3-Designs from PGL(2, q)

P. J. Cameron^c G. R.Omidi^{a,b} B. Tayfeh-Rezaie^a

^aInstitute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5746, Tehran, Iran

^bSchool of Mathematics, Statistics and Computer Science,

University of Tehran, Tehran, Iran

^cSchool of Mathematical Sciences, Queen Mary, University of London, U.K.

E-mails: P.J.Cameron@qmul.ac.uk, tayfeh-r@ipm.ir, omidi@ipm.ir

Submitted: Sep 28, 2005; Accepted: May 9, 2006; Published: May 19, 2006 Mathematics Subject Classifications: 05B05, 20B20

Abstract

The group PGL(2,q), $q = p^n$, p an odd prime, is 3-transitive on the projective line and therefore it can be used to construct 3-designs. In this paper, we determine the sizes of orbits from the action of PGL(2,q) on the k-subsets of the projective line when k is not congruent to 0 and 1 modulo p. Consequently, we find all values of λ for which there exist 3- $(q + 1, k, \lambda)$ designs admitting PGL(2,q) as automorphism group. In the case $p \equiv 3 \pmod{4}$, the results and some previously known facts are used to classify 3-designs from PSL(2,p) up to isomorphism.

Keywords: t-designs, automorphism groups, projective linear groups, Möbius functions

1 Introduction

Let $q = p^n$, where p is an odd prime and n is a positive integer. The group PGL(2,q) is 3-transitive on the projective line and therefore, a set of k-subsets of the projective line is the block set of a 3- $(q + 1, k, \lambda)$ design admitting PGL(2,q) as an automorphism group for some λ if and only if it is a union of orbits of PGL(2,q). There are some known results on 3-designs from PGL(2,q) in the literature, see for example [1, 4, 6]. In this paper, we first determine the sizes of orbits from the actions of subgroups of PGL(2,q) on the projective line. Then we use the Möbius inversion to find the sizes of orbits from the action of PGL(2,q) on the k-subsets of the projective line when k is not congruent to 0 and 1 modulo p. Consequently, all values of λ for which there exist 3- $(q + 1, k, \lambda)$ designs admitting PGL(2,q) as automorphism group are identified. We also use the results and some previously known facts to classify 3-designs from PSL(2,p) up to isomorphism when $p \equiv 3 \pmod{4}$. We note that similar methods have been used in [7].

2 Notation and Preliminaries

Let t, k, v and λ be integers such that $0 \leq t \leq k \leq v$ and $\lambda > 0$. Let X be a v-set and $P_k(X)$ denote the set of all k-subsets of X. A t- (v, k, λ) design is a pair $\mathcal{D} = (X, D)$ in which D is a collection of elements of $P_k(X)$ (called *blocks*) such that every t-subset of X appears in exactly λ blocks. If D has no repeated blocks, then it is called simple. Here, we are concerned only with simple designs. If $D = P_k(X)$, then \mathcal{D} is said to be the trivial design. An automorphism of \mathcal{D} is a permutation σ on X such that $\sigma(B) \in D$ for each $B \in D$. An automorphism group of \mathcal{D} is a group whose elements are automorphisms of \mathcal{D} .

Let G be a finite group acting on X. For $x \in X$, the *orbit* of x is $G(x) = \{gx | g \in G\}$ and the *stabilizer* of x is $G_x = \{g \in G | gx = x\}$. It is well known that $|G| = |G(x)||G_x|$. The orbits of size |G| are called *regular* and the others *non-regular*. If there is an $x \in X$ such that G(x) = X, then G is called *transitive*. The action of G on X induces a natural action on $P_k(X)$. If this latter action is transitive, then G is said to be k-homogeneous.

