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Abstract

New cyclic n-digit Gray codes are constructed over {0, 1, . . . , R−1} for all R ≥ 3,
n ≥ 2. These codes have the property that the distribution of the digit changes
(transition counts) is close to uniform: For each n ≥ 2, every transition count is
within R − 1 of the average Rn/n, and for the 2-digit codes every transition count
is either bR2/2c or dR2/2e.

1 Introduction

For R, n ≥ 2, an n-digit R-ary Gray code is a sequence in which each n-digit string
with digits from the set {0, 1, . . . , R − 1} occurs exactly once and any two consecutive
strings differ in only one digit and the difference equals ±1; that is, the Lee distance
equals 1, where the Lee distance between two n-strings is defined to be

dL(a1 . . . an , b1 . . . bn) =
n

∑

j=1

min{|aj − bj| , R − |aj − bj|} .

When the Lee distance between the last and first strings also equals 1, the code is called
cyclic. For instance,

10, 11, 01, 00 and 20, 21, 22, 12, 02, 01, 11, 10, 00 (1)

are cyclic 2-digit R-ary Gray codes, with R = 2 and R = 3, respectively.
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It is helpful to consider a cyclic Gray code as a Hamiltonian cycle in the R-ary n-

cube, the graph whose vertices are all n-strings with digits from the set {0, 1, . . . , R − 1}
in which two vertices are adjacent if they differ in only one digit by ±1. Our usual
representation of this graph will have the vertices arranged in an Rn−1 × R array, where
the first n − 1 digits of a vertex n-string are given by its row label and the last digit by
its column label. Figure 1 has the Hamiltonian cycles for the cyclic Gray codes in (1).

Figure 1: cyclic 2-digit R-ary Gray codes for R = 2, 3, 4.

The transition sequence of a cyclic Gray code records the successive digit changes
in the code, beginning with the change from the first to the second string. For example,
the transition sequences for the codes in (1) are:

2, 1, 2, 1 and 2, 2, 1, 1, 2, 1, 2, 1, 1 . (2)

For each 1 ≤ j ≤ n, the transition count TC(j) of the digit j is defined to be the
number of times j occurs as a transition digit in the code. For each n, R there are many
Gray codes, and one favorable characteristic for applications is a relative uniformity in
the distribution of transition counts. When all transition counts are equal (this common
value must necessarily equal Rn/n and n must divide Rn), the code is called totally-

balanced or uniform. The binary and quaternary codes in Figure 1 are totally-balanced.
In [7, 10, 11] totally-balanced cyclic n-digit binary codes are constructed for every n which
is a power of 2, but there is no published construction of families of totally-balanced codes
for arbitrary R. One of our results yields totally-balanced quaternary codes. (Refer to
Corollary 1.)

When Rn is not divisible by n, totally-balanced cyclic codes cannot exist and it is
reasonable to ask for codes in which every transition count is either bRn/nc or dRn/ne,
a phenomenon which we will call well-balanced. When R is even, the cyclicness forces
every transition count to be even and so (unlike the cyclic ternary code given above
in (1)) for even R every well-balanced cyclic R-ary Gray code must be totally-balanced.
In [2], the authors asked if a well-balanced (non-cyclic) n-digit binary Gray code exists
for every n ≥ 2. Although this continues to be an open question, in [9, Chapter 3] I.
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N. Suparta has obtained further evidence supporting the conjecture. In Section 2 we
construct well-balanced 2-digit R-ary Gray codes for every R ≥ 2. The codes depend
on the even/odd parity of R, and are produced by a natural inductive process in which
well-balanced cyclic 2-digit (R + 2)-ary Gray codes are constructed from the R-ary ones.

A cyclic n-digit binary Gray code satisfying

|TC(i) − TC(j) | ≤ 2 for every pair i, j ,

is referred to as balanced. In [2], G. S. Bhat and C. Savage constructed balanced cyclic
n-digit (binary) Gray codes for every n ≥ 2 when they completed some details which
remained from the construction of J. P. Robinson and M. Cohn [7]. In a comment added
to [2], F. Ruskey noted that T. Bakos [1, pp. 28–37] had much earlier constructed bal-
anced cyclic binary codes; more recently I. N. Suparta [9, Section 3.2] has developed an
elegant variant of these constructions. In each, n-digit cyclic binary codes are constructed
inductively, using four (n − 2)-digit binary codes.

