Total domination and matching numbers in claw-free graphs

${ }^{1}$ Michael A. Henning* and ${ }^{2}$ Anders Yeo
${ }^{1}$ School of Mathematical Sciences
University of KwaZulu-Natal
Pietermaritzburg, 3209 South Africa
henning@ukzn.ac.za
${ }^{2}$ Department of Computer Science
Royal Holloway, University of London, Egham
Surrey TW20 OEX, UK
anders@cs.rhul.ac.uk

Submitted: Apr 18, 2006; Accepted: Jun 30, 2006; Published: Jul 28, 2006
Mathematics Subject Classification: 05C69

Abstract

A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. The matching number of G is the maximum cardinality of a matching of G. A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. If G does not contain $K_{1,3}$ as an induced subgraph, then G is said to be claw-free. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number. In this paper, we use transversals in hypergraphs to characterize connected claw-free graphs with minimum degree at least three that have equal total domination and matching numbers.

Keywords: claw-free, matching number, total domination number

1 Introduction

Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [3] and is now well studied in graph theory. The literature on this subject has been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [5, 6].

[^0]Let $G=(V, E)$ be a graph with vertex set V and edge set E. A set $S \subseteq V$ is a total dominating set, abbreviated TDS, of G if every vertex in V is adjacent to a vertex in S. Every graph without isolated vertices has a TDS, since $S=V$ is such a set. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a TDS of G. A TDS of G of cardinality $\gamma_{t}(G)$ is called a $\gamma_{t}(G)$-set.

Two edges in a graph G are independent if they are not adjacent in G. A set of pairwise independent edges of G is called a matching in G, while a matching of maximum cardinality is a maximum matching. The number of edges in a maximum matching of G is called the matching number of G which we denote by $\alpha^{\prime}(G)$. A perfect matching in G is a matching with the property that every vertex is incident with an edge of the matching. Matchings in graphs are extensively studied in the literature (see, for example, the survey articles by Plummer [10] and Pulleyblank [11]).

For notation and graph theory terminology we in general follow [5]. Specifically, let $G=(V, E)$ be a graph with vertex set V of order $n(G)=|V|$ and edge set E of size $m(G)=$ $|E|$, and let v be a vertex in V. The open neighborhood of v in G is $N(v)=\{u \in V \mid u v \in$ $E\}$, and its closed neighborhood is the set $N[v]=N(v) \cup\{v\}$. For a set $S \subseteq V$, its open neighborhood is the set $N(S)=\cup_{v \in S} N(v)$ and its closed neighborhood is the set $N[S]=N(S) \cup S$. If $Y \subseteq V$, then the set S is said to dominate the set Y if $Y \subseteq N[S]$, while S totally dominates Y if $Y \subseteq N(S)$.

Throughout this paper, we only consider finite, simple undirected graphs without isolated vertices. For a subset $S \subseteq V$, the subgraph induced by S is denoted by $G[S]$. A vertex of degree k we call a degree-k vertex. We denote the minimum degree of the graph G by $\delta(G)$ and its maximum degree by $\Delta(G)$. A graph G is claw-free if it has no induced subgraph isomorphic to $K_{1,3}$. A graph is cubic if every vertex has degree 3, while we say that a graph is almost cubic if it has one vertex of degree 4 and all other vertices of degree 3 .

The transversal number $\tau(H)$ of a hypergraph H is the minimum number of vertices meeting every edge. For a graph $G=(V, E)$, we denote by H_{G} the open neighborhood hypergraph, abbreviated ONH, of G; that is, H_{G} is the hypergraph with vertex set $V\left(H_{G}\right)=V$ and with edge set $E\left(H_{G}\right)=\left\{N_{G}(x) \mid x \in V(G)\right\}$ consisting of the open neighborhoods of vertices of V in G. We observe that $\gamma_{t}(G)=\tau\left(H_{G}\right)$.

A hypergraph H is said to be k-uniform if every edge of H has size k. We call an edge of H that contains ℓ vertices an ℓ-edge. If H has vertex set V and $X \subseteq V$, we denote by $H \backslash X$ the induced subhypergraph on $V \backslash X$; that is, we delete all the vertices of X, and all the edges having a vertex in X. We denote the degree of v in a hypergraph H by $d_{H}(v)$, or simply by $d(v)$ if H is clear from context. The hypergraph H is said to be regular if every vertex of H has the same degree.

2 Known Hypergraph Results

2.1 Hypergraph Results

Chvátal and McDiarmid [2] and Tuza [15] independently established the following result about transversals in hypergraphs (see also [14] for a short proof of this result).
Theorem 1 ([2, 15]) If H is a hypergraph on n vertices and m edges with all edges of size at least three, then $4 \tau(H) \leq n+m$.

We shall need the following definition.
Definition 1 Let $i, j \geq 0$ be arbitrary integers. Let $H_{i, j}^{4 e d g e}$ be the hypergraph defined as follows. Let the vertex set and edge set of $H_{i, j}^{4 e d g e}$ be defined as follows.

$$
\begin{aligned}
V\left(H_{i, j}^{4 e d g e}\right) & =\left\{u, x_{0}, x_{1}, \ldots, x_{i}, y_{0}, y_{1}, \ldots, y_{i}, w_{0}, w_{1}, \ldots, w_{j}, z_{0}, z_{1}, \ldots, z_{j}\right\}, \\
E_{1} & =\bigcup_{a=1}^{i}\left\{\left\{x_{a-1}, x_{a}, y_{a}\right\},\left\{y_{a-1}, x_{a}, y_{a}\right\}\right\}, \\
E_{2} & =\bigcup_{b=1}^{j}\left\{\left\{w_{b-1}, w_{b}, z_{b}\right\},\left\{z_{b-1}, w_{b}, z_{b}\right\}\right\}, \\
E\left(H_{i, j}^{4 e d g e}\right) & =\left\{\left\{u, x_{0}, y_{0}\right\},\left\{u, w_{0}, z_{0}\right\},\left\{x_{0}, y_{0}, z_{0}, w_{0}\right\}\right\} \cup E_{1} \cup E_{2} .
\end{aligned}
$$

Let

$$
H^{4 e d g e}=\bigcup_{i \geq 0} \bigcup_{j \geq 0}\left\{H_{i, j}^{4 e d g e}\right\} .
$$

Figure 1: The hypergraph $H_{3,2}^{4 e d g e}$.
In Figure 1 we give an example of a hypergraph in the family $H^{\text {4edge }}$.
We shall need the following result from [8].
Theorem 2 ([8]) Let H be a connected hypergraph on n vertices and m edges where all edges contain at least three vertices. If H is not 3 -uniform and $4 \tau(H)=n+m$, then $H \in H^{\text {4edge }}$.

2.2 Known Graph Results

As an immediate consequence of Theorem 1, we have that the total domination number of a graph with minimum degree at least 3 is at most one-half its order.

Theorem 3 If G is a graph of order n with $\delta(G) \geq 3$, then $\gamma_{t}(G) \leq n / 2$.
Proof. The ONH hypergraph H_{G} of G has n vertices and n edges with all edges of size at least three. By Theorem 1, there exists a transversal in H_{G} of size at most $(n+n) / 4=n / 2$. Hence, $\gamma_{t}(G)=\tau\left(H_{G}\right) \leq n / 2$.

We remark that Archdeacon et al. [1] recently found an elegant one page graph theoretic proof of Theorem 3.

The connected claw-free cubic graphs achieving equality in Theorem 3 are characterized in [4] and contain at most eight vertices.

Figure 2: A claw-free cubic graph G_{1} with $\gamma_{t}\left(G_{1}\right)=n / 2$.

Theorem 4 ([4]) If G is a connected claw-free cubic graph of order n, then $\gamma_{t}(G) \leq\lfloor n / 2\rfloor$ with equality if and only if $G=K_{4}$ or $G=G_{1}$ where G_{1} is the graph shown in Figure 2.

We now turn our attention to matchings in claw-free graphs. The following result was established independently by Las Vergnas [9] and Sumner [12, 13].

Theorem 5 ([9, 12, 13]) Every claw-free graph of even order has a perfect matching.
As a consequence of Theorem 5, we have the following result which was observed in [7].
Theorem 6 If G is a claw-free graph of order n, then $\alpha^{\prime}(G)=\lfloor n / 2\rfloor$.
As a consequence of Theorems 3 and 6 , it follows that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number. This result was first observed in [7].

Theorem 7 ([7]) For every claw-free graph G with $\delta(G) \geq 3, \gamma_{t}(G) \leq \alpha^{\prime}(G)$.

3 Main Result

Our aim in this paper is to characterize the connected claw-free graphs with minimum degree at least three that achieve equality in the bound of Theorem 7. For this purpose, we define a collection \mathcal{F} of connected claw-free graphs with minimum degree three and maximum degree four that have equal total domination and matching numbers. Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{12}\right\}$ be the collection of twelve graphs shown in Figure 3.

We shall prove:
Theorem 8 Let G be a connected claw-free graph with $\delta(G) \geq 3$. Then, $\gamma_{t}(G)=\alpha^{\prime}(G)$ if and only if $G \in \mathcal{F} \cup\left\{K_{4}, K_{5}-e, K_{5}, G_{1}\right\}$.

4 Proof of Theorem 8

The sufficiency is straightforward to verify. As a consequence of Theorem 4, the graph K_{4} and the graph G_{1} of Figure 2 are the only connected claw-free cubic graphs that achieve equality in the bound of Theorem 7. Hence it remains for us to characterize the

Figure 3: The collection \mathcal{F} of twelve graphs.
connected claw-free graphs with minimum degree at least three that are not cubic and achieve equality in the bound of Theorem 7 . We shall prove:

Theorem 9 If G is a connected claw-free graph with minimum degree at least three and maximum degree at least four satisfying $\gamma_{t}(G)=\alpha^{\prime}(G)$, then $G \in \mathcal{F} \cup\left\{K_{5}-e, K_{5}\right\}$.

Proof. Let $G=(V, E)$ have order n. By Theorem $6, \alpha^{\prime}(G)=\lfloor n / 2\rfloor$. If T is a transversal of H_{G}, then $|T| \geq \tau\left(H_{G}\right)=\gamma_{t}(G)=\alpha^{\prime}(G)$. Hence we have the following observation.

Observation 1 Every transversal in H_{G} has size at least $\lfloor n / 2\rfloor$.
We shall frequently use the following observation, which is an application of Theorem 1.
Observation 2 If $V^{\prime} \subset V$ and $H^{\prime}=H_{G} \backslash V^{\prime}$ is a subhypergraph of H_{G} of order n^{\prime} and size m^{\prime} in which every edge has size at least 3, then there exists a transversal $T^{\prime \prime}$ of H^{\prime} such that $\left|T^{\prime}\right| \leq\left(m^{\prime}+n^{\prime}\right) / 4$.

Let v be a vertex of maximum degree in G, and so $d(v)=\Delta(G) \geq 4$.
Observation $3 n$ is odd.
Proof. If n is even, then in Observation 2, taking $V^{\prime}=\{v\}$, we have $n^{\prime}=n-1, m^{\prime} \leq n-4$ and $\left|T^{\prime}\right| \leq(2 n-5) / 4$. Thus, $T=T^{\prime} \cup\{v\}$ is a transversal of H_{G} of size less than $\lfloor n / 2\rfloor$, contradicting Observation 1. Hence, n is odd.

As a consequence of Theorem 2, we have the following observation.
Observation $4 \Delta(G)=4$.
Proof. Suppose that $\Delta(G) \geq 5$. Let $H^{\prime}=H_{G} \backslash\{v\}$. Then, H^{\prime} has order $n^{\prime}=n-1$ and size $m^{\prime} \leq n-5$, and every edge of H^{\prime} contains at least three vertices. Since H^{\prime} contains the edge $N(v), H^{\prime}$ has at least one edge of size five or more. Hence, by Theorem 2, $\gamma_{t}(G) \leq \tau\left(H^{\prime}\right)+1 \leq\left(n^{\prime}+m^{\prime}-1\right) / 4+1 \leq(2 n-3) / 4$. The desired result now follows from the fact that n is odd.

By Observations 3 and 4, G contains an odd number of degree- 4 vertices. Furthermore, by Theorem $6, \alpha^{\prime}(G)=(n-1) / 2$ and, by Observation 1, every transversal in H_{G} has size at least $(n-1) / 2$. As a consequence of Theorem 2 , we have the following result.

Observation 5 Every two degree-4 vertices in G are at distance at most 2 apart.
Proof. Suppose that G contains two degree- 4 vertices, say u and v, at distance at least 3 apart. Let $H^{\prime}=H_{G} \backslash\{u, v\}$. Then, H^{\prime} has order $n^{\prime}=n-2$ and size $m^{\prime}=n-8$, and every edge of H^{\prime} is a 3 -edge or a 4 -edge. Further, H^{\prime} has at least two 4-edges, namely $N(u)$ and $N(v)$. Let H_{v} be the component of H^{\prime} containing the 4-edge $N(v)$ (possibly, $\left.H_{v}=H^{\prime}\right)$. Let $N(v)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.

Suppose $H_{v} \in H^{\text {4edge }}$. Then, H_{v} contains an edge $\left\{v_{1}, v_{2}, v_{5}\right\}$ containing v_{1} and v_{2}, and an edge $\left\{v_{3}, v_{4}, v_{5}\right\}$ containing v_{3} and v_{4}. Since the edges $N\left(v_{i}\right), 1 \leq i \leq 4$, are deleted from H_{G} when constructing H^{\prime}, there must exist vertices v_{6} and v_{7} in H_{v} such that in the graph $G, N\left(v_{6}\right)=\left\{v_{1}, v_{2}, v_{5}\right\}$ and $N\left(v_{7}\right)=\left\{v_{3}, v_{4}, v_{5}\right\}$. Thus in $G, v_{5} v_{6}$ and $v_{5} v_{7}$ are edges. Let $w \in N\left(v_{5}\right) \backslash\left\{v_{6}, v_{7}\right\}$. By the claw-freeness of G, we must have that $w v_{6}$ or $w v_{7}$ is an edge, implying that $w \in N(v)$. We may assume that $w=v_{1}$. Thus since $H_{v} \in H^{\text {4edge }}$, $N\left(v_{5}\right)=\left\{v_{1}, v_{6}, v_{7}\right\}$ and there exists a vertex v_{8} such that in $G, N\left(v_{8}\right)=\left\{v_{2}, v_{6}, v_{7}\right\}$. But then $d\left(v_{6}\right) \geq 4$, contradicting our earlier observation that $N\left(v_{6}\right)=\left\{v_{1}, v_{2}, v_{5}\right\}$. Hence, $H_{v} \notin H^{4 e d g e}$.