Let q be a prime power and let $X = GF(q) \cup \{\infty\}$. Then, the set of all mappings

$$g: x \mapsto \frac{ax+b}{cx+d},$$

on X such that $a, b, c, d \in GF(q)$, ad - bc is nonzero and $g(\infty) = a/c$, $g(-d/c) = \infty$ if $c \neq 0$, and $g(\infty) = \infty$ if c = 0, is a group under composition of mappings called the *projective general linear group* and is denoted by PGL(2, q). If we consider the mappings gwith ad-bc a nonzero square, then we find another group called the *projective special linear* group which is denoted by PSL(2, q). It is well known that PGL(2, q) is 3-homogeneous (in fact it is 3-transitive) and $|PGL(2,q)| = (q^3 - q)$. Hereafter, we let p be a prime, $q = p^n$ and $q \equiv \epsilon \pmod{4}$, where $\epsilon = \pm 1$. Since PGL(2, q) is 3-homogeneous, a set of k-subsets of X is a $3-(q+1, k, \lambda)$ design admitting PGL(2, q) as an automorphism group if and only if it is a union of orbits of PGL(2, q) on $P_k(X)$. Thus, for constructing designs with block size k admitting PGL(2, q), we need to determine the sizes of orbits from the action of PGL(2, q) on $P_k(X)$.

Let $H \leq PGL(2,q)$ and define

 $f_k(H) :=$ the number of k-subsets fixed by H,

 $g_k(H) :=$ the number of k-subsets with the stabilizer group H.

Then we have

$$f_k(H) = \sum_{H \le U \le \operatorname{PGL}(2,q)} g_k(U).$$
(1)

The values of g_k can be used to find the sizes of orbits from the action of PGL(2, q) on $P_k(X)$. So we are interested in finding g_k . But it is easier to find f_k and then to use it to compute g_k . By the Möbius inversion applied to (1), we have

$$g_k(H) = \sum_{H \le U \le \operatorname{PGL}(2,q)} f_k(U)\mu(H,U), \qquad (2)$$

The electronic journal of combinatorics $\mathbf{13}$ (2006), #R50

where μ is the Möbius function of the subgroup lattice of PGL(2, q).

For any subgroup H of PGL(2, q), we need to carry out the following:

- (i) Find the sizes of orbits from the action of H on the projective line and then compute $f_k(H)$.
- (ii) Calculate $\mu(H, U)$ for any overgroup U of H and then compute $g_k(H)$ using (2).

Note that if H and H' are conjugate, then $f_k(H) = f_k(H')$ and $g_k(H) = g_k(H')$. Therefore, we need to apply the above steps only to the representatives of conjugacy classes of subgroups of PGL(2, q).

In the next section, we will review the structure of subgroups of PGL(2, q) and their overgroups. Then, Step (i) of the above procedure will be carried out in Section 4 for any subgroup of PGL(2, q). For Step (ii), we will make use the values of Möbius function of the subgroup lattice of PSL(2, q) given in [2]. The results will be used to find new 3-designs with automorphism group PGL(2, q) in Section 7.

3 The subgroups of PGL(2, q)

The subgroups of PSL(2, q) are well known and are given in [3, 5]. These may also be found in [2] together with some results on the overgroups of subgroups. Since PGL(2, q) is a subgroup of $PSL(2, q^2)$ and it has a unique subgroup PSL(2, q), we can easily extract all necessary information concerning the subgroups of PGL(2, q) and their overgroups from the results of [2].

Theorem 1 Let g be a nontrivial element in PGL(2, q) of order d and with f fixed points. Then d = p, f = 1 or $d|q \pm \epsilon$, $f = 1 \mp \epsilon$.

Theorem 2 The subgroups of PGL(2, q) are as follows.

- (i) Two conjugacy classes of cyclic subgroups C₂. One (class 1) consisting of q(q+ε)/2 of them which lie in the subgroup PSL(2,q), the other one (class 2) consisting of q(q − ε)/2 subgroups C₂.
- (ii) One conjugacy class of $q(q \mp \epsilon)/2$ cyclic subgroups C_d , where $d|q \pm \epsilon$ and d > 2.
- (iii) Two conjugacy classes of dihedral subgroups D_4 . One (class 1) consisting of $q(q^2 1)/24$ of them which lie in the subgroup PSL(2,q), the other one (class 2) consisting of $q(q^2 1)/8$ subgroups D_4 .
- (iv) Two conjugacy classes of dihedral subgroups D_{2d}, where d|^{q±ϵ}/₂ and d > 2. One (class 1) consisting of q(q² − 1)/(4d) of them which lie in the subgroup PSL(2,q), the other one (class 2) consisting of q(q² − 1)/(4d) subgroups D_{2d}.
- (v) One conjugacy class of $q(q^2-1)/(2d)$ dihedral subgroups D_{2d} , where $(q \pm \epsilon)/d$ is an odd integer and d > 2.

