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Abstract

We introduce colorings and orientations of matrices as generalizations of the
graph theoretic terms. The permanent per(A[ζ|ξ]) of certain copies A[ζ|ξ] of a
matrix A can be expressed as a weighted sum over the orientations or the colorings
of A . When applied to incidence matrices of graphs these equations include Alon
and Tarsi’s theorem about Eulerian orientations and the existence of list colorings.
In the case of planar graphs we deduce Ellingham and Goddyn’s partial solution of
the list coloring conjecture and Scheim’s equivalency between not vanishing perma-
nents and the four color theorem. The general concept of matrix colorings in the
background is also connected to hypergraph colorings and matrix choosability.

Introduction

The original idea behind this paper was to interpret Ryser’s evaluation formula for per-
manents 1.2 as a statement about colorings (corollary 1.10 and the text below) and to
utilize this interpretation in new proofs for Scheim’s equation 2.14 and a strengthened,
“quantitative” version of Alon and Tarsi’s theorem2.11 . Our proofs do not use the graph
polynomial, neither in combination with the combinatorial nullstellensatz as in [Al2, AlTa]
nor with quantitative relations between the coefficients and the values of polynomial func-
tions as in [Sch, Lemma1]. The “color formula” 2.13 for n-regular graphs follows, unlike
in [ElGo] or [Al], without use of 2-factorizations. Our methods are new and this could
be of interest. However, we thought that it should be possible to use Alon and Tarsi’s
common and powerful methods to prove the main theorems about matrix colorings in
section 1.2 . This led us to the conviction that there is a stronger, “quantitative” version
of the combinatorial nullstellensatz [Al2]. A paper about this stronger coefficient formula
( a “combinatorial nullstellen-equation”) is in preparation [Scha].

While working on this paper we realized that Alon and Tarsi’s theorem2.10 &2.4
can be formulated for matrices (corollary 1.15 &1.6). Since the incidence matrix A(

�����

G)
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(definition 2.1) of a directed graph
�����

G contains all information about
�����

G , matrices can
be seen as generalizations of directed graphs. Moreover, many graph theoretic terms
( including colorings (definition 1.8) and flows) can easily be extended to matrices. Against
this background it is an interesting task to formulate classical graph theoretic theorems
for matrices. Our work on the Alon-Tarsi theorem is a first step in this direction. The
greedy algorithm would be an other simple example. However, these investigations will
have to wait for later publications.

Matrices are also connected to hypergraphs (section 3), and colorings ( and nowhere-
zero flows) of matrices are related to matrix choosability [DeV] and nowhere-zero
points [AlTa2]. In this area the characteristic p > 0 case is of special interest. We
formulated our results for rings of characteristic 0 but that was just for simplicity; the
characteristic p > 0 case does not look much different (see also [Scha]).

This paper is structured as follows:
The general theory for matrices is developed in section 1 . We introduce the permanent

and Ryser’s evaluation formula and apply both, the definition and Ryser’s formula, to cer-
tain copies of matrices. This leads to two types of evaluation formulas for the permanent
of copies of matrices A . One in terms of certain orientations of A , the other in terms of
colorings of A . First, in section 1.1 , orientations of matrices are defined and discussed.
The matrix polynomial, a generalization of the graph polynomial, is introduced here, too.
Then, in section 1.2 , colorings are defined and evaluation formulas are given in various
degrees of generality.

In section 2 we specialize our results to the graph-theoretic situation. First, in sec-
tion 2.1 , orientations, Eulerian subgraphs and the graph polynomial are discussed. Then,
in section 2.2 , vertex colorings are introduced and a new proof of Alon and Tarsi’s the-
orem emerges. Finally, in section 2.3 , we further specialize our results to line graphs of
n-regular and planar n-regular graphs. This leads us to Scheim’s expression for the num-
ber of edge n-colorings of a n-regular planar graph as a permanent and to Ellingham and
Goddyn’s partial solution of the list coloring conjecture.

Following the referee’s suggestion, we included an additional section 3 about hyper-
graph colorings. We are grateful for this and other helpful comments by the referee.

1 Matrices

Notation. In this section V, V̄ , Ṽ and E, Ē stand for finite sets. R is an integral domain V , E

Rof characteristic 0 ( i.e. Z ⊆ R ). For tuples a = (av)v∈V ∈ RV we write:

Πa = Π(av)v∈V :=
∏

v∈V av and Σa = Σ(av)v∈V :=
∑

v∈V av . Π, Σ

V ] V̄ denotes the disjoint union of V and V̄ (e.g. |V ] V | = 2|V | ). V ] V̄
For ϕ : V −→ E , ϕ̄ : V̄ −→ Ē the map ϕ ] ϕ̄ : V ] V̄ −→ E ∪ Ē is the union of ϕ ] ϕ̄
ϕ ⊆ V × E and ϕ̄ ⊆ V̄ × Ē with V and V̄ regarded as disjoint (it is again a map).