By Theorem 2, $4 \tau\left(H_{v}\right) \leq\left|V\left(H_{v}\right)\right|+\left|E\left(H_{v}\right)\right|-1$. Applying Theorems 1 and 2 to every other component of H^{\prime}, if any, it follows that $4 \tau\left(H^{\prime}\right) \leq n^{\prime}+m^{\prime}-1=2 n-11$. However if T^{\prime} is a transversal of H^{\prime}, then $T^{\prime} \cup\{u, v\}$ is a TDS of G, and so $\gamma_{t}(G) \leq \tau\left(H^{\prime}\right)+2 \leq(2 n-3) / 4$, a contradiction.

Let $V=\left\{v, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. For $i=1,2, \ldots, n-1$, let $V_{i}=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$. We may assume that $N(v)=V_{4}$. Let $G_{v}=G\left[V_{4}\right]$. If $n=5$, then $G_{v} \in\left\{C_{4}, K_{4}-e, K_{4}\right\}$ in which case $G \in\left\{F_{1}, K_{5}-e, K_{5}\right\}$ Hence we may assume that $n \geq 7$. Thus, G_{v} contains at most five edges and, since G is claw-free, G_{v} contains at least two edges.

Observation 6 If $G_{v}=K_{4}-e$, then $G=F_{5}$.
Proof. We may assume that $v_{3} v_{4}$ is the edge missing in G_{v} and that $d\left(v_{4}\right)=4$. If $d\left(v_{3}\right)=3$, then in Observation 2, taking $V^{\prime}=N[v]$, we have $n^{\prime}=n-5, m^{\prime}=n-6$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{3}\right)=4$.

Let $G^{\prime}=G-v$. Then, G^{\prime} is a claw-free graph with $\delta\left(G^{\prime}\right) \geq 3$ of even order $n^{\prime}=n-1$. If $\gamma_{t}\left(G^{\prime}\right)<n^{\prime} / 2$, then $\gamma_{t}\left(G^{\prime}\right) \leq\left(n^{\prime}-2\right) / 2$. However every TDS of G^{\prime} contains a vertex from the set $\{2,3,4\}$ (in order to totally dominate v_{1}) and is therefore also a TDS of G, implying that $\gamma_{t}(G) \leq(n-3) / 2$, a contradiction. Hence, $\gamma_{t}\left(G^{\prime}\right) \geq n^{\prime} / 2$. Thus by Theorem 4, $G^{\prime}=G_{1}$ and so $G=F_{5}$.

By Observation 6, we may assume that the subgraph induced by the neighborhood of every degree- 4 vertex is not $K_{4}-e$.

Observation 7 The subgraph induced by the neighborhood of every degree-4 vertex is not a 4-cycle.

Proof. Suppose $G_{v}=C_{4}$. We may assume that G_{v} is given by the cycle $v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. Since $n \geq 7$, we may assume that $d\left(v_{1}\right)=4$ and that $v_{1} v_{5} \in E(G)$. Since G is claw-free, we may further assume that $v_{2} v_{5} \in E(G)$. If $v_{3} v_{5}$ or $v_{4} v_{5}$ is an edge, then $n=6$, a contradiction. Hence neither $v_{3} v_{5}$ nor $v_{4} v_{5}$ is an edge.

If $d\left(v_{3}\right)=3$, then in Observation 2, taking $V^{\prime}=N[v]$, we have $n^{\prime}=n-5, m^{\prime}=n-6$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{4}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{3}\right)=4$. In Observation 2, taking $V^{\prime}=V_{3} \cup\{v\}$, we have $n^{\prime}=n-4, m^{\prime}=n-7$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{2}, v_{3}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1.

Observation 8 If $G_{v}=K_{1} \cup C_{3}$, then $G=F_{6}$.
Proof. Suppose that $G_{v}=K_{1} \cup C_{3}$, where v_{1} is the isolated vertex of G_{v}. If at least two vertices in $N(v) \backslash\left\{v_{1}\right\}$ have degree 3, say v_{2} and v_{3}, then in Observation 2, taking $V^{\prime}=V_{3} \cup\{v\}$, we have $n^{\prime}=n-4, m^{\prime} \leq n-7$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence at most one vertex in $N(v) \backslash\left\{v_{1}\right\}$ has degree 3 . We proceed further with the following claim.

Claim 1 One vertex in $N(v) \backslash\left\{v_{1}\right\}$ has degree 3 .
Proof. Suppose, to the contrary, that each vertex in $\left\{v_{2}, v_{3}, v_{4}\right\}$ has degree 4. Let $\left\{v_{5}, v_{6}\right\} \subseteq N\left(v_{1}\right) \backslash\{v\}$. Then, $v_{5} v_{6}$ is an edge. Suppose there is an edge joining $\left\{v_{2}, v_{3}, v_{4}\right\}$ and $\left\{v_{5}, v_{6}\right\}$, say $v_{2} v_{5}$. Then in Observation 2, taking $V^{\prime}=V_{2} \cup\left\{v, v_{5}\right\}$, we have $n^{\prime}=n-4$, $m^{\prime} \leq n-7$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, there is no edge joining $\left\{v_{2}, v_{3}, v_{4}\right\}$ and $\left\{v_{5}, v_{6}\right\}$. For $i=2,3,4$, let $N\left(v_{i}\right) \backslash N[v]=\left\{v_{i}^{\prime}\right\}$.

Case 1. $v_{i}^{\prime}=v_{j}^{\prime}$ for some i and j, where $2 \leq i<j \leq 4$. We may assume that $i=2$ and $j=3$, and that $v_{7}=v_{2}^{\prime}$. If $v_{4}^{\prime}=v_{7}$, then we contradict our assumption that the subgraph induced by the neighborhood of every degree- 4 vertex is not $K_{4}-e$. Hence, $v_{4}^{\prime} \neq v_{7}$. We may assume that $v_{4}^{\prime}=v_{8}$, and so $N\left(v_{4}\right)=\left\{v, v_{2}, v_{3}, v_{8}\right\}$.

Suppose that v_{7} is adjacent to v_{5} or v_{6}, say v_{5}. If $d\left(v_{1}\right)=4$ or $d\left(v_{5}\right)=4$, then in Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v, v_{5}, v_{7}\right\}$, we have $n^{\prime}=n-6, m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq$ $(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{5}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{1}\right)=d\left(v_{5}\right)=3$. If $v_{6} v_{7}$ is an edge, then taking $V^{\prime}=\left(V_{7} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-7, m^{\prime}=n-8$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{5}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{6} v_{7}$ is not an edge, implying that $d\left(v_{7}\right)=3$. If $v_{6} v_{8}$ is not an edge, then in Observation 2, taking $V^{\prime}=V_{5} \cup\left\{v, v_{7}, v_{8}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{4}, v_{5}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{6} v_{8}$ is an edge. Therefore in Observation 2, taking $V^{\prime}=V_{8} \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{4}, v_{5}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{7} is adjacent to neither v_{5} nor v_{6}.

Suppose that $v_{7} v_{8}$ is an edge. Let v_{9} be the common neighbor of v_{7} and v_{8}, which exists as G is claw-free. In Observation 2, taking $V^{\prime}=V_{4} \cup\left\{v, v_{9}\right\}$, we have $n^{\prime}=n-6$, $m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{7} v_{8}$ is not an edge.

Suppose that v_{8} is adjacent to v_{5} or v_{6}, say v_{5}. In Observation 2, taking $V^{\prime}=V_{8} \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{2}, v_{5}, v_{6}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{8} is adjacent to neither v_{5} nor v_{6}.

Suppose that v_{7} and v_{8} have a common neighbor, say v_{9}. In Observation 2, taking $V^{\prime}=V_{4} \cup\left\{v, v_{9}\right\}$, we have $n^{\prime}=n-6, m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting

Observation 1. Hence, v_{7} and v_{8} have no common neighbor. Let $v_{9} \in N\left(v_{7}\right) \backslash\left\{v_{2}, v_{3}\right\}$ and let $\left\{v_{10}, v_{11}\right\} \subseteq N\left(v_{8}\right)$.

Suppose that v_{9} is adjacent to v_{10} or v_{11}, say v_{10}. In Observation 2, taking $V^{\prime}=$ $\left(V_{10} \backslash\left\{v_{5}, v_{6}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-12$ and $\left|T^{\prime}\right| \leq(2 n-21) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{9}, v_{10}\right\}$ is a transversal of H_{G} of size at most $(2 n-5) / 4$, contradicting Observation 1. Hence, v_{9} is adjacent to neither v_{10} nor v_{11}. Suppose that v_{9} is adjacent to v_{5} or v_{6}, say v_{5}. In Observation 2, taking $V^{\prime}=\left(V_{9} \backslash\left\{v_{6}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-9$, $m^{\prime} \leq n-12$ and $\left|T^{\prime}\right| \leq(2 n-21) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{4}, v_{5}, v_{8}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-5) / 4$, contradicting Observation 1. Hence, v_{9} is adjacent to neither v_{5} nor v_{6}. Thus in Observation 2, taking $V^{\prime}=\left(V_{9} \backslash\left\{v_{1}, v_{6}, v_{7}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-7$, $m^{\prime} \leq n-12$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{4}, v_{5}, v_{8}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. We conclude that $v_{i}^{\prime} \neq v_{j}^{\prime}$ for $2 \leq i<j \leq 4$.

Case 2. $v_{i}^{\prime} \neq v_{j}^{\prime}$ for $2 \leq i<j \leq 4$. For $i \in\{2,3,4\}$, let $v_{i}^{\prime}=v_{i+5}$. Thus, $v_{2} v_{7}, v_{3} v_{8}$ and $v_{4} v_{9}$ are edges.

Suppose that there is an edge joining $\left\{v_{5}, v_{6}\right\}$ and $\left\{v_{7}, v_{8}, v_{9}\right\}$, say $v_{5} v_{7}$. If $v_{6} v_{7}$ is an edge, then in Observation 2, taking $V^{\prime}=\left(V_{8} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{5}, v_{7}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{6} v_{7}$ is not an edge. If v_{8} or v_{9}, say v_{8}, is a common neighbor of v_{5} and v_{7}, then in Observation 2, taking $V^{\prime}=\left(V_{9} \backslash\left\{v_{6}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{4}, v_{5}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence we may assume that v_{10} is the common neighbor of v_{5} and v_{7}. But then in Observation 2, taking $V^{\prime}=\left(V_{5} \backslash\left\{v_{1}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-5, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{4}, v_{5}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence there is no edge joining $\left\{v_{5}, v_{6}\right\}$ and $\left\{v_{7}, v_{8}, v_{9}\right\}$.

Suppose that $\left\{v_{7}, v_{8}, v_{9}\right\}$ is not an independent set. We may assume that $v_{7} v_{8}$ is an edge. Then in Observation 2, taking $V^{\prime}=\left(V_{8} \backslash\left\{v_{1}, v_{4}, v_{6}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-6$, $m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-16) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{2}, v_{5}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence, $\left\{v_{7}, v_{8}, v_{9}\right\}$ is an independent set.

Suppose that two vertices in $\left\{v_{7}, v_{8}, v_{9}\right\}$ have a common neighbor. We may assume that v_{7} and v_{8} have a common neighbor, say v_{10}. Then in Observation 2, taking $V^{\prime}=V_{3} \cup$ $\left\{v, v_{10}\right\}$, we have $n^{\prime}=n-5, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{10}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence no two vertices in $\left\{v_{7}, v_{8}, v_{9}\right\}$ have a common neighbor. Let $\left\{v_{10}, v_{11}\right\} \subseteq N\left(v_{7}\right),\left\{v_{12}, v_{13}\right\} \subseteq N\left(v_{8}\right)$ and $\left\{v_{14}, v_{15}\right\} \subseteq N\left(v_{9}\right)$. Then, $v_{10} v_{11}, v_{12} v_{13}$ and $v_{14} v_{15}$ are all edges.

Suppose there is an edge joining two triangles each of which contain a vertex from $\left\{v_{10}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15}\right\}$. We may assume that $v_{10} v_{12}$ is an edge. Then in Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v, v_{7}, v_{8}, v_{10}, v_{12}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-13$ and $\left|T^{\prime}\right| \leq$ $(2 n-21) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{10}, v_{12}\right\}$ is a transversal of H_{G} of size at most $(2 n-5) / 4$, contradicting Observation 1. Hence there is no edge joining two triangles each of which contain a vertex from $\left\{v_{10}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15}\right\}$.

Suppose there is an edge joining $\left\{v_{5}, v_{6}\right\}$ and $\left\{v_{10}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15}\right\}$, say $v_{5} v_{10}$. Then in Observation 2, taking $V^{\prime}=\left(V_{8} \backslash\left\{v_{4}\right\}\right) \cup\left\{v, v_{10}, v_{14}\right\}$, we have $n^{\prime}=n-10, m^{\prime} \leq n-15$ and $\left|T^{\prime}\right| \leq(2 n-25) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{5}, v_{8}, v_{10}, v_{14}\right\}$ is a transversal of H_{G} of size at most $(2 n-5) / 4$, contradicting Observation 1. Hence there is no edge joining $\left\{v_{5}, v_{6}\right\}$ and $\left\{v_{10}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15}\right\}$. Then in Observation 2, taking $V^{\prime}=V_{4} \cup\left\{v, v_{10}, v_{12}, v_{14}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-15$ and $\left|T^{\prime}\right| \leq(2 n-23) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{10}, v_{12}, v_{14}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. This completes the proof of Claim 1.