- (vi) $q(q^2-1)/24$ subgroups A_4 , $q(q^2-1)/24$ subgroups S_4 and $q(q^2-1)/60$ subgroups A_5 when $q \equiv \pm 1 \pmod{10}$. There is only one conjugacy class of any of these types of subgroups and all lie in the subgroup PSL(2,q) except for S_4 when $q \equiv \pm 3 \pmod{8}$.
- (vii) One conjugacy class of $p^n(p^{2n}-1)/(p^m(p^{2m}-1))$ subgroups $PSL(2,p^m)$, where m|n.
- (viii) The subgroups $PGL(2, p^m)$, where m|n.
 - (ix) The elementary Abelian group of order p^m for $m \leq n$.
 - (x) A semidirect product of the elementary Abelian group of order p^m , where $m \le n$ and the cyclic group of order d, where d|q-1 and $d|p^m-1$.

Here, we are specially interested in the subgroups (i)-(vi) in Theorem 2. For any subgroup of types (i)-(vi), we may find the number of overgroups which are of these types using Theorem 2 and the next two lemmas.

Lemma 1 C_d has a unique subgroup C_l for any l > 1 and l|d. The nontrivial subgroups of the dihedral group D_{2d} are as follows: d/l subgroups D_{2l} for any l|d and l > 1, a unique subgroup C_l for any l|d and l > 2, d subgroups C_2 if d is odd and d + 1 subgroups C_2 otherwise. Moreover D_{2d} has a normal subgroup C_2 if and only if d is even.

Lemma 2 The conjugacy classes of nontrivial subgroups of A_4 , S_4 and A_5 are as follows.

group	C_2	C_2	C_3	C_4	C_5	D_4	D_4	D_6	D_8	D_{10}	A_4
A_4	3		4			1					
S_4	3	6	4	3		1	3	4	3		1
A_5	15		10		6	5		10		6	5

Lemma 3 The numbers of proper cyclic and dihedral overgroups of C_2 and D_4 are given in the following table, where c1 and c2 refer to classes 1 and 2, respectively.

overgroups	$C_2(c1)$	$C_2 (c2)$	$D_4 (c1)$	$D_4 (c2)$
$C_{2f} \left(f \frac{q+\epsilon}{2}, f > 1 \right)$	0	1	_	_
$C_{2f} \left(f \frac{q-\epsilon}{2}, f > 1 \right)$	1	0	—	—
D_4 (c1)	$\frac{q-\epsilon}{4}$	0	_	_
$D_4 (c2)$	$\frac{q-\epsilon}{4}$	$\frac{q+\epsilon}{2}$	_	_
$D_{2f} (f \frac{q \pm \epsilon}{2}, f even, f > 2) (c1)$	$\frac{(q-\epsilon)(f+1)}{2f}$	0	3	0
$D_{2f} (f \frac{q \pm \epsilon}{2}, f even, f > 2) (c2)$	$\frac{q-\epsilon}{2f}$	$\frac{q+\epsilon}{2}$	0	1
$D_{2f} (f \frac{q \pm \epsilon}{2}, f \ odd, f > 2) \ (c1)$	$\frac{q-\epsilon}{2}$	0	0	0
$D_{2f} (f \frac{q \pm \epsilon}{2}, f \ odd, f > 2) \ (c2)$	0	$\frac{q+\epsilon}{2}$	0	0
$D_{2f} (f \not \frac{q \pm \epsilon}{2}, f q \pm \epsilon, 4 f)$	$\frac{(q\!-\!\epsilon)(f\!+\!2)}{2f}$	$\frac{q+\epsilon}{2}$	3	1
$D_{2f} (f \not \frac{q \pm \epsilon}{2}, f q \pm \epsilon, 4 \not f, f > 2)$	$\frac{q-\epsilon}{2}$	$\frac{(q{+}\epsilon)(f{+}2)}{2f}$	0	2

Lemma 4 Let $ld|q \pm \epsilon$ and d > 2.

- (i) Any C_d is contained in a unique subgroup C_{ld} .
- (ii) Any C_d is contained in $(q \pm \epsilon)/(ld)$ subgroups D_{2ld} (if this latter group has more than one conjugacy classes, then C_d is contained in the same number of groups for each of classes).
- (iii) Any D_{2d} is contained in a unique subgroup D_{2ld} (if this latter group has more than one conjugacy classes, then its class number must be same as D_{2d}).