Non-binary codes have been considered, for example, in [3, 4, 5, 6, 8, 9], but the
question of constructing fairly uniform cyclic R-ary Gray codes for a general radix R > 2
has received far less attention than the binary case. In Section 3 we give a simple inductive
construction which we later use in Section 4 to obtain nearly-balanced codes; that is,
codes whose transition counts satisfy

∣

∣

∣
TC(j) −

Rn

n

∣

∣

∣
< ρ for all 1 ≤ j ≤ n ,

where ρ equals R−1 or R−2, whichever is even. The earlier constructions of well-balanced
binary codes relied on delicate combinatorial arguments, whereas our use of Rn/n as a
reference point has the advantage of allowing simpler proofs which involve only balancing
inequalities.

2 Well-balanced cyclic 2-digit R-ary Codes

Theorem 1. Let R ≥ 2. If there exists a cyclic 2-digit R-ary Gray code with transition
counts bR2/2c+a and dR2/2e+b for some constants a, b, then there exists a cyclic 2-digit
(R + 2)-ary Gray code with transition counts b(R + 2)2/2c + a and d(R + 2)2/2e} + b.

Proof. The given cyclic R-ary code can be normalized so that it begins with R-1 0 and ends
with the string 0 0. (This can be done because at some point there must be consecutive
terms of the form c d ; c ± 1 d. The required form is then obtained by translating and
reflecting if necessary so that the last term is 0 0 and the first term is R-1 0. Since the
distribution of transition counts remains the same under these operations, we may assume
the original cyclic code has this form.) Therefore, the code corresponds to a Hamiltonian
path from R-1 0 to 0 0 in the R-ary square to which the edge from 0 0 to R-1 0 can be
added to form a Hamiltonian cycle.

Labeling the rows of the (R + 2)-ary square as R+1 R . . . 1 0 and the columns as 0 1
. . . R+1, we first construct a path from the vertex R+1 0 to R-1 0 by beginning with the
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vertex R+1 0, proceeding horizontally through all vertices of the form R+1 i, from R+1
0 to R+1 R+1, and then vertically down to 0 R+1. From there we travel to 0 R and
continue by proceeding vertically upward to R R, traveling horizontally over to R 0 and
then ending with the edge to R-1 0. This initial path covers all vertices in which at least
one component is either R or R+1. Its transition sequence is: R + 1 twos, followed by
R +1 ones, one 2, and then R ones, R twos and one 1, for a total of 2R+2 copies of each
of 1 and 2. Attaching the given Hamiltonian path from R-1 0 to 0 0 to the end of this
initial segment results in a Hamiltonian path in the (R + 2)-ary square, and the addition
of the edge from 0 0 to R+1 0 results in a Hamiltonian cycle. (The quaternary code in
Figure 1 was obtained in this way from the binary code, and the diagram in Figure 2
illustrates the general construction.)

Figure 2: Construction of the initial segment.

Since

bR2/2c + 2R + 2 = b(R + 2)2/2c and dR2/2e + 2R + 2 = d(R + 2)2/2e ,

the code produced is a cyclic 2-digit (R + 2)-ary Gray code with the required transition
counts.

Theorem 2. For any R ≥ 2 there exists a cyclic 2-digit R-ary Gray code which is well-
balanced, and so for even R the code is totally-balanced.

Proof. Consider the statement: For every n ≥ 1 there exist well-balanced cyclic 2-digit
R-ary Gray codes for R = 2n and R = 2n + 1. The codes given in (1) satisfy this
statement for n = 1. Application of Theorem 1 with a = b = 0 therefore yields the result
by induction on n.
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3 Constructing (n + 1)-digit codes from n-digit codes

One simple way to construct a Hamiltonian path on an L × R rectangular grid is to
traverse successive vertices across rows; that is,

1 0 , 1 1 , . . . , 1 R − 1 ; 2 R − 1 , . . . , 2 1 , 2 0 etc. , (3)

as illustrated in Figure 3. Notice that the terminal vertex is either L 1 or L R, according

Figure 3: Our basic Hamiltonian path on the 4 × 5 grid.

to whether L is even or odd.
Our construction of nearly-balanced cyclic codes is based on a modification of this

simple idea. The construction involves partitioning the row indices of an R-ary (n + 1)-
cube into blocks. Specifically, the rows are first indexed by a fixed cyclic n-digit R-ary
Gray code, a1, a2, . . . , aRn , and then are partitioned into L nonempty blocks of consecutive
elements, say

B1 := a1, . . . , ai1 , B2 := ai1+1, . . . , ai2 , . . . , BL := aiL−1+1, . . . , aRn .