By Claim 1, one vertex in $N(v) \backslash\left\{v_{1}\right\}$ has degree 3. We may assume that $d\left(v_{2}\right)=3$. Then, $d\left(v_{3}\right)=d\left(v_{4}\right)=4$. If $d\left(v_{1}\right)=4$, then in Observation 2, taking $V^{\prime}=V_{2} \cup\{v\}$, we have $n^{\prime}=n-3, m^{\prime}=n-8$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{1}\right)=3$. We may assume that $N\left(v_{1}\right)=\left\{v, v_{5}, v_{6}\right\}$. Thus, $v_{5} v_{6}$ is an edge.

Suppose there is an edge joining $\left\{v_{3}, v_{4}\right\}$ and $\left\{v_{5}, v_{6}\right\}$, say $v_{3} v_{5}$. Then in Observation 2, taking $V^{\prime}=V_{3} \cup\{v\}$, we have $n^{\prime}=n-4, m^{\prime}=n-7$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=$ $T^{\prime} \cup\left\{v, v_{1}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, there is no edge joining $\left\{v_{3}, v_{4}\right\}$ and $\left\{v_{5}, v_{6}\right\}$. Let $N\left(v_{3}\right)=\left\{v, v_{2}, v_{4}, v_{7}\right\}$.

Claim $2 v_{4} v_{7}$ is an edge.
Proof. Suppose, to the contrary, that $v_{4} v_{7}$ is not an edge. Let $N\left(v_{4}\right)=\left\{v, v_{2}, v_{3}, v_{8}\right\}$. Suppose there is an edge joining $\left\{v_{5}, v_{6}\right\}$ and $\left\{v_{7}, v_{8}\right\}$, say $v_{5} v_{7}$. If $v_{6} v_{7}$ is an edge, then in Observation 2, taking $V^{\prime}=\left(V_{7} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-7, m^{\prime} \leq n-8$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. If $v_{6} v_{7}$ is not an edge, then there is a common neighbor of v_{5} and v_{7} (which may possibly be v_{8}), and in Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v, v_{5}, v_{7}\right\}$, we have $n^{\prime}=n-6, m^{\prime}=n-9$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. In both cases, $T=T^{\prime} \cup\left\{v, v_{1}, v_{5}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, there is no edge joining $\left\{v_{5}, v_{6}\right\}$ and $\left\{v_{7}, v_{8}\right\}$.

Since each of v_{5} and v_{6} is at distance 3 from a degree- 4 vertex (namely, v_{3} and v_{4}), $d\left(v_{5}\right)=d\left(v_{6}\right)=3$ by Observation 5. Further for $i \geq 9, d\left(v, v_{i}\right) \geq 3$, and so, by Observation $5, d\left(v_{i}\right)=3$.

Suppose that $v_{7} v_{8}$ is an edge. Let v_{9} be a common neighbor of v_{7} and v_{8}. In Observation 2, taking $V^{\prime}=V_{4} \cup\left\{v, v_{9}\right\}$, we have $n^{\prime}=n-6, m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{7} v_{8}$ is not an edge.

Suppose $d\left(v_{7}\right)=4$. Then $N\left[v_{7}\right] \backslash\left\{v_{3}\right\}$ induces a clique K_{4}. Let $v_{7}^{\prime} \in N\left[v_{7}\right] \backslash\left\{v_{3}\right\}$. Then, $N\left[v_{7}^{\prime}\right]=N\left[v_{7}\right] \backslash\left\{v_{3}\right\}$. In Observation 2, taking $V^{\prime}=N[v] \cup N\left[v_{7}\right]$, we have $n^{\prime}=n-9$, $m^{\prime}=n-11$ and $\left|T^{\prime}\right| \leq(2 n-20) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{7}, v_{7}^{\prime}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence, $d\left(v_{7}\right)=3$. Similarly, $d\left(v_{8}\right)=3$.

Let $N\left(v_{7}\right)=\left\{v_{3}, v_{9}, v_{10}\right\}$. Then, $v_{9} v_{10}$ is an edge. Suppose v_{8} is adjacent to v_{9} or v_{10}, say v_{9}. Then, $N\left(v_{9}\right)=\left\{v_{7}, v_{8}, v_{10}\right\}$. By the claw-freeness of $G, v_{8} v_{10}$ is an edge and $N\left(v_{8}\right)=\left\{v_{4}, v_{9}, v_{10}\right\}$. In Observation 2, taking $V^{\prime}=V_{4} \cup\left\{v, v_{7}, v_{8}, v_{9}, v_{10}\right\}$, we have
$n^{\prime}=n-9, m^{\prime}=n-11$ and $\left|T^{\prime}\right| \leq(2 n-20) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{7}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence, v_{8} is adjacent to neither v_{9} nor v_{10}. Let $N\left(v_{8}\right)=\left\{v_{3}, v_{11}, v_{12}\right\}$. Then, $v_{11} v_{12}$ is an edge.

Suppose that there is an edge joining $\left\{v_{5}, v_{6}\right\}$ and $\left\{v_{9}, v_{10}, v_{11}, v_{12}\right\}$, say $v_{5} v_{9}$. In Observation 2, taking $V^{\prime}=V_{5} \cup\left\{v, v_{7}, v_{9}\right\}$, we have $n^{\prime}=n-8, m^{\prime}=n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{5}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, there is no edge joining $\left\{v_{5}, v_{6}\right\}$ and $\left\{v_{9}, v_{10}, v_{11}, v_{12}\right\}$.

Suppose that there is an edge joining $\left\{v_{9}, v_{10}\right\}$ and $\left\{v_{11}, v_{12}\right\}$, say $v_{9} v_{11}$. In Observation 2, taking $V^{\prime}=V_{4} \cup\left\{v, v_{7}, v_{8}, v_{9}, v_{11}\right\}$, we have $n^{\prime}=n-9, m^{\prime}=n-13$ and $\left|T^{\prime}\right| \leq(2 n-22) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{9}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-6) / 4$, contradicting Observation 1. Hence, there is no edge joining $\left\{v_{9}, v_{10}\right\}$ and $\left\{v_{11}, v_{12}\right\}$. Thus in Observation 2, taking $V^{\prime}=V_{4} \cup\left\{v, v_{9}, v_{11}\right\}$, we have $n^{\prime}=n-7$, $m^{\prime} \leq n-12$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{9}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. This completes the proof of Claim 2.

By Claim 2, $v_{4} v_{7}$ is an edge. If v_{7} is adjacent to v_{5} or v_{6}, say $v_{5} v_{7}$, then in Observation 2, taking $V^{\prime}=V_{5} \cup\left\{v, v_{7}\right\}$, we have $n^{\prime}=n-7, m^{\prime} \leq n-8$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{5}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{7} is adjacent to neither v_{5} nor v_{6}. Thus each of v_{5} and v_{6} is at distance 3 from a degree- 4 vertex (namely, v_{3} and v_{4}), and so $d\left(v_{5}\right)=d\left(v_{6}\right)=3$ by Observation 5.

Let $v_{8} \in N\left(v_{7}\right) \backslash\left\{v_{3}, v_{4}\right\}$. If $N\left(v_{8}\right) \neq\left\{v_{5}, v_{6}, v_{7}\right\}$, then in Observation 2, taking $V^{\prime}=V_{4} \cup\left\{v, v_{8}\right\}$, we have $n^{\prime}=n-6, m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $N\left(v_{8}\right)=\left\{v_{5}, v_{6}, v_{7}\right\}$, implying that $G=F_{6}$. This completes the proof of Observation 8.

By Observation 8, we may assume that the subgraph induced by the neighborhood of every degree- 4 vertex is not $K_{1} \cup C_{3}$.

Observation 9 If $G_{v}=K_{1,3}+e$, then $G=F_{4}$.
Proof. We may assume that v_{1} is the degree- 1 vertex in G_{v} and that $v_{1} v_{2}$ is an edge. Thus, $v_{2}, v_{3}, v_{4}, v_{2}$ is a cycle. If $d\left(v_{3}\right)=d\left(v_{4}\right)=3$, then in Observation 2, taking $V^{\prime}=V_{4} \cup\{v\}$, we have $n^{\prime}=n-5, m^{\prime} \leq n-6$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, we may assume that $d\left(v_{3}\right)=4$. Let $N\left(v_{3}\right)=\left\{v, v_{2}, v_{4}, v_{5}\right\}$.

If $v_{1} v_{5}$ is an edge, then in Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v, v_{5}\right\}$, we have $n^{\prime}=n-5$, $m^{\prime} \leq n-6$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{1} v_{5}$ is not an edge. But then $v_{4} v_{5}$ must be an edge, for otherwise $G\left[N\left(v_{3}\right)\right]=K_{1} \cup C_{3}$, contrary to assumption. Let $v_{6} \in N\left(v_{5}\right) \backslash\left\{v_{3}, v_{4}\right\}$.

Suppose that v_{1} and v_{5} have a common neighbor. We may assume that $v_{1} v_{6}$ is an edge. Then in Observation 2, taking $V^{\prime}=V_{6} \cup\{v\}$, we have $n^{\prime}=n-7, m^{\prime} \leq n-8$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{1} and v_{5} have no common neighbor. In particular, $v_{1} v_{6}$ is not an edge. Thus, $d\left(v, v_{6}\right)=3$, and so, by Observation 5, $d\left(v_{6}\right)=3$. Let $v_{7} \in N\left(v_{1}\right) \backslash\left\{v, v_{2}\right\}$. Then, $v_{5} v_{7}$ is not an edge. Thus, $d\left(v_{3}, v_{7}\right)=3$, and so, by Observation 5, $d\left(v_{7}\right)=3$.

If $v_{6} v_{7}$ is not an edge, then in Observation 2, taking $V^{\prime}=V_{4} \cup\left\{v, v_{6}\right\}$, we have $n^{\prime}=n-6, m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{6} v_{7}$ is an edge.

Suppose that $d\left(v_{1}\right)=d\left(v_{5}\right)=3$. Then, v_{6} and v_{7} have a common neighbor, v_{8} say. In Observation 2, taking $V^{\prime}=V_{5} \cup\left\{v, v_{8}\right\}$, we have $n^{\prime}=n-7, m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-16) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence, by symmetry, we may assume that $d\left(v_{1}\right)=4$. Let $N\left(v_{1}\right)=\left\{v, v_{2}, v_{7}, v_{8}\right\}$. Then, $v_{7} v_{8}$ is an edge. As shown with the vertex v_{7}, we must have that $v_{6} v_{8}$ is an edges and $d\left(v_{8}\right)=3$. But then, $G=F_{4}$.

By Observation 9, we may assume that the subgraph induced by the neighborhood of every degree- 4 vertex is not $K_{1,3}+e$.

Observation 10 If $G_{v}=P_{4}$, then $G \in\left\{F_{8}, F_{9}, F_{10}\right\}$.
Proof. We may assume that G_{v} is given by the path $v_{1}, v_{2}, v_{3}, v_{4}$. We desired result now follows from Claim 3 and Claim 4.

Claim 3 If $d\left(v_{2}\right)=d\left(v_{3}\right)=3$, then $G=F_{8}$.
Proof. Suppose that v_{1} or v_{4} has degree 4. We may assume that $d\left(v_{1}\right)=4$. In Observation 2, taking $V^{\prime}=V_{3} \cup\{v\}$, we have $n^{\prime}=n-4, m^{\prime} \leq n-7$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{1}\right)=d\left(v_{4}\right)=3$. Thus, since G is claw-free, v_{1} and v_{4} have no common neighbor other than v. Let $N\left(v_{1}\right)=\left\{v, v_{2}, v_{5}\right\}$ and $N\left(v_{4}\right)=\left\{v, v_{3}, v_{6}\right\}$. For $i \geq 7$, the vertex v_{i} is at distance at least 3 from the degree- 4 vertex v, and so, by Observation 5, $d\left(v_{i}\right)=3$.

If $v_{5} v_{6}$ is an edge, then in Observation 2, taking $V^{\prime}=V_{6} \cup\{v\}$, we have $n^{\prime}=n-7$, $m^{\prime} \leq n-8$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{5}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{5} v_{6}$ is not an edge.

By our assumption that the subgraph induced by the neighborhood of every degree- 4 vertex is not $K_{1} \cup C_{3}$, we have that $d\left(v_{5}\right)=d\left(v_{6}\right)=3$. Let $N\left(v_{5}\right)=\left\{v_{1}, v_{7}, v_{8}\right\}$. Then, $v_{7} v_{8} \in E$. If $v_{6} v_{7}$ is not an edge, then in Observation 2, taking $V^{\prime}=N[v] \cup\left\{v_{7}\right\}$, we have $n^{\prime}=n-6, m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{6} v_{7}$ is an edge. Thus, by the claw-freeness of $G, v_{6} v_{8}$ is an edge. Thus, $G=F_{8}$.

Claim 4 If v_{2} or v_{3} has degree 4 , then $G \in\left\{F_{9}, F_{10}\right\}$.

Proof. We may assume that $d\left(v_{2}\right)=4$. Let $N\left(v_{2}\right)=\left\{v, v_{1}, v_{3}, v_{5}\right\}$. Since G is claw-free, $v_{1} v_{5}$ or $v_{3} v_{5}$ is an edge. We consider two cases.

Case 1. $v_{3} v_{5}$ is an edge. Then, $v_{1} v_{5}$ is not an edge, for otherwise, $N\left(v_{2}\right)$ induces a 4cycle, contradicting Observation 7. Similarly, $v_{4} v_{5}$ is not an edge. Let $v_{6} \in N\left(v_{5}\right) \backslash\left\{v_{2}, v_{3}\right\}$.