Lemma 5

- (i) Any C_2 of class 1 is contained in $(q \epsilon)/2$ subgroups S_4 as a subgroup with 6 conjugates (see Lemma 2) when $q \equiv \pm 1 \pmod{8}$.
- (ii) Any C_2 of class 2 is contained in $(q + \epsilon)/2$ subgroups S_4 as a subgroup with 6 conjugates (see Lemma 2) when $q \equiv \pm 3 \pmod{8}$.
- (iii) Any C_2 of class 1 is contained in $(q \epsilon)/2$ subgroups A_5 when $q \equiv \pm 1 \pmod{10}$.
- (iv) Let $3|q \pm \epsilon$. Then any C_3 is contained in $(q \pm \epsilon)/3$ subgroups A_4 , $(q \pm \epsilon)/3$ subgroups S_4 and $(q \pm \epsilon)/3$ subgroups A_5 when $q \equiv \pm 1 \pmod{10}$.
- (v) Any A_4 is contained in a unique S_4 and 2 subgroups A_5 when $q \equiv \pm 1 \pmod{10}$.

Lemma 6

- (i) Any D_4 of class 1 is contained in a unique A_4 and it is in a unique S_4 in which it is normal.
- (ii) Any D_6 of class 1 is contained in 2 subgroups S_4 when $q \equiv \pm 1 \pmod{8}$ and 2 subgroups A_5 when $q \equiv \pm 1 \pmod{10}$.
- (iii) Any D_6 of class 2 is contained in 2 subgroups S_4 when $q \equiv \pm 3 \pmod{8}$.
- (iv) Any D_8 of class 1 is contained in 2 subgroups S_4 when $q \equiv \pm 1 \pmod{8}$.
- (v) Any D_8 is contained in one subgroup S_4 when $q \equiv \pm 3 \pmod{8}$.
- (vi) Any D_{10} of class 1 is contained in 2 subgroups A_5 when $q \equiv \pm 1 \pmod{10}$.

4 The action of subgroups on the projective line

In this section we determine the sizes of orbits from the action of subgroups of PGL(2, q)on the projective line. Here, the main tool is the following observation: If $H \leq K \leq$ PGL(2,q), then any orbit of K is a union of orbits of H. In the following lemmas we suppose that H is a subgroup of PGL(2,q) and N_l denotes the number of orbits of size l. We only give non-regular orbits.

Lemma 7 Let H be the cyclic group of order d, where $d|q \pm \epsilon$.

- (i) Let d = 2. Then for H in class 1, we have $N_1 = 1 + \epsilon$ and for H in class 2, $N_1 = 1 \epsilon$.
- (ii) Let d > 2. Then $N_1 = 1 \mp \epsilon$.

Proof. This is trivial by Theorem 1.

Lemma 8 Let H be the dihedral group of order 2d, where $d|q \pm \epsilon$.

- (i) Let d = 2. Then for H in class 1, we have $N_2 = 3(1 + \epsilon)/2$ and for H in class 2, $N_2 = (3 \epsilon)/2$.
- (ii) Let d > 2. Then $N_2 = (1 \mp \epsilon)/2$ and

$$\begin{array}{cccc} d|\frac{q+\epsilon}{2}, (c1) & d|\frac{q+\epsilon}{2}, (c2) & d|\frac{q-\epsilon}{2}, (c1) & d|\frac{q-\epsilon}{2}, (c2) & d \not|\frac{q+\epsilon}{2} & d \not|\frac{q-\epsilon}{2} \\ N_d & 1+\epsilon & 1-\epsilon & 1+\epsilon & 1-\epsilon & 1 & 1 \end{array}$$

where c1 and c2 denote classes 1 and 2, respectively.

Proof. (i) We know that H does not stabilize any point. So the orbits are of sizes 2 or 4. Now the assertion follows from solving the equations $N_2 + N_4 = \frac{1}{4} \sum_{g \in H} \text{fix}(g)$ and $2N_2 + 4N_4 = q + 1$.