Definition 1.1 (Permanent). Let A = (aev) ∈ RE×V be square.
The sum over all diagonal-products of A is called permanent of A : per(A)

per(A) :=
∑

ψ:E→V
bijective

Π(ae,ψe)e∈E .
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Note that the determinant det(A) of the “matrix” A is not defined since the determi-
nant is not invariant under permutations of rows and columns and there are (in general)
no distinguished orderings on the columns and the rows of A (and also no special bijection
between them). A is not actually a matrix in that stronger sense.

Beside that difference in generality the permanent is a relative of the determinant and
they have many properties in common. The permanent is multilinear in the columns and
the rows, it is invariant by transposition of the matrix and the Laplace expansion works
the same, except that you do not have to consider different signs. But there are also
some main differences. The product theorem does not hold for permanents and it is not
invariant under the elementary row and column operations. This deficiency makes the
evaluation of the permanent difficult. A simple consequence of the principle of inclusion
and exclusion and one of the best evaluation methods is the formula of Ryser [BrRy, p.200]
[Mi, p.124], which we consider for more theoretical reasons:

Theorem 1.2 (Formula of Ryser). Let A ∈ RE×V be square.

per(A) =
∑

d∈{0,1}V
(−1)|d

−1(0)| Π(Ad) .

In what follows we investigate the permanent of certain copies A[ζ |ξ] of A using this
two formulas, where copies are defined as follows:

Definition 1.3 (Copier). Let A = (aev) ∈ RE×V be given.
A (not necessarily surjective) map ξ : V̄ −→ V , u 7−→ ξu with codomain equal to ξu

the set V of column indices of A is a column copier to A , a map ζ : Ē −→ E with
codomain equal to the set of row indices E of A is a row copier to A .

A[ζ |ξ] := (a[ζ |ξ] ev)e∈Ē,v∈V̄ with a[ζ |ξ] ev := aζe,ξv is the (ζ, ξ)-copy of A . A[ζ|ξ]
We abbreviate A[|ξ] := A[Id |ξ] and so on. A[|ξ]
ζ and ξ are said to be a (square) pair of copiers to A if A[ζ |ξ] is a square matrix,

i.e. if |Ē| = |V̄ | . ζ is square if A[ζ |] is square, i.e. if |Ē| = |V | . ξ is square if A[|ξ] is
square, i.e. if |V̄ | = |E| .

1.1 Orientations and Realizations

In this section we evaluate per(A[ζ |ξ]) by definition 1.1 in terms of orientations.

Definition 1.4 (Orientation, Realization). Let A = (aev) ∈ RE×V be given.
A map ϕ : E −→ V , e 7−→ ϕe with πA(ϕ) := Π(ae,ϕe)e∈E 6= 0 is an orientation of πA(ϕ)

A . D(A) denotes the set of orientations of A . D(A)

We set |ϕ−1| := (|ϕ−1(v)|)v∈V for maps into V . The orientation ϕ of A is a |ϕ−1|
realization ( in A ) of a column copier ξ : V̄ → V of A if |ϕ−1| = |ξ−1| . It is a realization
( in A ) of δ ∈ N

V if |ϕ−1| = δ . Dδ(A) denotes the set of realizations of δ ∈ N
V in A . Dδ(A)

Theorem 1.5 (π-formula). Let ζ : Ē → E and ξ : V̄ → V be a pair of copiers to
A ∈ RE×V . |ξ−1|!

per(A[ζ |ξ]) = |ξ−1|!
∑
ϕ:Ē→V

|ϕ−1|=|ξ−1|

πA[ζ|](ϕ) with |ξ−1|! :=
∏
v∈V

(|ξ−1(v)|!) .
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Proof. Let Ψ := {ψ : Ē → V̄ ¦ ψ bijective } and Φ := {ϕ : Ē → V ¦ |ϕ−1| = |ξ−1| } .
We compare the summands in per(A[ζ |ξ]) =

∑
ψ∈Ψ πA[ζ|ξ](ψ) with those in

∑
ϕ∈Φ πA[ζ|](ϕ) .

If ϕ = ξ ◦ψ then πA[ζ|ξ](ψ) = πA[ζ|](ϕ) . Since the map ψ 7−→ ξ ◦ψ , Ψ −→ Φ is surjective
and each ϕ ∈ Φ has exactly |ξ−1|! preimages ψ ∈ Ψ ( for all v ∈ V the bijection ψ has
to map ϕ−1(v) onto ξ−1(v) and there are |ξ−1(v)|! ways to do this) we have a |ξ−1|!
to 1 correspondents between the summands, and the theorem follows.

Corollary 1.6. Let ξ : V̄ → V be a square column copier to A ∈ RE×V .

per(A[|ξ]) = |ξ−1|!
∑

ϕ∈D|ξ−1|(A)

πA(ϕ) .

Especially, per(A[|ξ]) = 0 if ξ does not have any realizations (D|ξ−1|(A) = ∅ ).