Case 1.1. v_{5} has a common neighbor with v_{1} or with v_{4} that does not belong to $N(v)$. We may assume that $v_{1} v_{6}$ is an edge. Suppose that $d\left(v_{6}\right)=4$. Let $v_{7} \in N\left(v_{6}\right) \backslash\left\{v_{1}, v_{5}\right\}$. On the one hand, if $v_{4} v_{7}$ is not an edge, then in Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v, v_{5}, v_{6}\right\}$, we have $n^{\prime}=n-6, m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. On the other hand, if $v_{4} v_{7}$ is an edge, then in Observation 2, taking $V^{\prime}=V_{6} \cup\{v\}$, we have $n^{\prime}=n-7, m^{\prime} \leq n-8$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. In both cases, $T=T^{\prime} \cup\left\{v, v_{1}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{6}\right)=3$ and $N\left(v_{6}\right)=\left\{v_{1}, v_{5}, v_{7}\right\}$. Then, $v_{1} v_{7}$ or $v_{5} v_{7}$ is an edge.

If $v_{1} v_{7}$ and $v_{5} v_{7}$ are edges, then in Observation 2, taking $V^{\prime}=\left(V_{7} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-7, m^{\prime} \leq n-8$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, either $v_{1} v_{7}$ or $v_{5} v_{7}$ is an edge (but not both).

Suppose $v_{5} v_{7}$ is an edge. Then, $d\left(v_{1}\right)=3$. If $v_{4} v_{7}$ is an edge, then in Observation 2, taking $V^{\prime}=V_{7} \cup\{v\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-8$ and $\left|T^{\prime}\right| \leq(2 n-16) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{2}, v_{5}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence, $v_{4} v_{7}$ is not an edge. Thus, $d\left(v, v_{7}\right)=3$, and so by Observation 5, $d\left(v_{7}\right)=3$. Let $N\left(v_{7}\right)=\left\{v_{5}, v_{6}, v_{8}\right\}$. In Observation 2, taking $V^{\prime}=V_{8} \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{7}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{5} v_{7}$ is not an edge. Thus, $v_{1} v_{7}$ is an edge and $d\left(v_{5}\right)=3$.

If $v_{4} v_{7}$ is an edge, then in Observation 2, taking $V^{\prime}=V_{7} \cup\{v\}$, we have $n^{\prime}=n-8$, $m^{\prime} \leq n-8$ and $\left|T^{\prime}\right| \leq(2 n-16) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{4}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence, $v_{4} v_{7}$ is not an edge. If $d\left(v_{4}\right)=d\left(v_{7}\right)=3$, then since G is claw-free, v_{4} and v_{7} have no common neighbor. Thus in Observation 2, taking $V^{\prime}=\left(V_{5} \backslash\left\{v_{1}\right\}\right) \cup\left\{v, v_{7}\right\}$, we have $n^{\prime}=n-6, m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-13) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{2}, v_{3}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-5) / 4$, contradicting Observation 1.

Case 1.2. v_{5} has no common neighbor with v_{1} or with v_{4} that does not belong to $N(v)$. In particular, neither $v_{1} v_{6}$ nor $v_{4} v_{6}$ is an edge. Thus, $d\left(v, v_{6}\right)=3$, and so, by Observation 5, $d\left(v_{6}\right)=3$.

Case 1.2.1 v_{6} has a common neighbor with v_{1} or v_{4}. We may assume that v_{1} and v_{6} have a common neighbor, v_{7} say. By Case 1.1, $v_{5} v_{7}$ is not an edge. By the claw-freeness of $G, v_{4} v_{7}$ is not an edge. Thus, $d\left(v_{3}, v_{7}\right)=3$, and so, by Observation $5, d\left(v_{7}\right)=3$. Let $N\left(v_{7}\right)=\left\{v_{1}, v_{6}, v_{8}\right\}$. Then, $v_{1} v_{8}$ or $v_{6} v_{8}$ is an edge. If both $v_{1} v_{8}$ and $v_{6} v_{8}$ are edges, then in Observation 2, taking $V^{\prime}=V_{8} \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{5}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence either $v_{1} v_{8}$ or $v_{6} v_{8}$ is an edge (but not both).

Suppose $v_{1} v_{8}$ is an edge. Let $N\left(v_{6}\right)=\left\{v_{5}, v_{7}, v_{9}\right\}$. Then, $v_{5} v_{9}$ or $v_{7} v_{9}$ is an edge. If $v_{4} v_{9}$ is an edge, then in Observation 2, taking $V^{\prime}=V_{7} \cup\left\{v, v_{9}\right\}$, we have $n^{\prime}=n-9$, $m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. If $v_{8} v_{9}$ is an edge, then in Observation 2, taking $V^{\prime}=\left(V_{9} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. If v_{9} is adjacent to vertex v_{i}, where $i \geq 10$, then taking $V^{\prime}=V_{7} \cup\left\{v, v_{9}\right\}$, we have $n^{\prime}=n-8$, $m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. In all three cases, $T=T^{\prime} \cup\left\{v, v_{1}, v_{6}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence we must have that $d\left(v_{9}\right)=3$ and $N\left(v_{9}\right)=\left\{v_{5}, v_{6}, v_{7}\right\}$. But then in Observation 2, taking $V^{\prime}=V_{7} \cup\left\{v, v_{9}\right\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{7}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{1} v_{8}$ is not an edge, implying that $v_{6} v_{8}$ is an edge. We may assume that $d\left(v_{1}\right)=3$ for otherwise if v_{1} and v_{7} have a common neighbor (not adjacent with v_{6}), then as shown earlier we reach a contradiction.

If $v_{4} v_{8}$ is not an edge, then in Observation 2, taking $V^{\prime}=V_{8} \cup\{v\}$, we have $n^{\prime}=n-9$, $m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{6}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{4} v_{8}$ is an edge and $d\left(v_{6}\right)=3$. But then $G=F_{10}$.

Case 1.2.2 v_{6} has no common neighbor with v_{1} or v_{4}. If $d\left(v_{1}\right)=4$ or if $d\left(v_{6}\right)=4$, then in Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v, v_{6}\right\}$, we have $n^{\prime}=n-5, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{1}\right)=d\left(v_{6}\right)=3$. Similarly, $d\left(v_{4}\right)=3$. Thus by the claw-freeness of G, v is the only common neighbor of v_{1} and v_{4}. It follows that for $i \geq 6$, the vertex v_{i} is at distance at least 3 from at least one vertex in $\left\{v, v_{2}, v_{3}\right\}$, and so, by Observation $5, d\left(v_{i}\right)=3$.

Suppose that $d\left(v_{5}\right)=4$. Let $N\left(v_{5}\right)=\left\{v_{2}, v_{3}, v_{6}, v_{7}\right\}$. Then, $v_{6} v_{7}$ is an edge. Let $N\left(v_{6}\right)=\left\{v_{5}, v_{7}, v_{8}\right\}$. Then, $v_{1} v_{8}$ and $v_{4} v_{8}$ are not edges. Suppose $v_{7} v_{8}$ is an edge, i.e., if $N\left(v_{7}\right)=\left\{v_{5}, v_{6}, v_{8}\right\}$. Since G is claw-free, and $d\left(v_{1}\right)=d\left(v_{8}\right)=3, v_{1}$ and v_{8} have no common neighbor. Thus in Observation 2, taking $V^{\prime}=\left(V_{8} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{6}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{7} v_{8}$ is not an edge. In Observation 2, taking $V^{\prime}=\left(V_{6} \backslash\left\{v_{4}\right\}\right) \cup\left\{v, v_{8}\right\}$, we have $n^{\prime}=n-7$, $m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{6}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{5}\right)=3$, i.e., $N\left(v_{5}\right)=\left\{v_{2}, v_{3}, v_{6}\right\}$. Let $N\left(v_{6}\right)=\left\{v_{5}, v_{7}, v_{8}\right\}$. Then, $v_{7} v_{8}$ is an edge, and there is no edge joining $\left\{v_{1}, v_{4}\right\}$ and $\left\{v_{7}, v_{8}\right\}$.

Suppose that a vertex in $\left\{v_{1}, v_{4}\right\}$ has a common neighbor with a vertex in $\left\{v_{7}, v_{8}\right\}$. We may assume that v_{1} and v_{7} have a common neighbor, say v_{10}. By the claw-freeness of $G, N\left(v_{10}\right)=\left\{v_{1}, v_{7}, v_{8}\right\}$. Thus in Observation 2, taking $V^{\prime}=\left(V_{10} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{6}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence no vertex in $\left\{v_{1}, v_{4}\right\}$ has a common neighbor with a vertex in $\left\{v_{7}, v_{8}\right\}$.

Let $N\left(v_{7}\right)=\left\{v_{6}, v_{8}, v_{9}\right\}$. If $v_{8} v_{9}$ is an edge, then in Observation 2, taking $V^{\prime}=$ $\left(V_{8} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus,
$T=T^{\prime} \cup\left\{v, v_{1}, v_{6}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{8} v_{9}$ is not an edge. Let $N\left(v_{8}\right)=\left\{v_{6}, v_{7}, v_{10}\right\}$.

If $v_{9} v_{10}$ is an edge, then in Observation 2, taking $V^{\prime}=\left(V_{10} \backslash\left\{v_{1}, v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-10, m^{\prime}=n-12$ and $\left|T^{\prime}\right| \leq(2 n-22) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{2}, v_{3}, v_{7}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-6) / 4$, contradicting Observation 1. Hence, $v_{9} v_{10}$ is not an edge. Let $N\left(v_{9}\right)=\left\{v_{7}, v_{11}, v_{12}\right\}$.

Suppose v_{10} is not adjacent to v_{11} or v_{12}. Let $N\left(v_{10}\right)=\left\{v_{8}, v_{13}, v_{14}\right\}$. If there is an edge joining $\left\{v_{11}, v_{12}\right\}$ and $\left\{v_{13}, v_{14}\right\}$, say $v_{11} v_{13}$ is an edge, then in Observation 2, taking $V^{\prime}=\left(V_{11} \backslash V_{4}\right) \cup\left\{v, v_{13}\right\}$, we have $n^{\prime}=n-8, m^{\prime}=n-12$ and $\left|T^{\prime}\right| \leq(2 n-20) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{5}, v_{6}, v_{11}, v_{13}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence there is no edge joining $\left\{v_{11}, v_{12}\right\}$ and $\left\{v_{13}, v_{14}\right\}$. Suppose that there is an edge joining $\left\{v_{1}, v_{4}\right\}$ and $\left\{v_{11}, v_{12}, v_{13}, v_{14}\right\}$, say $v_{1} v_{11}$. Then in Observation 2, taking $V^{\prime}=\left(V_{9} \backslash\left\{v_{4}\right\}\right) \cup\left\{v, v_{11}\right\}$, we have $n^{\prime}=n-10, m^{\prime}=n-13$ and $\left|T^{\prime}\right| \leq(2 n-23) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{6}, v_{8}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence there is no edge joining $\left\{v_{1}, v_{4}\right\}$ and $\left\{v_{11}, v_{12}, v_{13}, v_{14}\right\}$. Now at least one of v_{11} or v_{13}, say v_{11}, has no common neighbor with v_{1}. Therefore in Observation 2, taking $V^{\prime}=\left(V_{8} \backslash\left\{v_{4}\right\}\right) \cup\left\{v, v_{11}\right\}$, we have $n^{\prime}=n-9, m^{\prime}=n-14$ and $\left|T^{\prime}\right| \leq(2 n-23) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{6}, v_{8}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{10} is adjacent to v_{11} or v_{12}. Thus, by the clawfreeness of $G, N\left(v_{10}\right)=\left\{v_{8}, v_{11}, v_{12}\right\}$.

By the claw-freeness of G, v is the only common neighbor of v_{1} and v_{4}. Let $N\left(v_{1}\right)=$ $\left\{v, v_{2}, v_{13}\right\}$ and $N\left(v_{2}\right)=\left\{v, v_{3}, v_{14}\right\}$. If $v_{13} v_{14}$ is an edge, then in Observation 2, taking $V^{\prime}=\left(V_{13} \backslash\left\{v_{1}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-13, m^{\prime}=n-15$ and $\left|T^{\prime}\right| \leq(2 n-28) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{5}, v_{9}, v_{10}, v_{11}, v_{14}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence, $v_{13} v_{14}$ is not an edge. Let $N\left(v_{13}\right)=\left\{v_{1}, v_{15}, v_{16}\right\}$.

If v_{14} is adjacent to v_{15} or v_{16}, then $N\left(v_{14}\right)=\left\{v_{4}, v_{15}, v_{16}\right\}$ and the graph G is fully described (and has order $n=17$). But then $\left\{v_{2}, v_{5}, v_{9}, v_{10}, v_{11}, v_{14}, v_{15}\right\}$, for example, is a TDS of G, and so $\gamma_{t}(G) \leq 7=(n-3) / 2$, a contradiction. Hence, v_{14} is adjacent to neither v_{15} nor v_{16}. Let $N\left(v_{14}\right)=\left\{v_{4}, v_{17}, v_{18}\right\}$. Then in Observation 2, taking $V^{\prime}=$ $\left(V_{15} \backslash\left\{v_{13}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-15, m^{\prime} \leq n-17$ and $\left|T^{\prime}\right| \leq(2 n-32) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{2}, v_{5}, v_{9}, v_{10}, v_{11}, v_{14}, v_{15}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1.

Case 2. $v_{3} v_{5}$ is not an edge. Then, $v_{1} v_{5}$ is an edge since G is claw-free.
Suppose that $v_{4} v_{5}$ is an edge. Suppose $d\left(v_{1}\right)=4$. Let $N\left(v_{1}\right)=\left\{v, v_{2}, v_{5}, v_{6}\right\}$. Then, $N\left(v_{5}\right)=\left\{v_{1}, v_{2}, v_{4}, v_{6}\right\}$. Thus in Observation 2, taking $V^{\prime}=\left(V_{5} \backslash\left\{v_{3}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-5, m^{\prime}=n-7$ and $\left|T^{\prime}\right| \leq(2 n-12) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence, $d\left(v_{1}\right)=3$. Thus in Observation 2, taking $V^{\prime}=\left(V_{5} \backslash\left\{v_{3}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-5, m^{\prime} \leq n-6$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence, $v_{4} v_{5}$ is not an edge.