(ii) By Lemma 7, the orbits are of sizes 2, d or 2d. The orbits of size 2 have the unique subgroup C_d of D_{2d} as their stabilizers. So by Lemma 7, we have $N_2 = (1 \mp \epsilon)/2$. Now N_d and N_{2d} are easily found in the same way to (i).

Lemma 9 Let H be the group A_4 . Then $N_6 = (1 + \epsilon)/2$ and

- (i) if $3|q \pm \epsilon$, then $N_4 = 1 \mp \epsilon$,
- (ii) if 3|q, then $N_4 = 1$.

Proof. *H* has D_4 as a subgroup and therefore by Lemma 8, the orbit sizes are even. Since A_4 has no subgroup of order 6, there is no orbit of size 2. Hence, the possible orbit sizes are 4, 6 or 12. A_4 has 3 subgroups C_2 each fixing $1 + \epsilon$ points and therefore, we have $N_6 = (1 + \epsilon)/2$.

- (i) *H* has a subgroup of order 3 fixing $1 \mp \epsilon$ points and therefore, $N_4 = 1 \mp \epsilon$.
- (ii) *H* has a subgroup of order 3 with one fixed point. Hence, $N_4 = 1$.

Lemma 10 Let H be the group S_4 . Then $N_6 = (1 + \epsilon)/2$ and

- (i) if $3|q + \epsilon$ and $8|q \epsilon$, then $N_8 = \frac{1-\epsilon}{2}$ and $N_{12} = \frac{1+\epsilon}{2}$,
- (ii) if $3|q + \epsilon$ and $8|q + 3\epsilon$, then $N_8 = \frac{1-\epsilon}{2}$ and $N_{12} = \frac{1-\epsilon}{2}$,
- (iii) if $3|q \epsilon$ and $8|q \epsilon$, then $N_8 = \frac{1+\epsilon}{2}$ and $N_{12} = \frac{1+\epsilon}{2}$,
- (iv) if $3|q \epsilon$ and $8|q + 3\epsilon$, then $N_8 = \frac{1+\epsilon}{2}$ and $N_{12} = \frac{1-\epsilon}{2}$,
- (v) if 3|q, then $N_4 = 1$.

Proof. By Lemma 9, the orbits are of sizes 4, 6, 8, 12 or 24. The orbits of size 6 have C_4 as their stabilizer and S_4 has three subgroups C_4 . So by Lemma 7 and noting that $4|q - \epsilon$ and $4 \not q + \epsilon$, we obtain that $N_6 = (1 + \epsilon)/2$.

(i)-(iv) Let $3|q \pm \epsilon$. Since D_6 does not stabilize any point, there is no orbit of size 4. Now Lemma 9(i) implies $N_8 = \frac{1 \pm \epsilon}{2}$. If $8|q - \epsilon$, then *H* has a subgroup D_8 which by Lemma 8, apart from the regular orbits it has $(1 + \epsilon)/2$ orbits of size 2 and $1 + \epsilon$ orbits of size 4. So in this case, $N_{12} = (1 + \epsilon)/2$. If $8|q + 3\epsilon$, then *H* has a subgroup D_8 which by Lemma 8 has $(1 + \epsilon)/2$ orbits of size 2 and one orbit of size 4. Hence, $N_{12} = (1 - \epsilon)/2$.

(v) By Lemma 9(ii), $N_4 = 1$. We show that $N_{12} = 0$. If $8|q - \epsilon$, then $\epsilon = 1$ and H has a subgroup D_8 which by Lemma 8, apart from the regular orbits it has two orbits of size 4. So in this case $N_{12} = 0$. If $8|q + 3\epsilon$, then $\epsilon = -1$ and H has a subgroup D_8 which apart from the regular orbits it has one orbit of size 4 by Lemma 8. Hence, we have $N_{12} = 0$. \Box

Lemma 11 Let $5|q \pm \epsilon$ and H be the group A_5 . Then $N_{12} = (1 \mp \epsilon)/2$ and

- (i) if $3|q \pm \epsilon$, then $N_{20} = (1 \mp \epsilon)/2$ and $N_{30} = (1 + \epsilon)/2$,
- (ii) if 3|q, then $N_{10} = 1$.

Proof. *H* has 6 subgroups C_5 which are the stabilizer groups of their own fixed points. Therefore, by Lemma 7, $N_{12} = (1 \mp \epsilon)/2$.

