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Abstract

Suppose xm + axn is a permutation polynomial over Fp, where p > 5 is prime
and m > n > 0 and a ∈ F

∗

p. We prove that gcd(m−n, p−1) /∈ {2, 4}. In the special
case that either (p − 1)/2 or (p − 1)/4 is prime, this was conjectured in a recent
paper by Masuda, Panario and Wang.

1 Introduction

A polynomial over a finite field is called a permutation polynomial if it permutes the
elements of the field. These polynomials have been studied intensively in the past two
centuries. Permutation monomials are completely understood: for m > 0, xm permutes
Fq if and only if gcd(m, q − 1) = 1. However, even though dozens of papers have been
written about them, permutation binomials remain mysterious. In this note we prove the
following result:

Theorem 1.1. If p > 5 is prime and f := xm + axn permutes Fp, where m > n > 0 and

a ∈ F
∗

p, then gcd(m − n, p − 1) /∈ {2, 4}.

∗This work proves the conjectures stated in the first author’s talk at the November 2006 BIRS workshop
on Polynomials over Finite Fields and Applications. The authors thank BIRS for providing wonderful
facilities. The first author was at Carleton University when this research was performed.
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In case (p− 1)/2 or (p− 1)/4 is prime, this was conjectured in the recent paper [2] by
Panario, Wang and the first author. It is well-known that the gcd is not 1: for in that
case, f has more than one root in Fp, since xm−n is a permutation polynomial. It is much
more difficult to show that the gcd is not 2 or 4.

In Section 2 we prove some general results about permutation binomials, and in par-
ticular we show that it suffices to prove Theorem 1.1 when m− n divides p− 1. Then we
prove Theorem 1.1 in Section 3.

Throughout this paper, we want to ignore permutation binomials that are really mono-
mials in disguise. Here one can disguise a permutation monomial (over Fq) by adding a
constant plus a multiple of xq−x; such addition does not affect the permutation property.
Thus, we say a permutation binomial of Fq is trivial if it is congruent modulo xq−x to the
sum of a constant and a monomial. In other words, the nontrivial permutation binomials
are those whose terms have degrees being positive and incongruent modulo q − 1.

2 Permutation binomials in general

Lemma 2.1. If f is a permutation polynomial over Fq, then the greatest common divisor

of the degrees of the terms of f is coprime to q − 1.

Proof. Otherwise f is a polynomial in xd, where d > 1 divides q − 1, but xd is not a
permutation polynomial so f is not one either.

Lemma 2.2. Let d | (q − 1), and suppose there are no nontrivial permutation binomials

over Fq of the form xe(xd + a). Then there are no nontrivial permutation binomials over

Fq of the form xn(xk + a) with gcd(k, q − 1) = d.

Proof. Suppose f(x) := xn(xk + a) permutes Fq, where n, k, a 6= 0. Let d = gcd(k, q − 1).
Pick r > 0 such that kr ≡ d (mod q − 1) and gcd(r, q − 1) = 1. Then f(xr) permutes Fq

and f(xr) ≡ xnr(xd + a) (mod xq − x).

Lemma 2.2 immediately implies the following result from [2]:

Corollary 2.3. If q − 1 is a Mersenne prime, then there are no nontrivial permutation

binomials over Fq.

We give one further reduction along the lines of Lemma 2.2:

Lemma 2.4. Let d, n, e > 0 satisfy d|(q − 1), gcd(ne, d) = 1 and n ≡ e (mod (q − 1)/d).
Then xn(xd + a) permutes Fq if and only if xe(xd + a) does.

Proof. Write f := xn(xd + a) and g := xe(xd + a). For any z ∈ Fq with zd = 1, we have
f(zx) = znf(x); since gcd(n, d) = 1, this implies that the values of f on Fq comprise
all the dth roots of the values of f(x)d. Since f(x)d ≡ g(x)d (mod xq − x), the result
follows.

Finally, since we constantly use it, we give here a version of Hermite’s criterion [1]:

the electronic journal of combinatorics 14 (2007), #N12 2



Lemma 2.5. A polynomial f ∈ Fq[x] is a permutation polynomial if and only if

1. for each i with 0 < i < q − 1, the reduction of f i modulo xq − x has degree less than

q − 1; and

2. f has precisely one root in Fq.

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. We treat the cases of gcd 2 and 4 separately.

Theorem 3.1. If p is prime and xn(xk + a) is a nontrivial permutation binomial over

Fp, then gcd(k, p − 1) > 2.

Proof. There are no nontrivial permutation binomials over F2 or F3, so we may assume
p = 2` + 1 with ` > 1. By Lemma 2.2, it suffices to show there are no nontrivial
permutation binomials of the form f := xn(xd +a) with d ∈ {1, 2}. This is clear for d = 1
(since then f(0) = f(−a)), so we need only consider d = 2. Assume f := xn(x2 + a) is a
permutation binomial. Lemma 2.1 implies n is odd.

Suppose ` is odd. We will use Hermite’s criterion with exponent `− 1; to this end, we
compute

f `−1 = xn`−n(x2 + a)`−1 = xn`−n

`−1
∑

i=0

(

` − 1

i

)

a`−1−ix2i.