This idea of using partitions is at least implicit in other published constructions, among
them [2, 6, 7, 9, 10].

The digit changes from aik to aik+1
will be called the connecting digits of the

partition, and the number of times any digit occurs as a connecting digit will be referred
to as its connecting multiplicity. For notational convenience, we assume the code is in
a standard form in which the coordinates of the n-strings have been permuted if necessary
so that 1 is the L-th connecting digit, the transition digit from aRn to a1.

We use this partition to construct a Hamiltonian path in the R-ary (n + 1)-cube
in the following way: First of all, the Hamiltonian path will “respect” the partition
B1 ∪ . . . ∪ BL; that is, for every column index k and every block Bj, the path must
traverse the vertices aij+1 k , aij+2 k , . . . , aij+1

k consecutively either in that direction or
in the reverse direction. This allows us to picture the (n + 1)-cube as an L × R array in
which the rows are indexed by the blocks B1, . . . , BL.
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Figure 4: Ternary Hamiltonian paths for three and four blocks.

If R is odd, the construction given in (3) yields a Hamiltonian path on the R-ary
(n + 1)-cube (refer to Figure 4), and when the number L of partition-blocks is even
number, the addition of the edge from aRn 0 to a1 0 results in a Hamiltonian cycle.

When R is even, the path can be adjusted to get a Hamiltonian cycle on the R-ary
(n + 1)-cube in the following way: Within the given R-ary (n + 1)-cube (with its rows
labeled by the cyclic Gray code which has been partitioned by B1∪ . . . BL and its columns
labeled 0 1 . . . R-1), consider the Rn × (R − 1) grid consisting of the vertices whose last
digit is nonzero. Since R−1 is odd, the Hamiltonian path given in (3) can be constructed
on the blocks of this grid. Its initial vertex is a1 1 and the terminal vertex is either aRn

R-1 or aRn 1, depending on whether L is odd or even. In either event, the terminal
vertex is adjacent to aRn 0. A Hamiltonian cycle on the R-ary (n + 1)-cube is obtained
by appending this edge to the initial path, following through all vertices with zero second
digit in the order:

aRn 0 , aRn
−1 0 , . . . , a1 0 ,

and then ending with the edge to a1 1. This is pictured for R = 4 in Figure 5.
Regardless of whether R is even or odd, the construction gives a cyclic (n + 1)-digit

R-ary Gray code (provided the number of partition-blocks is even when R is odd). In
what follows this will be referred to as the code induced by the partition B1 ∪ . . . BL.

By arranging the vertices of the (binary) n-cube in a grid whose rows are indexed by
an (n − 2)-cube and its columns by 00 10 11 01, most known n-digit binary codes can
be seen to have this kind of partitioning behavior. When viewed from this perspective
of partitions, the combinatorial argument for the binary constructions in [2, 7] required
some restrictions on the usable partitions; for instance, at least two blocks can have only
one element.

The following result gives the distribution of transition counts in codes induced by a
partition.
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Figure 5: Construction of cyclic 4-ary codes.

Theorem 3. Let R ≥ 3 be an integer, and set ρ equal to either R − 2 or R − 1,
whichever is even. Let a1, a2, . . . , aRn be any cyclic n-digit R-ary Gray code with transition
counts T1, . . . , Tn (where two digit positions have been transposed if necessary so that the
digit change from aRn to a1 is in the first digit). Let B1 ∪ . . . BL be any partition of the
code, and kj be the connecting multiplicity of the digit j. When R is odd and L is even,
the j-th transition count of the induced cyclic (n + 1)-digit Gray code is

TC(j) =

{

R Tj − kj ρ if j ≤ n

L ρ if j = n + 1
. (4)

When R is even the transition counts of the induced cyclic (n + 1)-digit Gray code are

TC(j) =











R Tj − kj ρ − 2 if j = 1

R Tj − kj ρ if 1 < j ≤ n

L ρ + 2 if j = n + 1

. (5)

Proof. First we consider the contribution from the initial Hamiltonian path. Setting
N := ρ+1 (which is odd), the Hamiltonian path on the Rn×N grid has (N-1)L horizontal
lines, and so this initial part of the process of forming the Hamiltonian cycle accumulates
(N-1)L changes in the digit n + 1. Every edge within the partition-blocks is traversed
in every column, the edge corresponding to the connecting digit from aRn to a1 never
occurs, and the edge corresponding to every other connecting digit occurs exactly once.
Therefore, for every 1 < j ≤ n the digit j changes

N (Tj − kj) + kj = N Tj − (N − 1)kj

times in this initial segment, and there is one fewer change for j=1.
When R is odd, the cycle is completed by adding one edge which corresponds to a

change in the first digit. Since N = R holds in this case, (4) is obtained.
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For even R, two horizontal edges are added to complete the cycle, giving

TC(n + 1) = (N − 1)L + 2 = L ρ + 2 .