(i) By Lemma 9, a subgroup A_4 of H has $(1 \mp \epsilon)/2$ orbits of size 4, $(1 + \epsilon)/2$ orbits of size 6 and all other orbits are regular. So clearly the assertion holds.

(ii) We have $\epsilon = 1$. By Lemma 9, a subgroup A_4 of H has one orbit of size 4, one orbit of size 6 and all other orbits are regular. Therefore, the assertion is obvious.

Lemma 12 Let H be the elementary Abelian group of order p^m , where $m \leq n$. Then $N_1 = 1$.

Proof. By the Cauchy-Frobenius lemma, the number of orbits is $p^{n-m} + 1$. Note that all orbit sizes are powers of p. Therefore, we just have one orbit of size one and all other orbits are regular.

Lemma 13 Let H be a semidirect product of the elementary Abelian group of order p^m , where $m \leq n$ and the cyclic group of order d, where d|q - 1 and $d|p^m - 1$. Then $N_1 = 1$ and $N_{p^m} = 1$. **Proof.** *H* has an elementary Abelian subgroup of order p^m . So by Lemma 12, we have one orbit of size 1 and all other orbit sizes are multiples of p^m . On the other hand, *H* has a cyclic subgroup of order *d* and therefore by Lemma 7, the orbit sizes are congruent 0 or 1 modulo *d*. If congruent 0 modulo *d*, then orbit size is necessarily dp^m . Otherwise, orbit size must be 1 or p^m . Now the assertion follows from the fact that an element of order *d* has two fixed points.

Lemma 14 Let H be $PSL(2, p^m)$ or $PGL(2, p^m)$, where m|n. Then

- (i) if $p^m + 1 | p^n 1$, then $\epsilon = 1$ and we have $N_{p^m+1} = 1$ and $N_{p^m(p^m-1)} = 1$,
- (ii) if $p^m + 1|p^n + 1$, then $N_{p^m+1} = 1$.

Proof. First let H be $PSL(2, p^m)$. All subgroups $PSL(2, p^m)$ of PGL(2, q) are conjugate by Theorem 2. So we may suppose that H is the group with the elements $x \mapsto \frac{ax+b}{cx+d}$, $a, b, c, d \in GF(p^m)$, where $GF(p^m)$ is the unique subfield of order p^m of $GF(p^n)$. Since H is transitive on $GF(p^m) \cup \{\infty\}$, we have one orbit of size p^m+1 . H has a subgroup of order $p^m(p^m-1)/2$ which is a semidirect product of the elementary Abelian group of order p^m and the cyclic group of order $(p^m-1)/2$. So by Lemma 13, all other orbits of H are of multiples of $p^m(p^m-1)/2$.

(i) It is easy to see that $\epsilon = 1$. *H* has a subgroup D_{p^m+1} . By Lemma 8, we have one orbit of size $l(p^m+1)/2 + 2$ which is divisible by $p^m(p^m-1)/2$. Now we immediately find out that this orbit is of size $p^m(p^m-1)$. The remaining orbits are of sizes $p^m(p^m-1)/4$ or $p^m(p^m-1)/2$. Since C_2 is not the stabilizer of any point, we conclude that there is no orbit of size $p^m(p^m-1)/4$.

(ii) *H* has a fixed point free element of order $(p^m + 1)/2$ which forces orbits to be of sizes of multiples of $(p^m + 1)/2$. Hence all orbits are of sizes $p^m(p^m - 1)/4$ or $p^m(p^m - 1)/2$. Since C_2 is not the stabilizer of any point, there is no orbit of size $p^m(p^m - 1)/4$.

Now let H be $PGL(2, p^m)$. Since H has a subgroup $PSL(2, p^m)$ and C_2 is not the stabilizer of any point, the assertion follows immediately from the paragraphs above. \Box

5 The Möbius functions

In [2], we have made some calculations on the Möbius functions of the subgroup lattices of subgroups of PSL(2, q). We make use of the results of [2] and it turns out those are enough for our purposes and we will need no more calculations. For later use, we summarize the results in the following theorem.