The polynomial fA defined below is considered by many authors. In connection fA

with the combinatorial nullstellensatz it could be used for a proof of 1.15 and 2.11 as
in [AlTa]. We want to name it matrix polynomial since it is a generalization of the graph
polynomial f�����G (see proposition 2.2). The product AX in the definition of fA is the AX

standard matrix-tuple product over the ring R[X] . We use the standard multiindex
notation, Xδ :=

∏
v∈V X

δv
v and δ! :=

∏
v∈V (δv!) for δ ∈ N

V . The expression with the Xδ, δ!

permanents has also been used in [AlTa2, Claim1].

Definition 1.7 (Matrix polynomial). Assume A = (ae,v) ∈ RE×V, let X = (Xv)v∈V
be a tuple of indeterminacies. For each δ ∈ N

V with Dδ(A) 6= ∅ choose a ξδ ∈ Dδ(A) . ξδ

fA(X) := Π(AX)
1.4
=

∑
ϕ∈D(A)

πA(ϕ)X |ϕ−1| 1.6
=

∑
δ∈NV

Dδ(A) 6=?

1

δ!
per(A[|ξδ] )Xδ .

1.2 Colorings

Here we use the formula of Ryser 1.2 to work out per(A[ζ |ξ]) in terms of colorings.

Definition 1.8 (Coloring). Let A ∈ RE×V be given.
A map c : V −→ R ( c ∈ RV ) is a coloring of A if Π(Ac) 6= 0 .

Theorem 1.9 (Simple color formula). Let ζ : Ē → E and ξ : V̄ → V be a pair of
copiers to A ∈ RE×V and Z := (Zu)u∈V̄ , X = (Xe)e∈Ē tuples of indeterminacies.

Define v̄ := ξ−1(v) and Cv̄ := {∑u∈v̄ duZu ¦ d ∈ {0, 1}v̄} ⊆ Z[Z] ⊆ R[Z] for v ∈ V v̄, Cv̄

and let Cξ(Z) := {c : V 3 v 7→ cv ∈ Cv̄} =
∏

v∈V Cv̄ ⊆ R[Z]V be the set of maps that Cξ(Z)

assign an “abstract” color cv from the list Cv̄ to each column v ∈ V . ĉ

per(A[ζ |ξ]) ΠZ = (−1)|V̄ | ∑
c∈Cξ(Z)

(−1)Σĉ Π(A[ζ |]c−X) with ĉ := (cv(1, 1, . . . , 1))v∈V .
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Proof. We multiply each column u ∈ V̄ of A[ζ |ξ] with Zu and get a matrix B =
(a[ζ |ξ]euZu)e∈Ē,u∈V̄ . From this we construct a matrix C that is one column u′ and one
row e′ bigger. We write “under” each column of B a 0 and “behind” each row e ∈ Ē
the term −Xe , on the remaining position “bottom right” we put a 1 . On the “diagonal”
of this matrix there are two square blocks B and the 1 , “below” are only zeros, it has
therefore the same permanent as B : per(C) = per(B) = per(A[ζ |ξ]) ΠZ .

On the other hand the permanent of C can be evaluated by the formula of Ryser 1.2 :

per(C) 1.2=
∑

d∈{0,1}V̄ ]{u′}

(−1)|d
−1(0)|[∏

e∈Ē

(
(
∑
u∈V̄

a[ζ|ξ]euZu du) − Xedu′
)] · 1du′ (1)

since only summands to d ∈ {0, 1}V̄ ]{u′} with du′ = 1 are 6= 0 this is

=
∑

d∈{0,1}V̄
(−1)|d

−1(0)| ∏
e∈Ē

(
(
∑
u∈V̄

a[ζ|ξ]euZu du) − Xe

)
(2)

now |d−1(0)| = |V̄ | − |d−1(1)| = |V̄ | − ∑
u∈V̄ du gives

1.3=
∑

d∈{0,1}V̄
(−1)|V̄ |−Pu∈V̄ du

∏
e∈Ē

(
(
∑
u∈V̄

a[ζ|]e,ξuZu du) − Xe

)
(3)

= (−1)|V̄ | ∑

d∈{0,1}V̄
(−1)

P
v∈V

P
u∈v̄ du

∏
e∈E

(
(
∑
v∈V

∑
u∈v̄

a[ζ|]evZu du) − Xe

)
(4)

and with cdv :=
∑

u∈v̄ duZu ∈ Cv̄ further

= (−1)|V̄ | ∑

d∈{0,1}V̄
(−1)

P
v∈V c

d
v(1,1,...,1)

∏
e∈E

(
(
∑
v∈V

a[ζ|]evcdv) − Xe

)
(5)

= (−1)|V̄ | ∑
(cv)∈Qv∈V Cv̄

(−1)
P
v∈V cv(1,1,...,1)

∏
e∈E

(
(
∑
v∈V

a[ζ|]evcv) − Xe

)
(6)

= (−1)|V̄ | ∑
c∈Cξ(Z)

(−1)Σĉ Π(A[ζ|]c − X) . (7)

Corollary 1.10. Let ξ : V̄ → V be a square column copier to A ∈ RE×V ⊇ Z
E×V .

�|ξ−1|
c

�

per(A[|ξ]) = (−1)|E| ∑
c∈NV

(−1)Σc
(|ξ−1|

c

)
Π(Ac) with

(|ξ−1|
c

)
:=

∏
v∈V

(|ξ−1(v)|
cv

)
.