As for additional vertical edges, every edge in the original code except for the one corre-
sponding to transitioning from aRn to a1 is added once. Since the transition from aRn to
a1 is a change in the first digit, this gives

TC(1) = (R − 1) T1 − (R − 2)k1 − 1 + T1 − 1 = R T1 − k1 ρ − 2 ,

and for all 2 ≤ j ≤ n,

TC(j) = (R − 1) Tj − (R − 2)kj + Tj = R Tj − kj ρ .

This proves (5).

We end this section with the construction of a cyclic 3-digit ternary code induced from
a partition of the 2-digit ternary code in (1). Since R is odd, the number of partition-
blocks must be even. Also, the digit 1 occurs more frequently as a transition digit in the
given 2-digit code than 2 (refer to (2)) and so a preferred partition would have 1 occurring
at least as often as a connecting digit as 2 does. Consider any 4-block partition in which
2 occurs only once as a connecting digit. (For instance,

B1 := {20, 21} , B2 := {22} , B3 := {12, 02, 01} , B4 := {11, 10, 00}

is such a partition, since the connecting digits are 2,1,1,1 .) From (4), the induced code
has

TC(1) = 9 ; TC(2) = 10 ; TC(3) = 8 .

It is not totally balanced but is nearly-balanced since |TC(j) − Rn/n| ≤ 1 holds for all j.

4 Nearly-balanced cyclic R-ary Gray Codes

Lemma 1. Let R ≥ 3 be an integer. If T is any transition count of either a well-balanced
2-digit R-ary code or a nearly-balanced n-digit R-ary code for n ≥ 3, then there exists a
unique integer k such that 0 < k < T and

0 ≤ R T − k ρ −
Rn+1

n + 1
< ρ . (6)

Proof. For k := b(R T − Rn+1

n+1
)/ρc, we see that (6) is satisfied. Rearranging (6),

R T −
Rn+1

n + 1
− ρ < k ρ ≤ R T −

Rn+1

n + 1
,

and so 0 < k < T can be proved by showing

R T −
Rn+1

n + 1
− ρ > 0 and R T −

Rn+1

n + 1
< Tρ ;
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that is,

R T −
Rn+1

n + 1
− ρ > 0 and T (ρ − R) +

Rn+1

n + 1
> 0 . (7)

Considering the case of a well-balanced 2-digit code, every transition count T satisfies

R2 − 1

2
≤ T ≤

R2 + 1

2
,

giving

R T −
R3

3
− ρ ≥

R3 − 9R + 6

6
> 0

for R ≥ 3, and since R − ρ equals 2 or 1,

T (ρ − R) +
R3

3
≥

R2 + 1

2
(−2) +

R3

3
=

R2(R − 3) − 3

3

which is positive for all R ≥ 4. Also, for R = 3, T (ρ−R) + R3/3 = −T + 9 ≥ 4 proving
(7) for well-balanced 2-digit codes.

It remains to consider the transition counts of a nearly-balanced n-digit code with
n ≥ 3; that is,

∣

∣

∣
T −

Rn

n

∣

∣

∣
< ρ ,

where we recall that ρ equals either R−1 or R−2, whichever is even. The first inequality
in (7) can be easily checked for R = n = 3 since ρ = 2 and the transition counts satisfy
8 ≤ T ≤ 10. Defining an := Rn+1/n(n + 1), we observe that for R, n ≥ 3

an+1

an

= R
(

1 −
2

n + 2

)

> 1 ,

and so an ≥ a3 = R4/12 for all n ≥ 3. Since T is a transition count of a nearly-balanced
n-digit code, |T − Rn/n| < ρ ; T > Rn

n
− ρ and ρ ≤ R − 1 imply

R T −
Rn+1

n + 1
− ρ > R

(Rn

n
− ρ

)

−
Rn+1

n + 1
− ρ = an − (R + 1)ρ

≥ a3 − (R + 1)(R − 1) =
R2(R2 − 12) + 12

12

which is positive for R ≥ 4. The first inequality has already been proved for R = n = 3.
For R = 3 and n ≥ 4, we observe that

an − (R + 1)ρ ≥ a4 − 4 · 2 =
35

20
− 8 > 0 .