Case 2.1 $d\left(v_{1}\right)=3$. If $d\left(v_{3}\right)=4$, then in Observation 2, taking $V^{\prime}=V_{3} \cup\{v\}$, we have $n^{\prime}=n-4, m^{\prime} \leq n-7$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{2}, v_{3}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{3}\right)=3$. Let
$v_{6} \in N\left(v_{5}\right) \backslash\left\{v_{1}, v_{2}\right\}$.
Suppose that v_{4} and v_{5} have a common neighbor. We may assume that $v_{4} v_{6}$ is an edge. Then in Observation 2, taking $V^{\prime}=V_{6} \cup\{v\}$, we have $n^{\prime}=n-7, m^{\prime} \leq n-8$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1 . Hence, v_{4} and v_{5} have no common neighbor. It follows that for $i \geq 6$, the vertex v_{i} is at distance at least 3 from at least one of v and v_{2}, and so, by Observation $5, d\left(v_{i}\right)=3$. In particular, $d\left(v_{6}\right)=3$.

If v_{4} and v_{6} have no common neighbor, then in Observation 2, taking $V^{\prime}=V_{4} \cup\left\{v, v_{6}\right\}$, we have $n^{\prime}=n-6, m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{4} and v_{6} have a common neighbor, v_{7} say. Since v_{4} and v_{5} have no common neighbor, $v_{5} v_{7}$ is not an edge.

Let $N\left(v_{7}\right)=\left\{v_{4}, v_{6}, v_{8}\right\}$. If v_{8} is adjacent to a vertex not in $\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$, then in Observation 2, taking $V^{\prime}=V_{8} \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{2}, v_{5}, v_{7}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $N\left(v_{8}\right) \subseteq\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$.

On the one hand, if $v_{5} v_{8}$ is not an edge, then $N\left(v_{8}\right)=\left\{v_{4}, v_{6}, v_{7}\right\}$ and $d\left(v_{5}\right)=3$. But then $G=F_{9}$. On the other hand, if $v_{5} v_{8}$ is an edge, then since v_{4} and v_{5} have no common neighbor, $N\left(v_{8}\right)=\left\{v_{5}, v_{6}, v_{7}\right\}$. If now $d\left(v_{4}\right)=4$, then in Observation 2, taking $V^{\prime}=V_{8} \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{4}, v_{5}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{4}\right)=3$, and so $G=F_{9}$.

Case $2.2 d\left(v_{1}\right)=4$. Let $N\left(v_{1}\right)=\left\{v, v_{2}, v_{5}, v_{6}\right\}$. Then, $v_{5} v_{6}$ is an edge. If $d\left(v_{5}\right)=3$, then in Observation 2, taking $V^{\prime}=V_{2} \cup\left\{v, v_{5}\right\}$, we have $n^{\prime}=n-4, m^{\prime} \leq n-7$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{5}\right)=4$. Let $N\left(v_{5}\right)=\left\{v_{1}, v_{2}, v_{6}, v_{7}\right\}$. Then, $v_{6} v_{7}$ is an edge.

If $d\left(v_{3}\right)=3$, then in Observation 2, taking $V^{\prime}=V_{3} \cup\{v\}$, we have $n^{\prime}=n-4$, $m^{\prime} \leq n-7$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{3}\right)=4$. Since G is claw-free, $v_{3} v_{6}$ is not an edge. If $v_{3} v_{7}$ is an edge, then so too is $v_{4} v_{7}$. But then in Observation 2, taking $V^{\prime}=V_{5} \cup\left\{v, v_{7}\right\}$, we have $n^{\prime}=n-7, m^{\prime} \leq n-8$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{4}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{3} v_{7}$ is not an edge. Let $N\left(v_{3}\right)=\left\{v, v_{2}, v_{4}, v_{8}\right\}$. Then, $v_{4} v_{8}$ is an edge.

If $d\left(v_{4}\right)=3$ or if v_{4} is adjacent to v_{6} or v_{7}, then in Observation 2, taking $V^{\prime}=V_{5} \cup\{v\}$, we have $n^{\prime}=n-6, m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{2}, v_{3}, v_{5}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{4}\right)=4$ and neither $v_{4} v_{6}$ nor $v_{4} v_{7}$ is an edge. Let $N\left(v_{4}\right)=\left\{v, v_{3}, v_{8}, v_{9}\right\}$. Then, $v_{8} v_{9}$ is an edge. In Observation 2, taking $V^{\prime}=\left(V_{9} \backslash\left\{v_{7}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{4}, v_{6}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. This completes the proof of Claim 4 and of Observation 10 .

By Observation 10, we may assume that the subgraph induced by the neighborhood of every degree- 4 vertex is not isomorphic to P_{4}. This, together with our earlier assumptions, implies the following observation.

Observation 11 The subgraph induced by the neighborhood of every degree-4 vertex is isomorphic to $2 K_{2}$.

Since G is claw-free, we have the following observation.
Observation 12 If u and w are adjacent vertices that do not have exactly one common neighbor, then $d(u)=d(w)=3$.

Proof. Suppose, to the contrary, that $d(u)=4$. If u and w have no common neighbor, then $N(u)$ induces a subgraph isomorphic to $K_{1} \cup C_{3}$, while if u and w have at least two common neighbors, then $N(u)$ induces a subgraph that contains a path P_{3}, contrary to assumption.

By Observation 11, $G_{v}=2 K_{2}$. We may assume that $v_{1} v_{2}$ and $v_{3} v_{4}$ are edges.
Observation 13 If two vertices in $N(v)$ have a common neighbor different from v, then $G \in\left\{F_{2}, F_{3}, F_{7}\right\}$.

Proof. We may assume that v_{1} and v_{2} have a common neighbor v_{5} different from v. By Observation 12, $d\left(v_{1}\right)=d\left(v_{2}\right)=3$.

If v_{5} is adjacent to v_{3} or v_{4}, say to v_{3}, then in Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v, v_{5}\right\}$, we have $n^{\prime}=n-5, m^{\prime}=n-6$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{3}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $N\left(v_{5}\right) \cap N(v)=V_{2}$.

Case 1. $d\left(v_{5}\right)=3$. Let $N\left(v_{5}\right)=\left\{v_{1}, v_{2}, v_{6}\right\}$. By Observation $12, d\left(v_{6}\right)=3$. If $N\left(v_{6}\right)=\left\{v_{3}, v_{4}, v_{5}\right\}$, then $G=F_{2}$. Hence we may assume that v_{6} is not adjacent with both v_{3} or v_{4}, say $v_{4} v_{6}$ is not an edge.

Suppose $v_{3} v_{6}$ is an edge. Let $N\left(v_{6}\right)=\left\{v_{3}, v_{5}, v_{7}\right\}$. Then, $v_{3} v_{7}$ is an edge. By Observation 12, $v_{4} v_{7}$ is not an edge. Let $v_{8} \in N\left(v_{7}\right) \backslash\left\{v_{3}, v_{6}\right\}$. If $v_{4} v_{8}$ is an edge, then in Observation 2, taking $V^{\prime}=V_{8} \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. If $v_{4} v_{8}$ is not an edge, then in Observation 2, taking $V^{\prime}=\left(V_{8} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-8, m^{\prime}=n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. In both cases, $T=T^{\prime} \cup\left\{v, v_{1}, v_{7}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{3} v_{6}$ is not an edge. Thus, v and v_{6} have no common neighbor. Let $N\left(v_{6}\right)=\left\{v_{5}, v_{7}, v_{8}\right\}$. Then, $v_{7} v_{8} \in E$.

Case 1.1 There is an edge joining $\left\{v_{3}, v_{4}\right\}$ and $\left\{v_{7}, v_{8}\right\}$. We may assume that $v_{3} v_{7}$ is an edge.

If $v_{4} v_{7}$ is an edge, then by Observation 12, $d\left(v_{3}\right)=d\left(v_{4}\right)=3$. In Observation 2, taking $V^{\prime}=V_{8} \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{5}, v_{7}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{4} v_{7}$ is not an edge.

If $v_{3} v_{8}$ is an edge, then by Observation $12, d\left(v_{7}\right)=d\left(v_{8}\right)=3$. Thus in Observation 2, taking $V^{\prime}=V_{8} \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{3} v_{8}$ is not an edge.

Suppose that $d\left(v_{3}\right)=3$. Then, $d\left(v_{7}\right)=3$. If $v_{4} v_{8}$ is not an edge or if $d\left(v_{4}\right)=4$, then in Observation 2, taking $V^{\prime}=V_{8} \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{6}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{4} v_{8}$ is an edge and $d\left(v_{4}\right)=3$, implying that $d\left(v_{8}\right)=3$ and $G=F_{3}$. Hence we may assume that $d\left(v_{3}\right)=4$. Similarly, we may assume that $d\left(v_{4}\right)=4$.

Let $N\left(v_{3}\right)=\left\{v, v_{4}, v_{7}, v_{9}\right\}$. Then, $v_{7} v_{9}$ is an edge, and so $d\left(v_{7}\right)=4$. By Observation 12, v_{9} is adjacent to neither v_{4} nor v_{8}. In Observation 2, taking $V^{\prime}=V_{7} \cup\{v\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{6}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1.

Case 1.2 There is no edge joining $\left\{v_{3}, v_{4}\right\}$ and $\left\{v_{7}, v_{8}\right\}$. Then both v_{7} and v_{8} are at distance at least 3 from v, and so, by Observation $5, d\left(v_{7}\right)=d\left(v_{8}\right)=3$.

Suppose v_{7} and v_{8} have a common neighbor v_{9}, different from v_{6}. By Observation 12, $d\left(v_{7}\right)=d\left(v_{8}\right)=3$. If $N\left(v_{9}\right) \cap\left\{v_{3}, v_{4}\right\}=\emptyset$, then in Observation 2, taking $V^{\prime}=\left(V_{9} \backslash\right.$ $\left.\left\{v_{3}, v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-8, m^{\prime}=n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{7}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence we may assume that $v_{3} v_{9}$ in an edge. But then in Observation 2, taking $V^{\prime}=\left(V_{9} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{7}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence we may assume that v_{6} is the only common neighbor of v_{7} and v_{8}.

Let $N\left(v_{7}\right)=\left\{v_{6}, v_{8}, v_{9}\right\}$. Then, $v_{8} v_{9}$ is not an edge. By Observation 12, $d\left(v_{9}\right)=3$. If $v_{3} v_{9}$ is an edge, then in Observation 2, taking $V^{\prime}=\left(V_{9} \backslash\left\{v_{4}, v_{8}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-8$, $m^{\prime}=n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{7}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1 . Hence, $v_{3} v_{9}$ is not an edge. Similarly, $v_{4} v_{9}$ is not an edge. But then in Observation 2, taking $V^{\prime}=\left(V_{9} \backslash\left\{v_{3}, v_{4}, v_{8}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-7, m^{\prime} \leq n-12$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{7}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1.

Case 2. $d\left(v_{5}\right)=4$. Let $N\left(v_{5}\right)=\left\{v_{1}, v_{2}, v_{6}, v_{7}\right\}$. Then, $v_{6} v_{7}$ is an edge.
Case 2.1. There is an edge joining $\left\{v_{3}, v_{4}\right\}$ and $\left\{v_{6}, v_{7}\right\}$. We may assume that $v_{3} v_{6}$ is an edge. If $v_{4} v_{6}$ is an edge, then by Observation $12, d\left(v_{3}\right)=d\left(v_{4}\right)=3$. Thus in Observation 2, taking $V^{\prime}=V_{6} \cup\{v\}$, we have $n^{\prime}=n-7, m^{\prime} \leq n-8$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{5}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{4} v_{6}$ is not an edge.

If $d\left(v_{6}\right)=4$, then in Observation 2, taking $V^{\prime}=\left(V_{6} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-6$, $m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{5}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{6}\right)=3$. Therefore, $d\left(v_{3}\right)=3$.

If $v_{4} v_{7}$ is an edge, then in Observation 2, taking $V^{\prime}=V_{7} \cup\{v\}$, we have $n^{\prime}=n-8$, $m^{\prime} \leq n-8$ and $\left|T^{\prime}\right| \leq(2 n-16) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence, $v_{4} v_{7}$ is not an edge.

If v_{4} and v_{7} have a common neighbor, say v_{8}, then in Observation 2, taking $V^{\prime}=V_{8} \cup$ $\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{7}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{4} and v_{7} have no common neighbor.

Let $v_{9} \in N\left(v_{4}\right) \backslash\left\{v, v_{3}\right\}$. In Observation 2, taking $V^{\prime}=V_{7} \cup\left\{v, v_{9}\right\}$, we have $n^{\prime}=n-9$, $m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{4}, v_{5}, v_{7}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1.

Case 2.2. There is no edge joining $\left\{v_{3}, v_{4}\right\}$ and $\left\{v_{6}, v_{7}\right\}$. Then both v_{6} and v_{7} are at distance 3 from v, and so, by Observation $5, d\left(v_{6}\right)=d\left(v_{7}\right)=3$. Let $N\left(v_{6}\right)=\left\{v_{5}, v_{7}, v_{8}\right\}$.

Suppose that there is a vertex that is a common neighbor of a vertex in $\left\{v_{3}, v_{4}\right\}$ and a vertex in $\left\{v_{6}, v_{7}\right\}$. We may assume that $v_{3} v_{8}$ is an edge. Suppose $v_{7} v_{8}$ is not an edge. Then, by Observation $12, d\left(v_{8}\right)=3$ and v_{3} and v_{8} have a common neighbor. If $v_{4} v_{8}$ is an edge, then by Observation $12, d\left(v_{3}\right)=d\left(v_{4}\right)=3$. Let $N\left(v_{7}\right)=\left\{v_{5}, v_{6}, v_{9}\right\}$. Then in Observation 2, taking $V^{\prime}=V_{9} \cup\{v\}$, we have $n^{\prime}=n-10, m^{\prime} \leq n-12$ and $\left|T^{\prime}\right| \leq(2 n-22) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{3}, v_{7}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-6) / 4$, contradicting Observation 1. Hence, $v_{4} v_{8}$ is not an edge. But then in Observation 2, taking $V^{\prime}=V_{6} \cup\left\{v, v_{8}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{6}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{7} v_{8}$ is an edge. If $v_{4} v_{8}$ is not an edge, then in Observation 2, taking $V^{\prime}=V_{8} \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{6}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{4} v_{8}$ is an edge, and so $G=F_{7}$.