Proof. We substitute X = (0, 0, . . . , 0) , Z = (1, 1, . . . , 1) and ζ = IdE in theorem1.9 .
Under this substitution each c ∈ Cξ(Z) becomes ĉ := (cv(1, 1, . . . , 1))v∈V ∈ N

V and

there are exactly
(|ξ−1|

ĉ

)
:=

∏
v∈V

(|ξ−1(v)|
ĉv

)
preimages c ∈ Cξ(Z) to each ĉ ∈ N

V .

This formula shows that if per(A[|ξ]) 6= 0 there must be a c ∈ N
V with Π(Ac) 6= 0

and
(|ξ−1|

c

) 6= 0 i.e. a coloring c of A with cv ∈ {0, 1, . . . , |ξ−1(v)|} for all v ∈ V .
In order to prove a more general result we need the following lemma. Again |ξ−1|! := |ξ−1|!∏

u∈U(|ξ−1(u)|!) for maps ξ into finite sets U :
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Lemma 1.11. Let ζ : Ē → E and ξ : V̄ → V be a pair of copiers to A ∈ RE×V and
δ : Ṽ → V a copier of the identity matrix I = IV ∈ RV×V .

The maps ζ̃ := ζ ] δ : Ē ] Ṽ → E ] V (with E and V regarded as disjoint) and
ξ̃ := ξ ] δ : V̄ ] Ṽ → V form a pair of copiers to Ã :=

(
A
I

) ∈ R(E]V )×V and

per(Ã[ζ̃ |ξ̃]) =
|ξ̃−1|!
|ξ−1|! per(A[ζ |ξ]) .

Proof. We prove this by induction on |Ṽ | . For Ṽ = ∅ the statement holds therefore
assume Ṽ 6= ∅ and let w ∈ Ṽ be given. Set δ′ := δ|Ṽ \{w} , ξ̃′ := ξ]δ′ : V̄ ] Ṽ \{w} → V

and ζ̃ ′ := ζ ]δ′ : Ē] Ṽ \{w} → E]V . Laplace expansion of Ã[ζ̃|ξ̃] in the row w yields

per(Ã[ζ̃|ξ̃]) = |ξ̃−1(δ(w))| · per(Ã[ζ̃ ′|ξ̃′]) since Ã[ζ̃|ξ̃] contains the column w in exactly

|ξ̃−1(δ(w))| copies and these are the only columns that are 6= 0 ( but = 1 ) in the row

w . On the other hand per(Ã[ζ̃ ′|ξ̃′]) = |ξ̃′−1|!
|ξ−1|! · per(A[ζ |ξ]) by the induction hypothesis,

proving the statement.

Theorem 1.12 (General color formula). Let ζ : Ē → E and ξ : V̄ → V be a pair of
copiers to A ∈ RE×V , δ : Ṽ → V an other copier and Z = (Zu)u∈V̄ ]Ṽ , X = (Xe)e∈Ē
and Y = (Yu)u∈Ṽ tuples of indeterminacies.

Set ξ̃ := ξ]δ : V̄ ]Ṽ → V , ṽ := ξ̃−1(v) and Cṽ := {∑u∈ṽ duZu ¦ d ∈ {0, 1}ṽ} ⊆ R[Z] ξ̃, ṽ

Cṽ, Cξ̃(Z)for v ∈ V . Let Cξ̃(Z) := {c : V 3 v 7→ cv ∈ Cṽ} =
∏

v∈V Cṽ ⊆ R[Z]V be the set of maps
that assign an “abstract” color cv from the list Cṽ to each column v ∈ V .

|ξ̃−1|!
|ξ−1|! per(A[ζ |ξ]) ΠZ = (−1)|V̄ ]Ṽ | ∑

c∈Cξ̃(Z)

(−1)Σĉ Π(Pδ(c)) Π(A[ζ |]c−X)

with Pδ(c) := (Π(cv − Yu)u∈δ−1(v))v∈V ∈ R[Z, Y ]V and ĉ := (cv(1, 1, . . . , 1))v∈V . Pδ, ĉ

Proof. Set X̃ := X]Y ( i.e. X̃e = Xe for e ∈ Ē and X̃u = Yu for u ∈ Ṽ = (Ē]Ṽ )\Ē ).
With the notation and definitions from lemma1.11 and color formula 1.9 we have:

|ξ̃−1|!
|ξ−1|! · per(A[ζ|ξ])ΠZ

1.11= per(Ã[ζ̃|ξ̃])ΠZ
1.9= (−1)|V̄ ]Ṽ | ∑

c∈Cξ̃(Z)

(−1)Σĉ Π(Ã[ζ̃|]c − X̃) (8)

and with ζ̃ := ζ̃|Ṽ ] ζ̃|Ē = δ ] ζ we can evaluate

Π(Ã[ζ̃|]c− X̃) = Π(Ã[ζ̃|Ṽ |]c− Y ) ·Π(Ã[ζ̃|Ē |]c−X) = Π(IV [δ|]c− Y ) ·Π(A[ζ|]c−X) . (9)