Write f `−1 =
∑`−1

i=0
bix

n`−n+2i, where bi =
(

`−1

i

)

a`−1−i. Since ` − 1 < p and p is prime,
each bi is nonzero. Thus, the degrees of the terms of f `−1 are precisely the elements of

S = {n` − n, n` − n + 2, n` − n + 4, . . . , n` − n + 2` − 2}.

Since ` is odd, S consists of ` consecutive even numbers, so it contains a unique multiple
of p−1 = 2`. Thus the reduction of f `−1 modulo xp−x has degree p−1, which contradicts
Hermite’s criterion.

If ` is even then f ` =
∑`

i=0
cix

n`+2i, where each ci =
(

`

i

)

a`−i is nonzero. The degrees
of the terms of f ` consist of the ` + 1 consecutive even numbers n`, n` + 2, . . . , n` + 2`.
Since n is odd, n` is not a multiple of p − 1 = 2`. Thus f ` has a unique term of degree
divisible by p − 1, which again contradicts Hermite’s criterion.

Theorem 3.2. If p is prime and xn(xk + a) is a nontrivial permutation binomial over

Fp, then gcd(k, p − 1) 6= 4.

Proof. Plainly we need only consider primes p with p ≡ 1 (mod 4). By Lemma 2.2, it
suffices to show there are no nontrivial permutation binomials of the form xn(x4 + a). By
Lemma 2.1, we may assume n is odd. By Lemma 2.4, it suffices to show nonexistence with
0 < n < (p−1)/4 if p ≡ 1 (mod 8), and with 0 < n < (p−1)/2 if p ≡ 5 (mod 8). Assume
f := xn(x4 + a) is a nontrivial permutation binomial with n satisfying these constraints.
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First suppose p ≡ 1 (mod 8), say p = 8` + 1; here our assumption is 0 < n < 2`. The
set of degrees of terms of f 2` is

S = {2`n, 2`n + 4, 2`n + 8, . . . , 2`n + 8`}.

When ` is even, S consists of 2`+1 consecutive multiples of 4. Since n is odd, 2`n is not a
multiple of 8`, so S contains precisely one multiple of p− 1 = 8`, contradicting Hermite’s
criterion. So assume ` is odd; since 8`+1 is prime, we have ` ≥ 5. Now the set of degrees
of terms of f 2`+2 is

S = {2`n + 2n, 2`n + 2n + 4, 2`n + 2n + 8, . . . , 2`n + 2n + 4(2` + 2)}.

Here S consists of 2`+3 consecutive multiples of 4, so it contains a multiple of p−1 = 8`.
By Hermite’s criterion, S must have at least two such multiples. Thus, 8` divides either
2`n + 2n, 2`n + 2n + 4 or 2`n + 2n + 8, so ` divides either n, n + 2 or n + 4. Since ` ≥ 5
and 0 < n < 2`, we have n+4 < 3`; since n is odd, it follows that ` equals either n, n+2
or n + 4. But then f 8 has a unique term of degree divisible by p − 1 = 8`, contradicting
Hermite’s criterion.

Thus we have p ≡ 5 (mod 8); write p = 4` + 1 with ` odd, where again 0 < n < 2`.
Suppose ` ≡ 1 (mod 4). If ` = 1 then f is trivial, so assume ` > 1. The set of degrees of
terms of f `−1 is

S = {n` − n, n` − n + 4, n` − n + 8, . . . , n` − n + 4` − 4}.

Since ` ≡ 1 (mod 4), the set S consists of ` consecutive multiples of 4, so S contains
precisely one multiple of p − 1 = 4`, contradicting Hermite’s criterion.

Thus ` ≡ 3 (mod 4). The set of degrees of terms of f `+1 is

S = {n` + n, n` + n + 4, n` + n + 8, . . . , n` + n + 4` + 4}.

Since S consists of ` + 2 consecutive multiples of 4, it certainly contains a multiple of
4`, so (by Hermite’s criterion) it must contain two such multiples. Thus either n(` + 1)
or n(` + 1) + 4 is a multiple of 4`, so ` divides either n or n + 4. Since n is odd and
0 < n < 2`, the only possibilities are n = ` or n = `−4 or (n, `) = (5, 3). If n = `−4 then
f 4 has degree 4` = p− 1, contradicting Hermite’s criterion. If (n, `) = (5, 3), then p = 13
and a−1f(x11) permutes Fp; since a−1f(x11) ≡ x3(x4 + a−1) (mod x13 − x), it suffices to
treat the case n = `. Finally, suppose n = `, so f = x`(x4 + a) permutes Fp. The degrees
of the terms of f 4 are

4`, 4` + 4, 4` + 8, 4` + 12, 4` + 16.

We have our usual contradiction if the degree 4` term is the unique term of f 4 with degree
divisible by 4`, so the only remaining possibility is that 4` divides either 4, 8, 12 or 16.
Since ` ≡ 3 (mod 4), the only possibility is ` = 3. Finally, when ` = 3, the coefficient of
x12 in the reduction of f 4 modulo x13 − x is a4 + 4a, which must be zero (by Hermite), so
a3 = −4; but the cubes in F

∗

13 are ±1 and ±8, contradiction.
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