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Abstract

We demonstrate that also the second sum involved in Apéry’s proof of the irra-
tionality of ζ(3) becomes trivial by symbolic summation.

In his beautiful survey [4], van der Poorten explained that Apéry’s proof [1] of the
irrationality of ζ(3) relies on the following fact: If
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where H
(3)
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1
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are the harmonic numbers of order three, then both sums a(n) and
b(n) satisfy the same recurrence relation

(n + 1)3A(n) − (2n + 3)
(

17n2 + 51n + 39
)

A(n + 1) + (n + 2)3A(n + 2) = 0. (2)

Van der Poorten points out that Henri Cohen and Don Zagier showed this key ingredient
by “some rather complicated but ingenious explanations” [4, Section 8] based on the
creative telescoping method.

Due to Doron Zeilberger’s algorithmic breakthrough [9], the a(n)-case became a triv-
ial exercise. Also the b(n)-case can be handled by skillful application of computer alge-
bra: In [10] Zeilberger was able to generalize the Zagier/Cohen method in the setting of
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WZ-forms. Later developments for multiple sums [8, 7] together with holonomic closure
properties [5, 3] enable alternative computer proofs of the b(n)-case; see, e.g., [2].

Nowadays, also the b(n)-case is completely trivialized: Using the summation package
Sigma [6] we get plain sailing – instead of plane sailing, cf. van der Poorten’s statement
in [4, Section 8]. Namely, after loading the package into the computer algebra system
Mathematica

In[1]:= << Sigma.m
Sigma - A summation package by Carsten Schneider c© RISC-Linz

we insert our sum mySum = b(n)

In[2]:= mySum =
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and produce the desired recurrence with

In[3]:= GenerateRecurrence[mySum]

Out[3]=

{

(n + 1)3SUM[n] − (2n + 3)
(

17n
2 + 51n+ 39

)

SUM[n + 1] + (n + 2)3SUM[n + 2] == 0

}

where SUM[n] = b(n) = mySum. The correctness proof is immediate from the proof
certificates delivered by Sigma.

Proof. Set h(n, k) :=
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, and let f(n, k) be the sum-

mand of (1), i.e., f(n, k) = h(n, k)2
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. The correctness follows by the
relation

s(n + 1, k) = s(n, k) −
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and by the creative telescoping equation

c0(n)f(n, k) + c1(n)f(n + 1, k) + c2(n)f(n + 2, k) = g(n, k + 1) − g(n, k) (4)

with the proof certificate given by c0(n) = (n + 1)3, c1(n) = 17n2 + 51n + 39, c2(n) =
(n + 2)3, and

g(n, k) =
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+ (−1)kh(n, k)p2(n, k)

(n + 1)2(n + 2)(−k + n + 1)2(−k + n + 2)2

where

p0(n, k) =4k4(n + 1)2(n + 2)(2n + 3)(2k2 − 3k − 4n2 − 12n − 8),

p1(n, k) =4k4(n + 1)2(n + 2)(2n + 3)(2k2 − 3k − 4n2 − 12n − 8),

p2(n, k) =k(k + n + 1)(2n + 3)(−8n4 + 24kn3 − 48n3 − 31k2n2 + 109kn2

− 104n2 + 13k3n − 100k2n + 159kn − 96n + 21k3 − 81k2 + 74k − 32).

Relation (3) is straightforward to check: Take its shifted version in k, subtract the original
version, and then verify equality of hypergeometric terms. To conclude that (4) holds for
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all 0 ≤ k ≤ n and all n ≥ 0 one proceeds as follows: Express g(n, k + 1) in (4) in

terms of h(n, k) and s(n, k) by using the relations h(n, k + 1) = (n−k)(n+k+1)
(k+1)2

h(n, k) and

s(n, k + 1) = s(n, k) + (−1)k

2(k+1)3h(n,k+1)
. Similarly, express the f(n + i, k) in (4) in terms

of h(n, k) and s(n, k) by using the relations h(n + 1, k) = n+k+1
n−k+1

h(n, k) and (3). Then
verify (4) by polynomial arithmetic. Finally, summing (4) over k from 0 to n gives Out[3]
or (2).

In conclusion, we remark that the harmonic numbers H
(3)
n in (1) are crucial to obtain

the recurrence relation (2). More precisely, for the input sum
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Sigma is only able to derive a recurrence relation of order four.

References
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