With IV =: (∂w,v)w,v∈V we get IV [δ|]c 1.3
= (

∑
v∈V ∂δu,v cv)u∈Ṽ = (cδu)u∈Ṽ and can replace

Π(IV [δ|]c − Y ) = Π(cδu − Yu)u∈Ṽ = Π(Π(cv − Yu)u∈δ−1(v))v∈V = Π(Pδ(c)) . (10)

Now the substitutions X = (0, 0, . . . , 0) , Z = (1, 1, . . . , 1) and ζ = IdE (exactly as
in the proof of corollary 1.10) yield:
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Corollary 1.13. Let ξ : V̄ → V be a square column copier to A ∈ RE×V , δ : Ṽ → V an
other copier and Y = (Yu)u∈Ṽ a tuple of indeterminacies. Set ξ̃ := ξ ] δ : V̄ ] Ṽ → V .

|ξ̃−1|!
|ξ−1|! per(A[|ξ]) = (−1)|V̄ ]Ṽ | ∑

c∈NV
(−1)Σc

(|ξ̃−1|
c

)
Π(Pδ(c)) Π(Ac)

with Pδ(c) := (Π(cv − Yu)u∈δ−1(v))v∈V ∈ R[Y ]V and
(|ξ̃−1|

c

)
:=

∏
v∈V

(|ξ̃−1(v)|
cv

)
. Pδ(c)

�|ξ̃−1|
c

�

Corollary 1.14. Assume A ∈ RE×V ⊇ Z
E×V .

Let color lists Cv ⊆ N (v ∈ V ) with
∑

v∈V (|Cv| − 1) = |E| and intervals Mv =

{0, 1, . . . , mv} ⊇ Cv be given. Set Dv := Mv \ Cv , Ṽ :=
⊎
v∈V Dv and define the copier

δ : Ṽ → V by δ−1(v) := Dv . Let ξ : V̄ → V be a copier with |ξ−1(v)| = |Cv| − 1 and
set ξ̃ := ξ ] δ : V̄ ] Ṽ → V .

|ξ̃−1|!
|ξ−1|! per(A[|ξ]) = (−1)|V̄ ]Ṽ | ∑

c∈NV
(−1)Σc

(|ξ̃−1|
c

)
Π(P (c)) Π(Ac)

with P (c) := (Π(cv − u)u∈Dv)v∈V ∈ Z
V . P (c)

Proof. This follows by substituting Yu = u ∈ N ( for all u ∈ Ṽ ) in corollary 1.13 .

Now per(A[|ξ]) 6= 0 assures the existence of a c ∈ N
V with Π(Ac) 6= 0 ,

(
ξ̃
c

) 6= 0

and P (c) 6= 0 .
(|ξ̃−1|

c

) 6= 0 means 0 ≤ cv ≤ |ξ̃−1(v)| = |Dv| + |Cv| − 1 = |Mv| − 1 i.e.
cv ∈Mv and P (c) 6= 0 means cv /∈ Dv therefore c is a coloring of A with cv ∈ Cv for
all v ∈ V :

Corollary 1.15. Assume A ∈ RE×V ⊇ Z
E×V . Let color lists Cv ⊆ N (v ∈ V ) with∑

v∈V (|Cv| − 1) = |E| and a copier ξ : V̄ → V with |ξ−1(v)| = |Cv| − 1 be given.

If per(A[|ξ]) 6= 0 then a proper coloring c : V 3 v 7−→ cv ∈ Cv of A exists.

2 Graphs

Notation. In this paper a graph G is a finite multigraph without loops, V (G) denotes its V (G)

set of vertices, E(G) its edges and I = I(G) : E(G) −→ {{v, w} ¦ v, w ∈ V (G) , v 6= w} , E(G), I

e 7−→ eI its incidence map. Iv := {e ∈ E(G) ¦ eI 3 v} for v ∈ V (G) and so |Iv| stands eI , Iv

for the degree of v .
Given a set Cv to each element v of a set V , an assignment c : V 3 v 7−→ cv ∈ Cv

is a map c : V −→ ⋃
v∈V Cv , v 7−→ cv with cv ∈ Cv for all v ∈ V .

An assignment of the form c : V (G) 3 v 7−→ cv ∈ Cv is proper in e ∈ E(G) , if
both ends v1 and v2 of e receive different “colors”: cv1 6= cv2 . It is a (proper vertex)-
coloring, if it is proper in each edge e ∈ E(G) . We say G is vertex-colorable with n
colors if a coloring c : V (G) 3 v 7−→ cv ∈ {0, 1, . . . , n−1} of G exists.