Hence we may assume that no vertex is a common neighbor of a vertex in $\left\{v_{3}, v_{4}\right\}$ and a vertex in $\left\{v_{6}, v_{7}\right\}$, for otherwise $G=F_{7}$. Thus, $d\left(v, v_{8}\right) \geq 3$, and so, by Observation 5 , $d\left(v_{8}\right)=3$.

Suppose that v_{3} or v_{4}, say v_{3}, has degree 3. Then in Observation 2, taking $V^{\prime}=$ $V_{2} \cup\left\{v, v_{3}, v_{6}\right\}$, we have $n^{\prime}=n-5, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{3}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{3}\right)=d\left(v_{4}\right)=3$.

If v_{3} and v_{4} have a common neighbor different from v, then in Observation 2, taking $V^{\prime}=V_{4} \cup\left\{v, v_{6}\right\}$, we have $n^{\prime}=n-6, m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{3}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v is the only common neighbor of v_{3} and v_{4}. Let $N\left(v_{3}\right)=\left\{v, v_{4}, v_{9}\right\}$. By Observation $12, d\left(v_{9}\right)=3$.

If $v_{7} v_{8}$ is an edge, then in Observation 2, taking $V^{\prime}=V_{7} \backslash\left\{v_{4}\right\}$, we have $n^{\prime}=n-6$, $m^{\prime} \leq n-9$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{5}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{7} v_{8}$ is not an edge. If $v_{8} v_{9}$ is not an edge, then in Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v, v_{5}, v_{6}, v_{9}\right\}$, we have $n^{\prime}=n-7$, $m^{\prime}=n-12$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{5}, v_{6}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{8} v_{9}$ is an edge.

Let v_{10} be the common neighbor of v_{8} and v_{9}, and so $N\left(v_{8}\right)=\left\{v_{6}, v_{9}, v_{10}\right\}$ and $N\left(v_{9}\right)=$ $\left\{v_{3}, v_{8}, v_{10}\right\}$. Then in Observation 2, taking $V^{\prime}=\left(V_{9} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-9$, $m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-20) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{5}, v_{7}, v_{9}\right\}$ is a transversal of
H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. This completes the proof of Observation 13.

By Observation 13, we may assume that no two vertices in $N(v)$ have a common neighbor different from v. Thus, $N\left(v_{i}\right) \cap N\left(v_{j}\right)=\{v\}$ for $1 \leq i<j \leq 4$. For $i=1,2,3,4$, let v_{i+4} be the neighbor of v_{i} not in $N[v]$. Thus, $\left\{v_{1} v_{5}, v_{2} v_{6}, v_{3} v_{7}, v_{4} v_{8}\right\} \subset E$.

Observation 14 There is no 4-cycle containing both v_{1} and v_{2} or containing both v_{3} and v_{4}.

Proof. Suppose, to the contrary, that there is a 4 -cycle containing both v_{1} and v_{2} or containing both v_{3} and v_{4}. By symmetry, we may assume there is a 4 -cycle containing both v_{1} and v_{2} and that $v_{5} v_{6}$ is an edge.

Case 1. v_{1} or v_{2} has degree 4. We may assume that $d\left(v_{1}\right)=4$. Let $N\left(v_{1}\right)=$ $\left\{v, v_{2}, v_{5}, v_{9}\right\}$. Then, $v_{5} v_{9}$ is an edge. If $v_{6} v_{9}$ is an edge, then by Observation 12, $d\left(v_{5}\right)=$ $d\left(v_{9}\right)=3$. Thus in Observation 2, taking $V^{\prime}=V_{2} \cup\left\{v_{5}, v_{6}, v_{9}\right\}$, we have $n^{\prime}=n-5$, $m^{\prime}=n-6$ and $\left|T^{\prime}\right| \leq(2 n-11) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{2}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{6} v_{9}$ is not an edge. Every neighbor of v_{6}, different from v_{2} and v_{5}, is adjacent to v_{2} or v_{5}.

Suppose that v_{6} is adjacent to v_{7} or v_{8}, say v_{7}. Then, $v_{5} v_{7}$ is an edge. If v_{3} or v_{4} or v_{6} has degree 4, then in Observation 2, taking $V^{\prime}=V_{7} \cup\{v\}$, we have $n^{\prime}=n-8$, $m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{3}\right)=d\left(v_{4}\right)=d\left(v_{6}\right)=3$. Thus in Observation 2, taking $V^{\prime}=\left(V_{7} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-7, m^{\prime}=n-9$ and $\left|T^{\prime}\right| \leq(2 n-16) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{5}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1 . Hence, v_{6} is adjacent to neither v_{7} nor v_{8}. By the claw-freeness of G, v_{5} is also adjacent to neither v_{7} nor v_{8}.

If one of v_{3} or v_{4}, say v_{3}, has degree 4 or if $d\left(v_{6}\right)=4$, then in Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v_{5}, v_{6}\right\}$, we have $n^{\prime}=n-5, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{5}, v_{6}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{3}\right)=d\left(v_{4}\right)=d\left(v_{6}\right)=3$. Thus, by Observation 12, $d\left(v_{7}\right)=$ $d\left(v_{8}\right)=3$. Let $N\left(v_{6}\right)=\left\{v_{2}, v_{5}, v_{10}\right\}$.

If $v_{7} v_{8}$ is an edge, then in Observation 2, taking $V^{\prime}=V_{8} \cup\{v\}$, we have $n^{\prime}=n-9$, $m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-20) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{5}, v_{6}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{7} v_{8}$ is not an edge.

If v_{7} or v_{8}, say v_{7}, is adjacent to neither v_{9} nor v_{10}, then in Observation 2, taking $V^{\prime}=\left(V_{7} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-7, m^{\prime}=n-12$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{5}, v_{6}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence each of v_{7} and v_{8} is adjacent to at least one of v_{9} and v_{10}. By the claw-freeness of G, each of v_{7} and v_{8} is adjacent to at most one of v_{9} and v_{10}. Hence we may assume that $N\left(v_{7}\right)=\left\{v_{3}, v_{9}, v_{11}\right\}$ and $N\left(v_{8}\right)=\left\{v_{4}, v_{10}, v_{12}\right\}$. Thus, $v_{9} v_{11}$ is an edge and $v_{10} v_{12}$ is an edge. In Observation 2, taking $V^{\prime}=V_{10} \cup\{v\}$, we have $n^{\prime}=n-11$, $m^{\prime} \leq n-13$ and $\left|T^{\prime}\right| \leq(2 n-24) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{8}, v_{9}, v_{10}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1.

Case 2. $d\left(v_{1}\right)=d\left(v_{2}\right)=3$. Thus by Observation 12, $d\left(v_{5}\right)=d\left(v_{6}\right)=3$.
If v_{7} or v_{8}, say v_{7}, is the common neighbor of v_{5} and v_{6}, then in Observation 2, taking $V^{\prime}=\left(V_{7} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-7, m^{\prime} \leq n-8$ and $\left|T^{\prime}\right| \leq(2 n-15) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{3}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence neither v_{7} nor v_{8} is the common neighbor of v_{5} and v_{6}. Let v_{9} be the common neighbor of v_{5} and v_{6}.

Suppose that v_{9} has a common neighbor with v_{3} or v_{4}. We may assume that $v_{7} v_{9}$ is an edge. Then in Observation 2, taking $V^{\prime}=V_{7} \cup\left\{v, v_{9}\right\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{7}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{9} has no common neighbor with v_{3} or v_{4}. In particular, v_{9} is adjacent to neither v_{7} nor v_{8}. Thus, $d\left(v, v_{9}\right)=3$, and so, by Observation 5, $d\left(v_{9}\right)=3$. Let $N\left(v_{9}\right)=\left\{v_{5}, v_{6}, v_{10}\right\}$. Then in Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v, v_{5}, v_{6}, v_{9}, v_{10}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{3}, v_{9}, v_{10}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1.

Since both Case 1 and Case 2 produce a contradiction, we conclude that $v_{5} v_{6}$ is not an edge, i.e., there is no 4 -cycle containing both v_{1} and v_{2} or containing both v_{3} and v_{4}.

Observation $15\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$ is an independent set.
Proof. Assume, to the contrary, that $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$ is not an independent set. Then, by Observation 14, there is an edge joining a vertex in $\left\{v_{5}, v_{6}\right\}$ with a vertex in $\left\{v_{7}, v_{8}\right\}$. We may assume that $v_{6} v_{7} \in E$. We show first that v_{6} and v_{7} have a common neighbor.

Claim $5 v_{6}$ and v_{7} have a common neighbor.
Proof. Suppose, to the contrary, that v_{6} and v_{7} have no common neighbor. Then, by Observation 12, $d\left(v_{6}\right)=d\left(v_{7}\right)=3$. Let $N\left(v_{6}\right)=\left\{v_{2}, v_{7}, v_{9}\right\}$ and let $N\left(v_{7}\right)=\left\{v_{3}, v_{6}, v_{10}\right\}$. Then, $v_{2} v_{9}$ and $v_{3} v_{10}$ are edges, and $d\left(v_{2}\right)=d\left(v_{3}\right)=4$. By Observation 14, $v_{5} v_{9}$ is not an edge and $v_{8} v_{10}$ is not an edge.

If $v_{5} v_{10}$ is an edge, then in Observation 2, taking $V^{\prime}=\left(V_{7} \backslash\left\{v_{4}\right\}\right) \cup\left\{v, v_{10}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{2}, v_{5}, v_{10}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{5} v_{10}$ is not an edge. Similarly, $v_{8} v_{9}$ is not an edge.

Suppose $v_{9} v_{10}$ is an edge. If $d\left(v_{1}\right)=4$ or if $d\left(v_{9}\right)=4$ or if $d\left(v_{10}\right)=4$, then in Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v, v_{6}, v_{7}, v_{9}, v_{10}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{9}, v_{10}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $d\left(v_{1}\right)=d\left(v_{9}\right)=d\left(v_{10}\right)=3$. Similarly, $d\left(v_{4}\right)=3$. But then in Observation 2, taking $V^{\prime}=\left(V_{10} \backslash\left\{v_{5}, v_{8}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-20) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence, $v_{9} v_{10}$ is not an edge.

Suppose $v_{5} v_{8}$ is an edge. Suppose v_{5} and v_{8} have a common neighbor, say v_{11}. Then, in Observation 2, taking $V^{\prime}=\left(V_{7} \backslash\left\{v_{5}\right\}\right) \cup\left\{v, v_{11}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$
and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{2}, v_{3}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{5} and v_{8} have no common neighbor. Thus by Observation 12, $d\left(v_{5}\right)=d\left(v_{8}\right)=3$. Let $N\left(v_{5}\right)=\left\{v_{1}, v_{8}, v_{11}\right\}$ and let $N\left(v_{8}\right)=\left\{v_{4}, v_{5}, v_{12}\right\}$. Thus, $v_{1} v_{11}$ and $v_{4} v_{12}$ are edges, and $d\left(v_{1}\right)=d\left(v_{4}\right)=4$. A similar argument to the one that show that $v_{9} v_{10}$ is not an edge, shows that $v_{11} v_{12}$ is not an edge.

By Observation 14, we know that neither $v_{9} v_{11}$ nor $v_{10} v_{12}$ is an edge. Suppose that $v_{9} v_{12}$ or $v_{10} v_{11}$ is an edge. By symmetry, we may assume $v_{9} v_{12}$ is an edge. In Observation 2, taking $V^{\prime}=V_{9} \cup\left\{v, v_{12}\right\}$, we have $n^{\prime}=n-11, m^{\prime} \leq n-13$ and $\left|T^{\prime}\right| \leq(2 n-24) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{3}, v_{9}, v_{12}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence, neither $v_{9} v_{12}$ nor $v_{10} v_{11}$ is an edge. Thus, $\left\{v_{9}, v_{10}, v_{11}, v_{12}\right\}$ is an independent set.

Let $v_{13} \in N\left(v_{12}\right)$. Since $\left\{v_{9}, v_{10}, v_{11}, v_{12}\right\}$ is an independent set, v_{13} is adjacent to at most two vertices in $\left\{v_{9}, v_{10}, v_{11}, v_{12}\right\}$. Thus, v_{13} has at least one neighbor not in the set $\left\{v_{9}, v_{10}, v_{11}, v_{12}\right\}$. Therefore in Observation 2, taking $V^{\prime}=V_{8} \cup\left\{v, v_{11}, v_{12}, v_{13}\right\}$, we have $n^{\prime}=n-12, m^{\prime} \leq n-15$ and $\left|T^{\prime}\right| \leq(2 n-27) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{6}, v_{7}, v_{11}, v_{12}, v_{13}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. This completes the proof of Claim 5.

By Claim 5, v_{6} and v_{7} have a common neighbor, say v_{9}. By Observation $14, v_{9}$ is adjacent to neither v_{1} nor v_{4}. Thus, $d\left(v, v_{9}\right)=3$, and so, by Observation $4, d\left(v_{9}\right)=3$.

Suppose that $d\left(v_{2}\right)=d\left(v_{3}\right)=3$. Then, by Observation $12, d\left(v_{6}\right)=d\left(v_{7}\right)=3$. Suppose that v_{9} is adjacent to v_{5} or v_{8}, say v_{5}. Then in Observation 2, taking $V^{\prime}=V_{7} \cup\left\{v, v_{9}\right\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-10$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{5}, v_{9}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, neither $v_{5} v_{9}$ nor $v_{8} v_{9}$ is an edge. Let $N\left(v_{9}\right)=\left\{v_{6}, v_{7}, v_{10}\right\}$. In Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v, v_{6}, v_{7}, v_{9}, v_{10}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{9}, v_{10}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence at least one of v_{2} and v_{3} has degree 4.

