q + 3ε, then N8 = 1+ε
2

and N12 = 1−ε
2

,

(v) if 3|q, then N4 = 1.

Proof. By Lemma 9, the orbits are of sizes 4, 6, 8, 12 or 24. The orbits of size 6 have
C4 as their stabilizer and S4 has three subgroups C4. So by Lemma 7 and noting that
4|q − ε and 4 6 |q + ε, we obtain that N6 = (1 + ε)/2.

(i)–(iv) Let 3|q ± ε. Since D6 does not stabilize any point, there is no orbit of size
4. Now Lemma 9(i) implies N8 = 1∓ε

2
. If 8|q − ε, then H has a subgroup D8 which by

Lemma 8, apart from the regular orbits it has (1 + ε)/2 orbits of size 2 and 1 + ε orbits
of size 4. So in this case, N12 = (1 + ε)/2. If 8|q + 3ε, then H has a subgroup D8 which
by Lemma 8 has (1 + ε)/2 orbits of size 2 and one orbit of size 4. Hence, N12 = (1− ε)/2.

(v) By Lemma 9(ii), N4 = 1. We show that N12 = 0. If 8|q − ε, then ε = 1 and H has
a subgroup D8 which by Lemma 8, apart from the regular orbits it has two orbits of size
4. So in this case N12 = 0. If 8|q +3ε, then ε = −1 and H has a subgroup D8 which apart
from the regular orbits it has one orbit of size 4 by Lemma 8. Hence, we have N12 = 0. �

Lemma 11 Let 5|q ± ε and H be the group A5. Then N12 = (1 ∓ ε)/2 and

(i) if 3|q ± ε, then N20 = (1 ∓ ε)/2 and N30 = (1 + ε)/2,

(ii) if 3|q, then N10 = 1.

Proof. H has 6 subgroups C5 which are the stabilizer groups of their own fixed points.
Therefore, by Lemma 7, N12 = (1 ∓ ε)/2.

(i) By Lemma 9, a subgroup A4 of H has (1∓ ε)/2 orbits of size 4, (1 + ε)/2 orbits of
size 6 and all other orbits are regular. So clearly the assertion holds.

(ii) We have ε = 1. By Lemma 9, a subgroup A4 of H has one orbit of size 4, one
orbit of size 6 and all other orbits are regular. Therefore, the assertion is obvious. �

Lemma 12 Let H be the elementary Abelian group of order pm, where m ≤ n. Then
N1 = 1.

Proof. By the Cauchy-Frobenius lemma, the number of orbits is pn−m + 1. Note that
all orbit sizes are powers of p. Therefore, we just have one orbit of size one and all other
orbits are regular. �

Lemma 13 Let H be a semidirect product of the elementary Abelian group of order pm,
where m ≤ n and the cyclic group of order d, where d|q − 1 and d|pm − 1. Then N1 = 1
and Npm = 1.
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Proof. H has an elementary Abelian subgroup of order pm. So by Lemma 12, we have
one orbit of size 1 and all other orbit sizes are multiples of pm. On the other hand, H has
a cyclic subgroup of order d and therefore by Lemma 7, the orbit sizes are congruent 0 or
1 modulo d. If congruent 0 modulo d, then orbit size is necessarily dpm. Otherwise, orbit
size must be 1 or pm. Now the assertion follows from the fact that an element of order d
has two fixed points. �

Lemma 14 Let H be PSL(2, pm) or PGL(2, pm), where m|n. Then

(i) if pm + 1|pn − 1, then ε = 1 and we have Npm+1 = 1 and Npm(pm−1) = 1,

(ii) if pm + 1|pn + 1, then Npm+1 = 1.

Proof. First let H be PSL(2, pm). All subgroups PSL(2, pm) of PGL(2, q) are con-
jugate by Theorem 2. So we may suppose that H is the group with the elements
x 7→ ax+b

cx+d
, a, b, c, d ∈ GF (pm), where GF (pm) is the unique subfield of order pm of GF (pn).

Since H is transitive on GF (pm)∪{∞}, we have one orbit of size pm+1. H has a subgroup
of order pm(pm − 1)/2 which is a semidirect product of the elementary Abelian group of
order pm and the cyclic group of order (pm − 1)/2. So by Lemma 13, all other orbits of
H are of multiples of pm(pm − 1)/2.

(i) It is easy to see that ε = 1. H has a subgroup Dpm+1. By Lemma 8, we have one
orbit of size l(pm +1)/2+2 which is divisible by pm(pm − 1)/2. Now we immediately find
out that this orbit is of size pm(pm − 1). The remaining orbits are of sizes pm(pm − 1)/4
or pm(pm − 1)/2. Since C2 is not the stabilizer of any point, we conclude that there is no
orbit of size pm(pm − 1)/4.

(ii) H has a fixed point free element of order (pm + 1)/2 which forces orbits to be of
sizes of multiples of (pm +1)/2. Hence all orbits are of sizes pm(pm−1)/4 or pm(pm−1)/2.
Since C2 is not the stabilizer of any point, there is no orbit of size pm(pm − 1)/4.

Now let H be PGL(2, pm). Since H has a subgroup PSL(2, pm) and C2 is not the
stabilizer of any point, the assertion follows immediately from the paragraphs above. �

5 The Möbius functions

In [2], we have made some calculations on the Möbius functions of the subgroup lattices of
subgroups of PSL(2, q). We make use of the results of [2] and it turns out those are enough
for our purposes and we will need no more calculations. For later use, we summarize the
results in the following theorem.