An assignment of the form c : E(G) 3 e 7−→ ce ∈ Ce is a (proper edge)-coloring, if
every two different incident edges e, f ( eI ∩ f I 6= ∅ ) receive different “colors”: ce 6= cf .
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An assignment ����� : E(G) 3 e 7−→ e����� ∈ eI that to each edge e ∈ E(G) assigns one of ��

e�����,
�����

Gits ends e����� ∈ eI ⊆ V (G) is an orientation of G . An oriented graph
�����

G is a Graph G
together with an orientation ����� of G . In the whole paper G stands for a graph and �����

for an orientation of G , we denote its reverse orientation by ����� ( eI = {e�����, e�����} for all ��

e ∈ E(G) ). For vertices v ∈ V (G) we set �����v := �����
−1(v) = {e ∈ E(G) ¦ e����� = v} and so �����v, �����v

|�����v| respectively |�����v| stand for the out– respectively indegree of v ∈ V (G) under ����� . |�����v|

Definition 2.1 (Edge-vertex matrix). Let V := V (
�����

G) and E := E(
�����

G) .

A(
�����

G) = (aev) ∈ Z
E×V with aev :=




+1 if v = e�����,
−1 if v = e�����,

0 otherwise
A(

�����

G)

is the edge-vertex matrix of
�����

G .

2.1 Orientations and Eulerian subgraphs

From definitions 1.4 and 2.1 follows:

Proposition 2.2. The orientations ϕ of
�����

G are exactly the orientations of A(
�����

G) and: π�����
G

πA(
�����

G)(ϕ) = π�����G(ϕ) := (−1)|{e∈E(
�����

G) ¦ eϕ 6=e�����}| .

The graph polynomial f�����G :=
∏

e∈E(
�����

G)(Xe�����−Xe�����) ∈ Z[(Xv)v∈V (
�����

G)] of
�����

G matches the f�����
G

matrix polynomial (def. 1.7) of A(
�����

G): f�����G = fA(
�����

G) .

Definition 2.3 (Even and odd realizations). An orientation ϕ of
�����

G is a realization

in
�����

G of a “vertex copier” ξ : V̄ → V (
�����

G) if it is a realization in A(
�����

G) of ξ as a column

copier of A(
�����

G) , i.e. if |ϕv| = |ξ−1(v)| for all v ∈ V (
�����

G) . It is an realization of δ ∈ N
V if

it is a realization of δ in A(
�����

G) , i.e. if |ϕv| = δv for all v ∈ V (
�����

G) . Dδ(
�����

G) := Dδ(A(
�����

G)) Dδ(
�����

G)

denotes the set of realizations ϕ of δ ∈ N
V in

�����

G . DEδ(
�����

G) := {ϕ ∈ Dδ(
�����

G) ¦ π�����G(ϕ) = 1} DEδ(
�����

G)

respectively DOδ(
�����

G) := {ϕ ∈ Dδ(
�����

G) ¦ π�����G(ϕ) = −1} denotes the set of even respectively DOδ(
�����

G)

odd realizations of δ ∈ N
V, i.e. the realizations ϕ that are on even respectively odd many

edges e ∈ E(
�����

G) directed opposite to the orientation ����� of
�����

G ( eϕ 6= e����� ).

Now corollary 1.6 gives:

Theorem 2.4 (DE-DO-formula). Let ξ : V̄ → V (
�����

G) be a square copier to A(
�����

G) .

per(A(
�����

G)[|ξ]) = |ξ−1|! ( ∣∣DE|ξ−1|(
�����

G)
∣∣ − ∣∣DO|ξ−1|(

�����

G)
∣∣ )

.

Especially, per(A(
�����

G)[|ξ]) = 0 if ξ does not have any realizations (D|ξ−1|(
�����

G) = ∅ ).

A similar result concerning the coefficients of the graph polynomial was obtained by
Alon and Tarsi [AlTa]. In their paper one can also find further infirmation about the
existence of orientations and applications.
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Definition 2.5 (Eulerian subgraphs).
�����

G is called Eulerian if all vertices v ∈ V (
�����

G)

have as many “incoming” as “outgoing” edges: |�����v| = |�����v| . Eu(
�����

G) denotes the set of Eu(
�����

G)

Eulerian subgraphs of
�����

G (with vertex set V (
�����

G) ). EE(
�����

G) respectively EO(
�����

G) denotes EE(
�����

G)

EO(
�����

G)the set of even respectively odd Eulerian subgraphs of
�����

G, i.e. the Eulerian subgraphs
with even respectively odd many edges.

Lemma 2.6. The bijection E(
�����

G) ⊇ E 7−→ ϕE ∈ D(
�����

G) with eϕE = e����� for e /∈ E and

eϕE = e����� for e ∈ E between spanning subgraphs and orientations of
�����

G can be restricted
to bijections EE(

�����

G) → DE|�−1 |(
�����

G) and EO(
�����

G) → DO|�−1 |(
�����

G) .

With this easy to prove lemma (also used in [AlTa]) we come from the DE-DO-
formula 2.4 to the EE-EO-formula:

Theorem 2.7 (EE-EO-formula).

per(A(
�����

G)[|�����]) = |�����−1|! ( ∣∣EE(
�����

G)
∣∣ − ∣∣EO(

�����

G)
∣∣ ) .

In the case of a bipartite graph
�����

G we have EO(
�����

G) = ∅ and |EE(
�����

G)| − |EO(
�����

G)|
can be replaced by |Eu( �����G)| . If

�����

G does not have directed cycles we get EO(
�����

G) = ∅ 6=
{∅} = EE(

�����

G) and per(A(
�����

G)[|�����]) = |�����−1|! .