If $v_{2} v_{9}$ is an edge, then by Observation $12, d\left(v_{6}\right)=d\left(v_{9}\right)=3$, and so in Observation 2, taking $V^{\prime}=\left(V_{7} \backslash\left\{v_{4}\right\}\right) \cup\left\{v, v_{9}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{2} v_{9}$ is not an edge. Similarly, $v_{3} v_{9}$ is not an edge. Thus, if $d\left(v_{2}\right)=4$, then v_{2} and v_{6} have a common neighbor which is different from v_{9}, while if $d\left(v_{3}\right)=4$, then v_{3} and v_{7} have a common neighbor which is different from v_{9}. In particular, $d\left(v_{6}\right)=4$ or $d\left(v_{7}\right)=4$.

Suppose v_{9} is adjacent to v_{5} or v_{8}, say v_{5}. By Observation $12, d\left(v_{5}\right)=3$. Hence, $d\left(v_{1}\right)=4$ and v_{1} and v_{5} have a common neighbor. In Observation 2, taking $V^{\prime}=$ $\left(V_{7} \backslash\left\{v_{4}\right\}\right) \cup\left\{v, v_{9}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{6}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{9} is adjacent to neither v_{5} nor v_{8}. Let $N\left(v_{9}\right)=\left\{v_{6}, v_{7}, v_{10}\right\}$. By Observation 12, $d\left(v_{10}\right)=3$.

If v_{10} is adjacent to v_{2} or v_{3}, say v_{2}, then $v_{6} v_{10}$ is an edge, and so $N\left(v_{6}\right)$ induces a subgraph that contains a P_{4}, contradicting Observation 11. Hence, v_{10} is adjacent to neither v_{2} nor v_{3}. If v_{10} is adjacent to v_{1} or v_{4}, say v_{1}, then $v_{5} v_{10}$ is an edge. But then
in Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v, v_{6}, v_{7}, v_{9}, v_{10}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{6}, v_{7}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{10} is adjacent to no vertex in $N(v)$.

If v_{10} is adjacent to v_{5} or v_{8}, say v_{5}, then v_{5} and v_{10} have a common neighbor. In Observation 2, taking $V^{\prime}=\left(V_{10} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-10, m^{\prime} \leq n-14$ and $\left|T^{\prime}\right| \leq(2 n-24) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence, v_{10} is adjacent to neither v_{5} nor v_{8}. Let $N\left(v_{10}\right)=\left\{v_{9}, v_{11}, v_{12}\right\}$. Then, $v_{11} v_{12}$ is an edge.

Suppose there is an edge joining a vertex in $\left\{v_{2}, v_{3}\right\}$ with a vertex in $\left\{v_{11}, v_{12}\right\}$. We may assume $v_{2} v_{11}$ is an edge. Then $v_{6} v_{11}$ is an edge and in Observation 2, taking $V^{\prime}=$ $\left(V_{11} \backslash\left\{v_{1}, v_{4}, v_{5}, v_{8}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{3}, v_{10}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, there is no edge joining $\left\{v_{2}, v_{3}\right\}$ and $\left\{v_{11}, v_{12}\right\}$.

Suppose there is an edge joining a vertex in $\left\{v_{1}, v_{4}\right\}$ with a vertex in $\left\{v_{11}, v_{12}\right\}$. We may assume $v_{1} v_{11}$ is an edge. Then, $v_{5} v_{11}$ is an edge. But then in Observation 2, taking $V^{\prime}=\left(V_{11} \backslash\left\{v_{4}, v_{5}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-10, m^{\prime} \leq n-13$ and $\left|T^{\prime}\right| \leq(2 n-23) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{6}, v_{7}, v_{8}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, neither v_{11} nor v_{12} is adjacent to a vertex in $N(v)$. Thus, by Observation 4, $d\left(v_{11}\right)=d\left(v_{12}\right)=3$.

Suppose there is an edge joining a vertex in $\left\{v_{5}, v_{8}\right\}$ with a vertex in $\left\{v_{11}, v_{12}\right\}$. We may assume $v_{5} v_{11}$ is an edge. By Observation 12, $d\left(v_{5}\right)=3$. Hence, $d\left(v_{1}\right)=4$ and v_{1} and v_{5} have a common neighbor. If $v_{8} v_{12}$ is not an edge, then in Observation 2, taking $V^{\prime}=\left(V_{11} \backslash\left\{v_{4}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-11, m^{\prime} \leq n-16$ and $\left|T^{\prime}\right| \leq(2 n-27) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{5}, v_{6}, v_{7}, v_{8}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{8} v_{12}$ is an edge. By Observation 12, $d\left(v_{8}\right)=3$. Hence, $d\left(v_{4}\right)=4$ and v_{4} and v_{8} have a common neighbor. In Observation 2, taking $V^{\prime}=\left(V_{11} \backslash\left\{v_{1}, v_{5}, v_{8}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-14$ and $\left|T^{\prime}\right| \leq(2 n-23) / 4$. Thus, $T=\left\{v, v_{4}, v_{6}, v_{7}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, there is no edge joining $\left\{v_{5}, v_{8}\right\}$ and $\left\{v_{11}, v_{12}\right\}$.

Suppose $v_{5} v_{8}$ is an edge. As in Claim 5, we must have that v_{5} and v_{8} have a common neighbor. Further, as shown with the v_{6} and v_{7}, at least one of v_{5} and v_{8} has degree 4 . Hence, in Observation 2, taking $V^{\prime}=V_{9} \cup\left\{v, v_{11}\right\}$, we have $n^{\prime}=n-11, m^{\prime} \leq n-16$ and $\left|T^{\prime}\right| \leq(2 n-27) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{1}, v_{5}, v_{6}, v_{7}, v_{8}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{5} v_{8}$ is not an edge.

If v_{5} and v_{8} have no common neighbor, then in Observation 2, taking $V^{\prime}=\left(V_{9} \backslash\right.$ $\left.\left\{v_{4}\right\}\right) \cup\left\{v, v_{11}\right\}$, we have $n^{\prime}=n-10, m^{\prime} \leq n-17$ and $\left|T^{\prime}\right| \leq(2 n-27) / 4$. Thus, $T=$ $T^{\prime} \cup\left\{v_{1}, v_{5}, v_{6}, v_{7}, v_{8}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{5} and v_{8} have a common neighbor. Such a common neighbor is at distance at least 3 from both v_{6} and v_{7}, and so, by Observation 5, has degree 3 . Hence, v_{5} and v_{8} have two common neighbor (of degree 3), say v_{13} and v_{14}. But then in Observation 2, taking $V^{\prime}=V_{8} \cup\left\{v_{13}, v_{14}\right\}$, we have $n^{\prime}=n-11, m^{\prime} \leq n-13$ and $\left|T^{\prime}\right| \leq$ $(2 n-24) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{5}, v_{6}, v_{7}, v_{13}\right\}$ is a transversal of H_{G} of size at most $(2 n-$ $4) / 4$, contradicting Observation 1. This completes the proof of Observation 15.

By Observation $15,\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$ is an independent set.
Observation 16 If every neighbor of v has degree 3, then $G \in\left\{F_{11}, F_{12}\right\}$.
Proof. By Observation 12, we have that $d\left(v_{i}\right)=3$ for $i \in\{5,6,7,8\}$. By Observation 4, it follows that v is therefore the only degree- 4 vertex in G. Let $N\left(v_{5}\right)=\left\{v_{1}, v_{9}, v_{10}\right\}$. Then, $v_{9} v_{10} \in E$.

Suppose first that a vertex in $\left\{v_{5}, v_{6}\right\}$ and a vertex in $\left\{v_{7}, v_{8}\right\}$ have a common neighbor. We may assume that v_{5} and v_{7} have a common neighbor. Thus, $N\left(v_{7}\right)=\left\{v_{3}, v_{9}, v_{10}\right\}$. Suppose that v_{6} and v_{8} have no common neighbor. Let $N\left(v_{6}\right)=\left\{v_{2}, v_{11}, v_{12}\right\}$ and $N\left(v_{8}\right)=$ $\left\{v_{4}, v_{13}, v_{14}\right\}$. Then, $v_{11} v_{12} \in E$ and $v_{13} v_{14} \in E$. In Observation 2, taking $V^{\prime}=\left(V_{11} \backslash\right.$ $\left.\left\{v_{6}, v_{8}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-10, m^{\prime}=n-13$ and $\left|T^{\prime}\right| \leq(2 n-23) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{5}, v_{9}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{6} and v_{8} have a common neighbor, and so $G=F_{11}$.

Suppose secondly that v_{5} and v_{6}, or v_{7} and v_{8}, have a common neighbor. We may assume that v_{5} and v_{6} have a common neighbor; that is, $N\left(v_{6}\right)=\left\{v_{2}, v_{9}, v_{10}\right\}$. Suppose that v_{7} and v_{8} have no common neighbor. Let $N\left(v_{7}\right)=\left\{v_{3}, v_{11}, v_{12}\right\}$ and $N\left(v_{8}\right)=\left\{v_{4}, v_{13}, v_{14}\right\}$. Then, $v_{11} v_{12} \in E$ and $v_{13} v_{14} \in E$. In Observation 2, taking $V^{\prime}=\left(V_{11} \backslash\left\{v_{7}, v_{8}\right\}\right) \cup\{v\}$, we have $n^{\prime}=n-10, m^{\prime}=n-13$ and $\left|T^{\prime}\right| \leq(2 n-23) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{5}, v_{9}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{7} and v_{8} have a common neighbor, and so $G=F_{12}$.

Hence we may assume that no two vertices in $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$ have a common neighbor, for otherwise $G \in\left\{F_{11}, F_{12}\right\}$, as desired. Let $N\left(v_{6}\right)=\left\{v_{2}, v_{11}, v_{12}\right\}, N\left(v_{7}\right)=\left\{v_{3}, v_{13}, v_{14}\right\}$, and $N\left(v_{8}\right)=\left\{v_{4}, v_{15}, v_{16}\right\}$. Then, $\left\{v_{9} v_{10}, v_{11} v_{12}, v_{13} v_{14}, v_{15} v_{16}\right\} \subset E$.

Suppose there is an edge joining two triangles each of which contain a vertex from $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$. We may assume that $v_{10} v_{11} \in E$. In Observation 2, taking $V^{\prime}=\left(V_{6} \backslash\right.$ $\left.\left\{v_{4}\right\}\right) \cup\left\{v, v_{10}, v_{11}\right\}$, we have $n^{\prime}=n-8, m^{\prime}=n-12$ and $\left|T^{\prime}\right| \leq(2 n-20) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{3}, v_{10}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence there is no edge joining two triangles each of which contain a vertex from $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$.

Suppose there is a vertex, v_{17} say, that is adjacent to two vertices that belong to distinct triangles each of which contain a vertex from $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$. Up to symmetry, there are two cases to consider. Suppose, first, that the vertex v_{17} satisfies $N\left(v_{17}\right)=$ $\left\{v_{9}, v_{10}, v_{11}\right\}$. In Observation 2, taking $V^{\prime}=\left\{v, v_{1}, v_{2}, v_{5}, v_{6}, v_{9}, v_{10}, v_{11}, v_{17}\right\}$, we have $n^{\prime}=n-9, m^{\prime}=n-12$ and $\left|T^{\prime}\right| \leq(2 n-21) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{11}, v_{17}\right\}$ is a transversal of H_{G} of size at most $(2 n-5) / 4$, contradicting Observation 1. Suppose, second, that that the vertex v_{17} satisfies $N\left(v_{17}\right)=\left\{v_{9}, v_{10}, v_{13}\right\}$. In Observation 2, taking $V^{\prime}=\left\{v, v_{1}, v_{3}, v_{5}, v_{7}, v_{9}, v_{10}, v_{13}, v_{17}\right\}$, we have $n^{\prime}=n-9, m^{\prime}=n-12$ and $\left|T^{\prime}\right| \leq$ $(2 n-21) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{13}, v_{17}\right\}$ is a transversal of H_{G} of size at most $(2 n-5) / 4$, contradicting Observation 1.

Hence there is no vertex that is adjacent to two vertices that belong to distinct triangles each of which contain a vertex from $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$. Thus in Observation 2, taking $V^{\prime}=$ $V_{4} \cup\left\{v_{9}, v_{11}, v_{13}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-15$ and $\left|T^{\prime}\right| \leq(2 n-23) / 4$. Thus,
$T=T^{\prime} \cup\left\{v, v_{4}, v_{9}, v_{11}, v_{13}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. This completes the proof of Observation 16.

By Observation 16, we may assume that at least one neighbor of v has degree 4. We may assume $d\left(v_{1}\right)=4$. Let $N\left(v_{1}\right)=\left\{v, v_{2}, v_{5}, v_{9}\right\}$. Then, $v_{5} v_{9}$ is an edge. By Observation $15, v_{9}$ is adjacent to no vertex in $\left\{v_{6}, v_{7}, v_{8}\right\}$.

Observation 17 For $i \in\{1,2,3,4\}$, if $d\left(v_{i}\right)=4$, then the two neighbors of v_{i} in $V \backslash N[v]$ have no common neighbor other than v_{i}.

Proof. For notational convenience, consider the vertex v_{1}. Suppose that v_{5} and v_{9} have a common neighbor different from v_{1}. Then, by Observation $12, d\left(v_{5}\right)=d\left(v_{9}\right)=3$. By Observation 15 , we may assume that such a common neighbor of v_{5} and v_{9} is adjacent to no vertex in $\left\{v_{2}, v_{3}, v_{4}\right\}$. Let v_{10} be the common neighbor of v_{5} and v_{9} different from v_{1}. Since $d\left(v, v_{10}\right)=3, d\left(v_{10}\right)=3$ by Observation 4 .