Theorem 3 [2]

(i) µ(1, Cd) = µ(d) and µ(Cl, Cd) = µ(d/l) if l|d.
(ii) µ(1, D2d) = −dµ(d), µ(D2l, D2d) = µ(d/l), µ(Cl, D2d) = −(d/l)µ(d/l) if l|d and

l > 2, µ(C2, D2d) = −(d/2)µ(d/2) if C2 is normal in D2d and µ(C2, D2d) = µ(d)
otherwise.
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(iii) µ(1, A4) = 4, µ(C2, A4) = 0, µ(C3, A4) = −1 and µ(D4, A4) = −1.

(iv) µ(A4, S4) = −1, µ(D8, S4) = −1, µ(D6, S4) = −1, µ(C4, S4) = 0, µ(D4, S4) =
3 for normal subgroup D4 of S4 and µ(D4, S4) = 0 otherwise, µ(C3, S4) = 1,
µ(C2, S4) = 0 if C2 is a subgroup with 3 conjugates (see Lemma 2) and µ(C2, S4) = 2
otherwise, and µ(1, S4) = −12.

(v) µ(A4, A5) = −1, µ(D10, A5) = −1, µ(D6, A5) = −1, µ(C5, A5) = 0, µ(D4, A5) =
0, µ(C3, A5) = 2, µ(C2, A5) = 4 and µ(1, A5) = −60.

6 Determinations of fk and gk

In Section 4, we determined the sizes of orbits from the action of subgroups of PGL(2, q)
on the projective line. The results are used to calculate fk(H) for any subgroup H and
1 ≤ k ≤ q +1. Suppose that H has ri orbits of size li (1 ≤ i ≤ s). Then by the definition,
we have

fk(H) =
∑

Ps
i=1 mili=k

(
s∏

i=1

(
ri

mi

))
.

The results of Section 4 show that any nontrivial subgroup H of PGL(2, q) has at most
three non-regular orbits and so it is an easy task to compute fk. Here, we do not give the
values of fk for the sake of briefness. As an example, the reader is referred to [2], where
a table of values of fk for the subgroups of PSL(2, q) is given.

The values of fk are used to compute gk. Let 1 ≤ k ≤ q + 1 and k 6≡ 0, 1 (mod p).
The latter condition imposes fk(H) and gk(H) to be zero for any subgroup H belonging
to one of the classes (vii)-(x) in Theorem 2. Let H be a subgroup lying in one of the
classes (i)-(vi). By

gk(H) =
∑

H≤U≤PGL(2,q)

fk(U)µ(H, U),

we only need to care about those overgroups U of H for which fk(U) and µ(H, U) are
nonzero. All we need on overgroups are provided by Theorem 2 and Lemmas 4–6. We
also know the values of the Möbius functions and fk. So we are now able to compute gk.
We will not give the explicit formulas for gk, since we think it is only the simple problem
of substituting the appropriate values in the above formula.

7 Orbit sizes and 3-designs from PGL(2, q)

We use the results of the previous sections to show the existence of a large number of new
3-designs. First we state the following simple fact.

Lemma 15 Let H be a subgroup of PGL(2, q) and let u(H) denote the number of subgroups
of PGL(2, q) conjugate to H. Then the number of orbits of PGL(2, q) on the k-subsets
whose elements have stabilizers conjugate to H is equal to u(H)gk(H)|H|/|PGL(2, q)|.
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Proof. The number of k-subsets whose stabilizers are conjugate to H is u(H)gk(H) and
such k-subsets lie in the orbits of size |PGL(2, q)|/|H|. �

The lemma above and Theorem 2 help us to compute the sizes of orbits from the
action of PGL(2, q) on the k-subsets of the projective line. Once the sizes of orbits are
known, one may utilize them to find all values of λ for which there exist 3-(q + 1, k, λ)
designs admitting PGL(2, q) as automorphism group.

Theorem 4 Let 1 ≤ k ≤ q + 1 and k 6≡ 0, 1 (mod p). Then the numbers of orbits of
G = PGL(2, q) on the k-subsets of the projective line are as follows (where d | q ± ε and
d > 2) (c1 and c2 refer to classes 1 and 2, respectively).

stabilizer id A4 S4 A5 C2 (c1) C2 (c2) Cd

number of orbits gk(1)
q3−q

gk(A4)
2

gk(S4) gk(A5)
gk(C2)

q−ε
gk(C2)

q+ε
dgk(Cd)
2(q±ε)

stabilizer D4 (c1) D4 (c2) D2d(c1, c2, d| q±ε
2

) D2d(d 6 | q±ε
2

)

number of orbits gk(D4)
6

gk(D4)
2

gk(D2d)
2

gk(D2d)

8 Non-isomorphic designs from PSL(2, p) and PGL(2, p)

It is known that PGL(2, p) is maximal in Sp+1 for p > 23 [8]. Let p ≡ 3 (mod 4) and
p > 23. Let X be the projective line and let H and K be some fixed subgroups PSL(2, p)
and PGL(2, p) of the symmetric group on X, respectively such that H < K. For a given
λ, let S and G be the sets of all nontrivial 3-(p + 1, k, λ) designs on X admitting H and
K as automorphism group, respectively. Clearly, G ⊆ S. Since PGL(2, p) is not normal
in Sp+1, all designs in G are mutually non-isomorphic. Moreover, these designs admit
PGL(2, p) as their full automorphism group. Since PSL(2, p) is maximal in PGL(2, p),
all designs in F = S \ G admit PSL(2, p) as their full automorphism group. It is easy to
show that any design in F has exactly one isomorphic copy in F . In fact, the normalizer
of PSL(2, p) in Sp+1 is PGL(2, p). So g(D) = D′ for distinct designs D and D′ in F if and
only if g ∈ PGL(2, p) \ PSL(2, p).
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