Since the Eulerian subgraphs of
�����

G are (up to orientation) exactly those of the reverse
�����

G, we get |�����−1|! · per(A(
�����

G)[|�����]) = |�����−1|! · per(A(
�����

G)[|�����]) = (−1)|E(
�����

G)||�����−1|! · per(A(
�����

G)[|�����])
and can deduce the following corollary, which stands here only for completeness:

Corollary 2.8. (Reverse copier) Let ξ : V̄ → V (
�����

G) be a square column copier to A(
�����

G)

with |ξ−1(v)| ≤ |Iv| for all v ∈ V (
�����

G) . Copiers ξ′ of A(
�����

G) with |ξ′−1(v)|+|ξ−1(v)| = |Iv|
for all v ∈ V (

�����

G) exist, are square and fulfill

|ξ−1|! per(A(
�����

G)[|ξ′]) = (−1)|E(
�����

G)| |ξ′−1|! per(A(
�����

G)[|ξ]) .

2.2 Vertex colorings and the theorem of Alon and Tarsi

From definitions 1.8 and 2.1 follows:

Proposition 2.9. The colorings c : V (
�����

G) −→ R , v 7−→ c(v) = cv of
�����

G ( c ∈ RV (
�����

G) )

are exactly the colorings of A(
�����

G) ∈ RE×V and:

A(
�����

G) c = (c(e�����) − c(e�����))e∈E(
�����

G) .

This can be combined with the evaluation formulas of section 1.2 to express the per-
manent per(A(

�����

G)[|ξ]) in terms of colorings. With corollary 1.15 follows:

Theorem 2.10 (Permanent condition). Let Cv ( v ∈ V (G) ) be color lists with∑
v∈V (|Cv| − 1) = |E(

�����

G)| ( e.g. |Cv| − 1 = |�����v| for all v ∈ V ) and ξ : V̄ → V a
copier with |ξ−1(v)| = |Cv| − 1 (e.g. ξ := ����� ).

If per(A(
�����

G)[|ξ]) 6= 0 then a proper coloring c : V 3 v 7−→ cv ∈ Cv of
�����

G exists.
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Now the combination with formula 2.7 gives the theorem of Alon and Tarsi [AlTa]:

Theorem 2.11 (Alon,Tarsi 1989). To each v ∈ V (
�����

G) let Cv be a list of |�����v| + 1
different colors.

If |EE(
�����

G)| 6= |EO(
�����

G)| then a proper coloring c : V (
�����

G) 3 v 7−→ cv ∈ Cv of
�����

G exists.

2.3 Edge colorings of n-regular graphs

The edge colorings of a graph are the vertex colorings of its line graph. Therefore, we are
especially interested in line graphs. To obtain good results we always assume G to be
n-regular (with n ≥ 1 ). n ≥ 1

The vertices of the line graph ( interchange graph) LG of a graph G are the edges LG

of G , V (LG) := E(G) . The number of edges between two vertices v, v′ ∈ V (LG) in
the line graph LG equals the number of common ends of v and v′ as edges of G .
If G is n-regular then LG is 2(n−1) -regular, (n−1)|V (LG)| = |E(LG)| and each

“vertex copier” ξ : V̄ −→ V (
−−�����
LG) to the arbitrary oriented line graph

−−�����
LG of G with −−�����

LG

|ξ−1(e)| = n−1 for all e ∈ V (
−−�����
LG) is “square” ( |V̄ | = |E(

−−�����
LG)| ). In this situation

the permanent condition 2.10 can be applied and ensures the existence of colorings c :
E(G) 3 e 7−→ ce ∈ Ce to arbitrary lists Ce of n different colors if per(A(

−−�����
LG)[|ξ]) 6= 0 .

Since we are especially interested in colorings with equal color lists Ce := {0, . . . , n−1}
to the edges e ∈ E(G) we will now take a closer look at this situation. The line graph

−−�����
LG

is partitioned into |V (G)| complete subgraphs E(v) ⊆ E(
−−�����
LG) , one “around” each vertex E(v)

v ∈ V (G) of G . If c : E(G) = V (
−−�����
LG) −→ {0, 1, . . . , n−1} is a proper edge coloring

of G then the n vertices of each E(v) obtain n different colors under c and thus∏
e∈E(v) (c(e�����) − c(e�����)) = ±∏n−1

i=1 (i!) . Now the following definition seems to be useful.