If $v_{6} v_{10}$ is an edge, then in Observation 2, taking $V^{\prime}=V_{2} \cup\left\{v, v_{4}, v_{5}, v_{6}, v_{9}, v_{10}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{4}, v_{6}, v_{10}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{6} v_{10}$ is not an edge. If v_{10} is adjacent to v_{7} or to v_{8}, say v_{7}, then in Observation 2, taking $V^{\prime}=V_{3} \cup\left\{v, v_{5}, v_{7}, v_{9}, v_{10}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{2}, v_{7}, v_{10}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{10} is not adjacent to any vertex in $\left\{v_{6}, v_{7}, v_{8}\right\}$. Let $N\left(v_{10}\right)=$ $\left\{v_{5}, v_{9}, v_{11}\right\}$.

If $v_{6} v_{11}$ is an edge, then in Observation 2, taking $V^{\prime}=V_{2} \cup\left\{v, v_{5}, v_{6}, v_{9}, v_{10}, v_{11}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{6}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, $v_{6} v_{11}$ is not an edge. If v_{11} is adjacent to v_{7} or to v_{8}, say v_{7}, then in Observation 2, taking $V^{\prime}=\left\{v, v_{1}, v_{3}, v_{5}, v_{7}, v_{9}, v_{10}, v_{11}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{7}, v_{11}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, v_{11} is not adjacent to any vertex in $\left\{v_{6}, v_{7}, v_{8}\right\}$.

By Observation $4, d\left(v_{11}\right)=3$. Let $N\left(v_{11}\right)=\left\{v_{10}, v_{12}, v_{13}\right\}$. Then, $v_{12} v_{13}$ is an edge. By Observation 4, $d\left(v_{12}\right)=d\left(v_{13}\right)=3$. In Observation 2, take $V^{\prime}=\left\{v, v_{1}, v_{5}, v_{9}, v_{10}, v_{11}, v_{12}\right\}$, so we have $n^{\prime}=n-7, m^{\prime} \leq n-12$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{11}, v_{12}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1.

By Observation 17, the vertex v_{1} is the only common neighbor of v_{5} and v_{9}. Every neighbor of v_{3} or v_{4} different from v is at distance 3 from v_{1} and therefore has degree 3 by Observation 4. In particular, $d\left(v_{7}\right)=d\left(v_{8}\right)=3$.

Observation $18 d\left(v_{3}\right)=4$ or $d\left(v_{4}\right)=4$.
Proof. Suppose that $d\left(v_{3}\right)=d\left(v_{4}\right)=3$. Let $N\left(v_{7}\right)=\left\{v_{3}, v_{10}, v_{11}\right\}$. Suppose v_{7} and v_{8} have a common neighbor. Then, $N\left(v_{8}\right)=\left\{v_{4}, v_{10}, v_{11}\right\}$. In Observation 2, taking $V^{\prime}=\left\{v, v_{1}, v_{3}, v_{4}, v_{7}, v_{8}, v_{10}, v_{11}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{7}, v_{10}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting

Observation 1. Hence, v_{7} and v_{8} have no common neighbor. Let $N\left(v_{8}\right)=\left\{v_{4}, v_{12}, v_{13}\right\}$. Then, $v_{10} v_{11}$ is an edge and $v_{12} v_{13}$ is an edge.

Suppose there is an edge joining a vertex in $\left\{v_{10}, v_{11}\right\}$ and a vertex in $\left\{v_{12}, v_{13}\right\}$. We may assume $v_{11} v_{12}$ is an edge. In Observation 2, taking $V^{\prime}=\left\{v, v_{1}, v_{3}, v_{4}, v_{7}, v_{8}, v_{11}, v_{12}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-13$ and $\left|T^{\prime}\right| \leq(2 n-21) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{11}, v_{12}\right\}$ is a transversal of H_{G} of size at most $(2 n-5) / 4$, contradicting Observation 1. Hence there is no edge joining a vertex in $\left\{v_{10}, v_{11}\right\}$ and a vertex in $\left\{v_{12}, v_{13}\right\}$.

Suppose that a vertex in $\left\{v_{10}, v_{11}\right\}$ and a vertex in $\left\{v_{12}, v_{13}\right\}$ have a common neighbor, say v_{13}. We may assume that $N\left(v_{13}\right)=\left\{v_{10}, v_{11}, v_{12}\right\}$. Then in Observation 2, taking $V^{\prime}=\left\{v, v_{3}, v_{7}, v_{10}, v_{11}, v_{13}\right\}$, we have $n^{\prime}=n-7, m^{\prime} \leq n-12$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{11}, v_{13}\right\}$ is a transversal of H_{G} of size at most $(2 n-5) / 4$, contradicting Observation 1. Hence a vertex in $\left\{v_{10}, v_{11}\right\}$ and a vertex in $\left\{v_{12}, v_{13}\right\}$ have no common neighbor.

Suppose that there are two edges joining $\left\{v_{5}, v_{9}\right\}$ and $\left\{v_{10}, v_{11}\right\}$. We may assume that $v_{5} v_{10}$ and $v_{9} v_{11}$ are edges. Then in Observation 2, taking $V^{\prime}=\left\{v, v_{1}, v_{2}, v_{3}, v_{5}, v_{7}, v_{9}, v_{10}\right.$, $\left.v_{11}\right\}$, we have $n^{\prime}=n-9, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-20) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{2}, v_{5}, v_{10}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1. Hence there is at most one edge joining $\left\{v_{5}, v_{9}\right\}$ and $\left\{v_{10}, v_{11}\right\}$. Similarly, there is at most one edge joining $\left\{v_{5}, v_{9}\right\}$ and $\left\{v_{12}, v_{13}\right\}$. We may therefore assume that there is no edge joining $\left\{v_{5}, v_{9}\right\}$ and $\left\{v_{10}, v_{12}\right\}$. Hence in Observation 2, taking $V^{\prime}=\left\{v, v_{1}, v_{3}, v_{4}, v_{10}, v_{12}\right\}$, we have $n^{\prime}=n-6, m^{\prime} \leq n-13$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{10}, v_{12}\right\}$ is a transversal of H_{G} of size at most $(2 n-4) / 4$, contradicting Observation 1.

By Observation 18, we may assume that v_{3} or v_{4}, say v_{4}, has degree 4 . Let $N\left(v_{4}\right)=$ $\left\{v, v_{3}, v_{8}, v_{10}\right\}$. Then, $v_{8} v_{10}$ is an edge. Every vertex at distance 2 from v is at distance 3 from either v_{1} or v_{4} and therefore, by Observation 4, has degree 3. By Observation 17, v_{4} is the only common neighbor of v_{8} and v_{10}. By the claw-freeness of G, and by Observations 15 and 17, no two vertices at distance 2 from v have a common neighbor in $V \backslash N(v)$.

Observation $19 d\left(v_{3}\right)=3$.
Proof. Suppose that $d\left(v_{3}\right)=4$. Let $N\left(v_{3}\right)=\left\{v, v_{4}, v_{7}, v_{11}\right\}$. Then, $v_{7} v_{11}$ is an edge. For $i \in\{7,8,10,11\}$, let v_{i}^{\prime} be the neighbor of v_{i} at distance 3 from v. Hence, $N\left(v_{7}\right)=\left\{v_{3}, v_{7}^{\prime}, v_{11}\right\}$ and $N\left(v_{11}\right)=\left\{v_{3}, v_{7}, v_{11}^{\prime}\right\}$, while $N\left(v_{8}\right)=\left\{v_{4}, v_{8}^{\prime}, v_{10}\right\}$ and $N\left(v_{10}\right)=$ $\left\{v_{4}, v_{8}, v_{10}^{\prime}\right\}$. Let $W=\left\{v_{7}^{\prime}, v_{8}^{\prime}, v_{10}^{\prime}, v_{11}^{\prime}\right\}$.

We show that W is an independent set. Suppose that two vertices in W are adjacent. We may assume that $v_{7}^{\prime} v_{11}^{\prime}$ is an edge or $v_{7}^{\prime} v_{8}^{\prime}$ is an edge. Suppose $v_{7}^{\prime} v_{11}^{\prime}$ is an edge. Then in Observation 2, taking $V^{\prime}=\left\{v, v_{1}, v_{3}, v_{7}, v_{7}^{\prime}, v_{11}, v_{11}^{\prime}\right\}$, we have $n^{\prime}=n-7, m^{\prime} \leq n-12$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}, v_{7}, v_{7}^{\prime}\right\}$ is a transversal of H_{G} of size at most $(2 n-$ $3) / 4$, contradicting Observation 1. Suppose $v_{7}^{\prime} v_{8}^{\prime}$ is an edge. Let w be the common neighbor of v_{7}^{\prime} and v_{8}^{\prime}. Then in Observation 2, taking $V^{\prime}=\left\{v, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{7}^{\prime}, v_{8}, v_{8}^{\prime}, w\right\}$, we have $n^{\prime}=n-10, m^{\prime} \leq n-17$ and $\left|T^{\prime}\right| \leq(2 n-27) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}^{\prime}, w\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Thus, W is an independent set.

If no two vertices in W have a common neighbor, then in Observation 2, taking $V^{\prime}=\left\{v, v_{1}, v_{3}, v_{4}\right\} \cup W$, we have $n^{\prime}=n-8, m^{\prime} \leq n-19$ and $\left|T^{\prime}\right| \leq(2 n-27) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{1}\right\} \cup W$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1. Hence, two vertices in W have a common neighbor.

Suppose v_{7}^{\prime} and v_{11}^{\prime} or v_{8}^{\prime} and v_{10}^{\prime}, say v_{7}^{\prime} and v_{11}^{\prime}, have a common neighbor. Let $N\left(v_{7}^{\prime}\right)=\left\{v_{7}, v_{12}, v_{13}\right\}$. Then, $N\left(v_{11}^{\prime}\right)=\left\{v_{11}, v_{12}, v_{13}\right\}$. In Observation 2, taking $V^{\prime}=$ $\left\{v, v_{3}, v_{7}, v_{7}^{\prime}, v_{11}, v_{11}^{\prime}, v_{12}, v_{13}\right\}$, we have $n^{\prime}=n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v, v_{3}, v_{7}^{\prime}, v_{12}\right\}$ is a transversal of H_{G} of size at most ($2 n-3$)/4, contradicting Observation 1. Hence, neither v_{7}^{\prime} and v_{11}^{\prime} nor v_{8}^{\prime} and v_{10}^{\prime} have a common neighbor. Hence a vertex in $\left\{v_{7}^{\prime}, v_{11}^{\prime}\right\}$ and a vertex in $\left\{v_{8}^{\prime}, v_{10}^{\prime}\right\}$ have a common neighbor. We may assume that v_{7}^{\prime} and v_{8}^{\prime} have a common neighbor. Let $N\left(v_{7}^{\prime}\right)=\left\{v_{7}, v_{12} v_{13}\right\}$. Then, $N\left(v_{8}^{\prime}\right)=$ $\left\{v_{8}, v_{12}, v_{13}\right\}$. In Observation 2, taking $V^{\prime}=\left\{v_{3}, v_{4}, v_{7}, v_{7}^{\prime}, v_{8}, v_{8}^{\prime}, v_{12}, v_{13}\right\}$, we have $n^{\prime}=$ $n-8, m^{\prime} \leq n-11$ and $\left|T^{\prime}\right| \leq(2 n-19) / 4$. Thus, $T=T^{\prime} \cup\left\{v_{3}, v_{4}, v_{7}^{\prime}, v_{12}\right\}$ is a transversal of H_{G} of size at most $(2 n-3) / 4$, contradicting Observation 1.

By Observation 19, $d\left(v_{3}\right)=3$. An identical argument (interchanging the roles of v_{3} and v_{4} with v_{1} and v_{2}) shows that $d\left(v_{2}\right)=3$. Let $N\left(v_{6}\right)=\left\{v_{2}, v_{12}, v_{13}\right\}$ and $N\left(v_{7}\right)=$ $\left\{v_{3}, v_{14}, v_{15}\right\}$. Then, $v_{12} v_{13}$ is an edge and $v_{14} v_{15}$ is an edge. An identical proof as the proof of Observation 18 now produces a contradiction. This completes the proof of Theorem 9.

References

[1] D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek, P.C.B. Lam, S. Seager, B. Wei, and R. Yuster, Some remarks on domination. J. Graph Theory 46 (2004), 207-210.
[2] V. Chvátal and C. McDiarmid, Small transversals in hypergraphs. Combinatorica 12 (1992), 19-26.
[3] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi, Total domination in graphs. Networks 10 (1980), 211-219.
[4] O. Favaron and M. A. Henning, Paired domination in claw-free cubic graphs. Graphs Combin. 20 (2004), 447-456.
[5] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
[6] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, Inc. New York, 1998.
[7] M. A. Henning, L. Kang, E. Shan, and A Yeo, On matching and total domination in graphs, manuscript (2005).
[8] M. A. Henning and A. Yeo, Hypergraphs with large transversal number and with edge sizes at least three, manuscript (2005).
[9] M. Las Vergnas, A note on matchings in graphs. Colloque sur la Théorie des Graphes (Paris, 1974), Cahiers Centre Étude Rech. Opér. 17 (1975), 257-260.
[10] M. Plummer, Factors and Factorization. 403-430. Handbook of Graph Theory ed. J. L. Gross and J. Yellen. CRC Press, 2003, ISBN: 1-58488-092-2.
[11] W. R. Pulleyblank, Matchings and Extension. 179-232. Handbook of Combinatorics ed. R. L. Graham, M. Grötschel, L. Lovász. Elsevier Science B.V. 1995, ISBN 0-444-82346-8.
[12] D. Sumner, On Tutte's factorization theorem. Graphs and Combinatorics, Lecture Notes in Math. Vol 406, Springer (1974), 350-355.
[13] D. Sumner, 1-factors and anti-factor sets. J. London Math. Soc. 13 (1976), 351-359.
[14] S. Thomassé and A. Yeo, Total domination of graphs and small transversals of hypergraphs. To appear in Combinatorica.
[15] Z. Tuza, Covering all cliques of a graph. Discrete Math. 86 (1990), 117-126.

[^0]: *Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.