This proves the first inequality in (7) for all R, n ≥ 3.
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For the second inequality: T < ρ + Rn

n
and ρ < R give

T (ρ − R) +
Rn+1

n + 1
>

(

ρ +
Rn

n

)

(ρ − R) +
Rn+1

n + 1

= ρ2 +
(Rn

n
− R

)

ρ −
Rn+1

n(n + 1)
,

a strictly increasing function of ρ ≥ R − 2. Evaluation at ρ = R − 2 gives

(R − 2)2 − R(R − 2) + Rn
( R

n + 1
−

2

n

)

= −2(R − 2) + bn ,

where bn := Rn
( R

n + 1
−

2

n

)

. We note that

bn+1

bn

= R
n

n + 2
·

(n + 1)R − 2(n + 2)

nR − 2(n + 1)

where the restrictions R ≥ 3 and n ≥ 3 imply each of the two identified factors is greater
than 1. Therefore, bn ≥ b3 and so

−2(R − 2) + bn ≥ −2(R − 2) + b3 =
3R4 − 8R3 − 24R + 48

12
,

which is positive for all R ≥ 3. This proves (7) and so the lemma.

Theorem 4. For every integer R ≥ 3 and every n ≥ 2 there exists a nearly-balanced
cyclic n-digit R-ary Gray code.

Proof. Let R ≥ 3 be a fixed integer. Since every well-balanced code is nearly-balanced,
Theorem 2 serves as the base case for a proof by induction on n ≥ 2.

Let T1, . . . , Tn be the transition counts of any 2-digit well-balanced code or any nearly-
balanced n-digit code for n ≥ 3. We will prove there is a partition of this code for which
the induced cyclic (n + 1)-digit code is nearly-balanced.

From Lemma 1 it follows that for each j = 1, . . . , n there exists a unique integer kj

with 1 ≤ kj < Tj such that

Sj := R Tj − kj ρ −
Rn+1

n + 1
(8)

satisfies
0 ≤ Sj < ρ . (9)

Permute the coordinates of the n-digit code if necessary to obtain

ρ > S1 ≥ S2 ≥ . . . ≥ Sn ≥ 0 . (10)

Since each 1 ≤ kj < Tj, the digit j occurs more than kj times as a transition digit in the
code and so it can be partitioned into L :=

∑n

j=1 kj blocks in such a way that each digit
j occurs exactly kj times as a connecting digit. Using (8) and

∑n

j=1 Tj = Rn,

n
∑

j=1

Sj =
Rn+1

n + 1
− ρ L . (11)
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Let M := b
∑n

j=1 Sj/ρ c. Then (9) implies

0 ≤ M < n . (12)

Also, by definition of M , 0 ≤
∑n

j=1 Sj − M ρ < ρ holds and so (11) gives

0 ≤
Rn+1

n + 1
− ρ (L + M) < ρ . (13)

We also note that if
SM+1 = . . . = Sn = 0,

then from (11) and (9),

Rn+1

n + 1
− ρ (L + M) =

n
∑

j=1

Sj − M ρ =

M
∑

j=1

Sj − M ρ < M ρ − M ρ = 0 ,

contrary to (13). From (9) we therefore have

0 < Sj < ρ for all j ≤ M + 1 and 0 ≤ Sj < ρ for all j > M + 1 . (14)

We distinguish two cases, according to whether R is odd or even.

CASE 1: R ≥ 3 is odd. We will prove there exists a refinement of the above partition
for which the induced (n + 1)-digit code is cyclic and nearly-balanced. Since R is odd,
the number L of partition-blocks must be even for the code induced by the partition to
be cyclic. Our refinement will have L′ partition-blocks where L′ equals either L + M or
L + M + 1, whichever is even, and so D := L′ − L connecting digits will be added. Since
D equals M or M + 1 and 1 ≤ kj < Tj, by (12) 0 ≤ D ≤ n and each of the first D
digits can be chosen one more time as a connecting digit, giving L′ partition-blocks with
multiplicities k′

1, . . . , k
′

n satisfying

k′

j = kj + 1 if j ≤ D, k′

j = kj if j > D .