Theorem 3 [2]

- (i) $\mu(1, C_d) = \mu(d)$ and $\mu(C_l, C_d) = \mu(d/l)$ if l|d.
- (ii) $\mu(1, D_{2d}) = -d\mu(d), \ \mu(D_{2l}, D_{2d}) = \mu(d/l), \ \mu(C_l, D_{2d}) = -(d/l)\mu(d/l) \ if \ l|d \ and \ l > 2, \ \mu(C_2, D_{2d}) = -(d/2)\mu(d/2) \ if \ C_2 \ is \ normal \ in \ D_{2d} \ and \ \mu(C_2, D_{2d}) = \mu(d) \ otherwise.$

- (iii) $\mu(1, A_4) = 4$, $\mu(C_2, A_4) = 0$, $\mu(C_3, A_4) = -1$ and $\mu(D_4, A_4) = -1$.
- (iv) $\mu(A_4, S_4) = -1$, $\mu(D_8, S_4) = -1$, $\mu(D_6, S_4) = -1$, $\mu(C_4, S_4) = 0$, $\mu(D_4, S_4) = 3$ for normal subgroup D_4 of S_4 and $\mu(D_4, S_4) = 0$ otherwise, $\mu(C_3, S_4) = 1$, $\mu(C_2, S_4) = 0$ if C_2 is a subgroup with 3 conjugates (see Lemma 2) and $\mu(C_2, S_4) = 2$ otherwise, and $\mu(1, S_4) = -12$.
- (v) $\mu(A_4, A_5) = -1$, $\mu(D_{10}, A_5) = -1$, $\mu(D_6, A_5) = -1$, $\mu(C_5, A_5) = 0$, $\mu(D_4, A_5) = 0$, $\mu(C_3, A_5) = 2$, $\mu(C_2, A_5) = 4$ and $\mu(1, A_5) = -60$.

6 Determinations of f_k and g_k

In Section 4, we determined the sizes of orbits from the action of subgroups of PGL(2, q)on the projective line. The results are used to calculate $f_k(H)$ for any subgroup H and $1 \le k \le q+1$. Suppose that H has r_i orbits of size l_i $(1 \le i \le s)$. Then by the definition, we have

$$f_k(H) = \sum_{\sum_{i=1}^s m_i l_i = k} \left(\prod_{i=1}^s \binom{r_i}{m_i} \right).$$

The results of Section 4 show that any nontrivial subgroup H of PGL(2, q) has at most three non-regular orbits and so it is an easy task to compute f_k . Here, we do not give the values of f_k for the sake of briefness. As an example, the reader is referred to [2], where a table of values of f_k for the subgroups of PSL(2, q) is given.

The values of f_k are used to compute g_k . Let $1 \le k \le q+1$ and $k \not\equiv 0, 1 \pmod{p}$. The latter condition imposes $f_k(H)$ and $g_k(H)$ to be zero for any subgroup H belonging to one of the classes (vii)-(x) in Theorem 2. Let H be a subgroup lying in one of the classes (i)-(vi). By

$$g_k(H) = \sum_{H \le U \le \operatorname{PGL}(2,q)} f_k(U) \mu(H,U),$$

we only need to care about those overgroups U of H for which $f_k(U)$ and $\mu(H, U)$ are nonzero. All we need on overgroups are provided by Theorem 2 and Lemmas 4–6. We also know the values of the Möbius functions and f_k . So we are now able to compute g_k . We will not give the explicit formulas for g_k , since we think it is only the simple problem of substituting the appropriate values in the above formula.

7 Orbit sizes and 3-designs from PGL(2,q)

We use the results of the previous sections to show the existence of a large number of new 3-designs. First we state the following simple fact.

Lemma 15 Let H be a subgroup of PGL(2, q) and let u(H) denote the number of subgroups of PGL(2, q) conjugate to H. Then the number of orbits of PGL(2, q) on the k-subsets whose elements have stabilizers conjugate to H is equal to $u(H)g_k(H)|H|/|PGL(2, q)|$. **Proof.** The number of k-subsets whose stabilizers are conjugate to H is $u(H)g_k(H)$ and such k-subsets lie in the orbits of size $|\operatorname{PGL}(2,q)|/|H|$.

The lemma above and Theorem 2 help us to compute the sizes of orbits from the action of PGL(2,q) on the k-subsets of the projective line. Once the sizes of orbits are known, one may utilize them to find all values of λ for which there exist $3-(q+1,k,\lambda)$ designs admitting PGL(2,q) as automorphism group.