Definition 2.12 (Sign). Let G be a n-regular graph,
−−�����
LG its arbitrary oriented line

graph. We define the sign respectively the sign in v ∈ V (G) of an edge coloring c :

E(G) = V (
−−�����
LG) −→ {0, 1, . . . , n−1} as follows:

sign−−�����
LG(c, v) :=

∏
e∈E(v) (c(e�����) − c(e�����))∏n−1

i=1 (i!)
∈ {1,−1} and (11)

sign−−�����
LG(c) :=

∏
v∈V (G)

sign−−�����
LG(c, v) ∈ {1,−1} . (12)

With this we obtain a special version of color formula 1.10 (similar results can be found
in [Sch], [ElGo]):

Theorem 2.13 (Color formula). Let G be a n-regular graph,
−−�����
LG its arbitrary oriented

line graph, ξ a copier to A(
−−�����
LG) with |ξ−1(v)| = n−1 for all v ∈ V (

−−�����
LG) and C the

set of proper edge colorings c : E(G) → {0, 1, . . . , n−1} of G .

per(A(
−−�����
LG)[|ξ]) =

(
(−1)

n(n−1)
2 (n−1)!

n) 1
2
|V (G)| ∑

c∈C
sign−−�����

LG(c) .
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Proof. If there is no proper coloring (C = ∅ ) then per(A(
−−�����
LG)[|ξ]) = 0 by theorem2.10

and the statement holds. In the other case, we have to calculate the different terms in

color formula 1.10 with V := V (
−−�����
LG) = E(G) , E := E(

−−�����
LG) , A := A(

−−�����
LG) . Each color

i ∈ {0, 1, . . . , n−1} of a proper edge coloring c ∈ C occurs on exactly |V (G)| half edges
and thus on 1

2
|V (G)| ∈ N edges. Using this we get:

(−1)|E| = (−1)
n(n−1)

2
|V (G)| = 1 ( since 1

2 |V (G)| ∈ N ), (13)

(−1)Σc = (−1)
n(n−1)

2
1
2
|V (G)| , (14)

(ξ
c

)2
=

(n−1∏
i=0

(n − 1)!
i! (n − 1 − i)!

)|V (G)| ( the sets Iv (v ∈ V (G)) cover V twice), (15)

Π(Ac)
2.9
2.12=

(n−1∏
i=1

(i!)
)|V (G)| · sign−−�����

LG
(c) =

(n−1∏
i=0

i!(n−1−i)!
) 1

2
|V (G)| · sign−−�����

LG
(c) , (16)

(ξ
c

)
Π(Ac) = (n − 1)!

n
2
|V (G)| · sign−−�����

LG
(c) . (17)

Since in color formula 2.13 colorings with different signs may be involved, it can happen
that the permanent vanishes ( per(A(

−−�����
LG)[|ξ]) = 0 ) although appropriate edge colorings

exist. For example, if there are two different vertices v and v′ with identical neighbor-
hoods and n is odd this is the case [ElGo, prop. 2.2].

In the planar case, however, all colorings c : E(G) −→ {0, 1, . . . , n−1} have the same
sign. This was shown by Ellingham and Goddyn [ElGo, theorem3.1] in 1994 and gener-
alizes the 3-regular case shown by Vigneron [Vig] in 1946. In 1974 Scheim [Sch] used the
older, special version and the graph polynomial to express the number of edge 3-colorings
of a planar cubic graph as a permanent. (This case is of special interest since, by the
theorem of Tait [JeTo, p.16], the edge 3-colorability of 3-regular planar graphs without
bridges is equivalent to the four color theorem of Appel and Haken [ApHa].) With Elling-
ham and Goddyn’s newer result, Scheim’s formula can be generalized to n-regular planar
graphs. In this paper we can deduce this formulas from theorem2.13 :

Theorem 2.14 (Scheim 1974). Let G be a n-regular planar graph,
−−�����
LG its arbitrary

oriented line graph, ξ a copier to A(
−−�����
LG) with |ξ−1(v)| = n−1 for all v ∈ V (

−−�����
LG) and

C the set of proper edge colorings c : E(G) → {0, 1, . . . , n−1} of G .

per(A(
−−�����
LG)[|ξ]) = ±(n−1)!

n
2
|V (G)| |C| .

Together with theorem2.10 this leads to Ellingham and Goddyn’s partial solution of
the list coloring conjecture [ElGo]:

Theorem 2.15 (Ellingham, Goddyn 1994). Let G be a n-regular planar graph.

If a proper edge coloring c : E(G) 3 e 7−→ ce ∈ {0, 1, . . . , n−1} of G exists then
proper list edge colorings c : E(G) 3 e 7−→ ce ∈ Ce of G to arbitrary color lists Ce of
size n also exist.
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3 Hypergraphs

Given a matrix A = (aev) ∈ RE×V we can define a hypergraph H(A) = (V,E, IA) by H(A)

setting IA := {(e, v) ∈ E × V ¦ aev 6= 0} . A map c : V −→ R is a proper coloring of a IA

hypergraph H = (V,E, I) if every edge is incident with at least two vertices of different
color. The following proposition can be easily derived from definition 1.8 .

Proposition 3.1. Let A = (aev) ∈ RE×V be a matrix with vanishing row sums.
The proper colorings c : V −→ R of A are proper colorings of H(A) .
Conversely, let S ⊆ R be a subring of R (e.g. R = S[X1] ). If for each row e ∈ E

the equation
∑

v∈V µvaev = 0 with (µv)v∈V ∈ SV only holds for constant tuples (µv)v∈V
then each proper coloring c : V −→ S ⊆ R of H(A) is a proper coloring of A .
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