According to (4), the first n transition counts of the code induced by this new partition
have

TC(j) −
Rn+1

n + 1
=

{

Sj − ρ if j ≤ D

Sj if D < j ≤ n
,

which by (14) satisfy the nearly-balanced condition. Also, the last transition count is
TC(n + 1) = L′ ρ, and (13) implies

Rn+1

n + 1
− ρ < (L + M) ρ ≤ TC(n + 1) ≤ (L + M + 1) ρ ≤

Rn+1

n + 1
+ ρ .

Therefore, the code is nearly-balanced unless

(L + M) ρ = Rn+1/(n + 1) ,
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which cannot happen since ρ is even and R is odd. This completes the proof for odd R.

CASE 2: R ≥ 4 is even. We refine the partition by adding one more connecting digit for
each j = 2, 3, . . . , M + 1. This induces a code with L + M partition-blocks whose first n
transition digits satisfy

TC(j) −
Rn+1

n + 1
=











S1 − 2 if j = 1

Sj − ρ if 1 < j ≤ M + 1

Sj if M + 1 < j ≤ n

.

As in Case 1, (14) implies the nearly-balanced condition for all TC(j) with j ≤ n. Also,
since TC(n + 1) = (L + M) ρ + 2, from (13) we have

−ρ ≤ −2 ≤
Rn+1

n + 1
− TC(n + 1) < ρ − 2 < ρ ,

and so the code is nearly-balanced unless ρ = 2 (and so R = 4) and

TC(n + 1) =
Rn+1

n + 1
+ 2 .

For this special case, consider any modification of the last partition which has one less
occurrence of 1 as a connecting digit. This changes only the first and last transition counts
to

TC(1) + 2 = S1 +
Rn+1

n + 1
and TC(n + 1) − ρ = TC(n + 1) − 2 =

Rn+1

n + 1
,

respectively, resulting in a nearly-balanced code.

We next apply this theorem to the case when n divides Rn.

Corollary 1. Let R ≥ 3 and n ≥ 2 be integers. If n divides Rn, then there exists a cyclic
n-digit R-ary Gray code whose transition counts TC(1), . . . , TC(n) satisfy

∣

∣

∣
TC(j) −

Rn

n

∣

∣

∣
≤ ρ − 1 for all 1 ≤ j ≤ n . (15)

In particular, when n is a power of 2 there exist totally-balanced cyclic n-digit quaternary
Gray codes.

Proof. By hypothesis, TC(j)−Rn

n
is an integer, and so the strict inequality in the definition

of nearly-balanced implies (15).
When R = 4 and n = 2k, n divides Rn and so every transition count of a nearly-

balanced cyclic n-digit quaternary code is within ρ − 1 = 1 of the even integer 4n/n.
Since the code is cyclic and R is even, every transition count must be even and so must
equal 4n/n.

We end with an application to binary codes.
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Corollary 2. For each n ≥ 2 there exists a cyclic 2n-digit binary Gray code whose
transition counts TC(1), . . . TC(2n) are such that every average of the form TC(2i−1)+TC(2i)

2

equals either b22n/(2n)c or d22n/(2n)e.

Proof. Consider the following mapping of elements of Z4 to 2-digit binary strings:

0 7→ 00 ; 1 7→ 01 ; 2 7→ 11 ; 3 7→ 10 .

This mapping extends to a mapping of quaternary n-strings to binary 2n-strings under
which Lee distance is preserved. Therefore, any cyclic n-digit quaternary Gray code is
mapped to a cyclic 2n-digit binary Gray code, and the transition counts TC(1), . . . TC(2n)
of the binary code have the property that TC(2i−1)+TC(2i) equals the transition count
of the digit i in the 4-ary code for every i = 1, . . . n. Using any nearly-balanced n-digit
4-ary Gray code, we therefore have

∣

∣

∣

∣

TC(2i − 1) + TC(2i)

2
−

22n

2n

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

TC(2i − 1) + TC(2i) −
4n

n

∣

∣

∣

∣

< 1 ,

from the definition of nearly-balanced. Since every transition count of a cyclic binary
Gray code is even, each such average is an integer and the last inequality implies it must
equal either b22n/(2n)c or d22n/(2n)e, as claimed.

Acknowledgment: The authors are grateful to the two referees for their helpful sugges-
tions, especially for the simplification of the proof of Theorem 4.
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