Theorem 4 Let $1 \le k \le q+1$ and $k \not\equiv 0, 1 \pmod{p}$. Then the numbers of orbits of $G = \operatorname{PGL}(2,q)$ on the k-subsets of the projective line are as follows (where $d \mid q \pm \epsilon$ and d > 2) (c1 and c2 refer to classes 1 and 2, respectively).

stabilizer	id	A_4	S_4	A_5	C_2 (c1)	$C_2(c2)$	C_d
number of orbits	$\frac{g_k(1)}{q^3-q}$	$\frac{g_k(A_4)}{2}$	$g_k(S_4)$	$g_k(A_5)$	$\frac{g_k(C_2)}{q-\epsilon}$	$\frac{g_k(C_2)}{q+\epsilon}$	$\frac{dg_k(C_d)}{2(q\pm\epsilon)}$
					-	-	(-)
stabilizer	D_4	(c1)	$D_4 (c2)$	$D_{2d}($	$c1, c2, d \frac{q\pm\epsilon}{2}$) $D_{2d}(e$	$d \not \frac{q \pm \epsilon}{2}$
number of orbits	$\frac{g_k(x)}{\epsilon}$	$D_4)$	$\frac{g_k(D_4)}{2}$		$\frac{g_k(D_{2d})}{2}$	$g_k($	$D_{2d})$

8 Non-isomorphic designs from PSL(2, p) and PGL(2, p)

It is known that $\operatorname{PGL}(2, p)$ is maximal in S_{p+1} for p > 23 [8]. Let $p \equiv 3 \pmod{4}$ and p > 23. Let X be the projective line and let H and K be some fixed subgroups $\operatorname{PSL}(2, p)$ and $\operatorname{PGL}(2, p)$ of the symmetric group on X, respectively such that H < K. For a given λ , let S and G be the sets of all nontrivial 3- $(p + 1, k, \lambda)$ designs on X admitting H and K as automorphism group, respectively. Clearly, $\mathcal{G} \subseteq \mathcal{S}$. Since $\operatorname{PGL}(2, p)$ is not normal in S_{p+1} , all designs in \mathcal{G} are mutually non-isomorphic. Moreover, these designs admit $\operatorname{PGL}(2, p)$ as their full automorphism group. Since $\operatorname{PSL}(2, p)$ is maximal in $\operatorname{PGL}(2, p)$, all designs in $\mathcal{F} = \mathcal{S} \setminus \mathcal{G}$ admit $\operatorname{PSL}(2, p)$ as their full automorphism group. It is easy to show that any design in \mathcal{F} has exactly one isomorphic copy in \mathcal{F} . In fact, the normalizer of $\operatorname{PSL}(2, p)$ in S_{p+1} is $\operatorname{PGL}(2, p)$. So $g(\mathcal{D}) = \mathcal{D}'$ for distinct designs \mathcal{D} and \mathcal{D}' in \mathcal{F} if and only if $g \in \operatorname{PGL}(2, p) \setminus \operatorname{PSL}(2, p)$.

References

- T. Beth, D. Jungnickel and H. Lenz, *Design theory*, Second edition, Cambridge University Press, Cambridge, 1999.
- [2] P. J. Cameron, H. R. Maimani, G. R. Omidi and B. Tayfeh-Rezaie, 3-Designs from PSL(2, q), *Discrete Math.*, to appear.
- [3] L. E. Dickson, *Linear groups with an exposition of the Galois field theory*, Dover Publications, Inc., New York, 1958.
- [4] D. R. Hughes, On t-designs and groups, Amer. J. Math. 87 (1965), 761–778.
- [5] B. Huppert, *Endliche gruppen I*, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin–New York, 1967.
- [6] S. Iwasaki and T. Meixner, A remark on the action of PGL(2, q) and PSL(2, q) on the projective line, *Hokkaido Math. J.* **26** (1997), 203–209.
- [7] R. Laue, S. S. Magliveras and A. Wassermann, New large sets of t-designs, J. Combin. Des. 9 (2001), 40–59.
- [8] M. W. Liebeck, Cheryl E. Praeger and J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, J. Algebra 111 (1987), 365– 383.