Graphs with many copies of a given subgraph

Vladimir Nikiforov

Department of Mathematical Sciences, University of Memphis, Memphis TN 38152 vnikifr@memphis.edu

Submitted: Oct 8, 2007; Accepted: Mar 3, 2008; Published: Mar 12, 2008 Mathematics Subject Classification: 05C35

Abstract

Let c > 0, and H be a fixed graph of order r. Every graph on n vertices containing at least cn^r copies of H contains a "blow-up" of H with r - 1 vertex classes of size $\lfloor c^{r^2} \ln n \rfloor$ and one vertex class of size greater than $n^{1-c^{r-1}}$. A similar result holds for induced copies of H.

Main results

Suppose that a graph G of order n contains cn^r copies of a given subgraph H on r vertices. How large "blow-up" of H must G contain? When H is an r-clique, this question was answered in [3]: G contains a complete r-partite graph with r-1 parts of size $\lfloor c^r \ln n \rfloor$ and one part larger than $n^{1-c^{r-1}}$.

The aim of this note is to answer this question for any subgraph H.

First we define precisely a "blow-up" of a graph: given a graph H of order r and positive integers x_1, \ldots, x_r , we write $H(x_1, \ldots, x_r)$ for the graph obtained by replacing each vertex $u \in V(H)$ with a set V_u of size x_u and each edge $uv \in E(H)$ with a complete bipartite graph with vertex classes V_u and V_v .

Theorem 1 Let $2 \le r \le n$, $(\ln n)^{-1/r^2} \le c \le 1/4$, H be a graph of order r, and G be a graph of order n. If G contains more than cn^r copies of H, then G contains a copy of $H(s, \ldots s, t)$, where $s = \lfloor c^{r^2} \ln n \rfloor$ and $t > n^{1-c^{r-1}}$.

To state a similar theorem for induced subgraphs, we need a proper modification of $H(x_1, \ldots, x_r)$: we say that a graph X is of type $H(x_1, \ldots, x_r)$, if X is obtained from $H(x_1, \ldots, x_r)$ by adding some (possibly zero) edges within the sets V_u , $u \in V(H)$.

Theorem 2 Let $2 \le r \le n$, $(\ln n)^{-1/r^2} \le c \le 1/4$, H be a graph of order r, and G be a graph of order n. If G contains more than cn^r induced copies of H, then G contains an induced subgraph of type $H(s, \ldots s, t)$, where $s = |c^{r^2} \ln n|$ and $t > n^{1-c^{r-1}}$.

Remarks

- The relations between c and n in Theorems 1 and 2 need some explanation. First, for fixed c, they show how large must be n to get valid conclusions. But, in fact, the relations are subtler, for c itself may depend on n, e.g., letting $c = 1/\ln \ln n$, the conclusions are meaningful for sufficiently large n.
- Note that, in Theorems 1 and 2, if the conclusion holds for some c, it holds also for 0 < c' < c, provided n is sufficiently large.
- The exponent $1 c^{r-1}$ in Theorems 1 and 2 is not the best one, but is simple.
- Using random graphs, it is easy to see that most graphs on n vertices contain substantially many copies of any fixed graph, but contain no complete bipartite subgraphs with both parts larger than $C \log n$, for some C > 0, independent of n. Hence, Theorems 1 and 2 are essentially best possible.

General notation

Our notation follows [1]; thus, given a graph G, we write:

- V(G) for the vertex set of G;
- E(G) for the edge set of G and e(G) for |E(G)|;
- K_2 for the complete graph of order 2;
- $K_2(s,t)$ for the complete bipartite graph with parts of size s and t;
- $f|_X$ for the restriction of a map f to a set X.

Specific notation

Suppose that G and H are graphs, and let X be an induced subgraph of H.

- We write H(G) for the set of injections $h: V(H) \to V(G)$, such that $\{u, v\} \in E(H)$ if and only if $\{h(u), h(v)\} \in E(G)$.
- We say that $h \in H(G)$ extends $g \in X(G)$, if $g = h|_{V(X)}$.

Suppose that $M \subset H(G)$.

- We let

$$X(M) = \{g : (g \in X(G)) \& \text{ (there exists } h \in M \text{ extending } g)\}.$$

- For every $g \in X(M)$, we let

$$d_M(g) = \left| \left\{ h : (h \in M) \& (h \text{ extends } g) \right\} \right|.$$

Suppose that Y is a subgraph of G of type $H(s_1, \ldots, s_r)$ and let $s = \min\{s_1, \ldots, s_r\}$.

- We say that M covers Y if:

(a) for every edge ij going across vertex classes of Y, there exists $h \in M$ mapping some edge of H onto ij;

(b) there exists $h_1, \ldots, h_s \in M$, such that $h_i(H) \cap h_j(H) = \emptyset$ for $i \neq j$, and for all $i \in [s], h_i(H)$ contains a vertex from each vertex class of Y.

Condition (b) implies that if M covers Y, then Y contains s disjoint images of H, which are mapped via injections from M and which contain exactly one vertex from each vertex class of Y. This technicality is needed for a proof by induction.

Proofs

The proofs of Theorems 1 and 2 are almost identical, so we shall present only the proof of Theorem 2, for it needs more care. We deduce Theorem 2 from the following technical statement.

Theorem 3 Let $2 \le r \le n$, $(\ln n)^{-1/r^2} \le c \le 1/4$, H be a graph of order r, and G be a graph of order n. If $M \subset H(G)$ and $|M| \ge cn^r$, then M covers an induced subgraph of type $H(s, \ldots s, t)$ with $s = \lfloor c^r 4^{-r^2+r} \ln n \rfloor$ and $t > n^{1-c^{r-1}}$.

To see that Theorem 3 implies Theorem 2, note that to each induced copy of $H \subset G$ corresponds an injection $h \in H(G)$, and to different copies correspond different injections. Hence, if G contains cn^r induced copies of H, we have a set $M \subset H(G)$ with $|M| \ge cn^r$. By Theorem 3, G contains an induced subgraph Y of type $H(s, \ldots s, t)$ with $s = \lfloor c^r 4^{-r^2+r} \ln n \rfloor$ and $t > n^{1-c^{r-1}}$; now Theorem 2 follows, in view of $c^r 4^{-r^2+r} \ge c^{r^2}$.

In turn, the proof of Theorem 3 is based on the following lemma.

Lemma 4 Let F be a bipartite graph with parts A and B. Let $2 \le r \le n$, $(\ln n)^{-1/r^2} \le c \le 1/2$, |A| = m, |B| = n, and $s = \lfloor c^r 4^{-r^2+r} \ln n \rfloor$. If $s \le (c/2^r)m + 1$ and $e(F) \ge (c/2^{r-1})mn$, then F contains a $K_2(s,t)$ with parts $S \subset A$ and $T \subset B$ such that |S| = s and $|T| = t > n^{1-c^{r-1}}$.

Proof Let

 $t = \max \{x : \text{there exists } K_2(s, x) \subset F \text{ with part of size } s \text{ in } A\}.$

For any $X \subset A$, write d(X) for the number of vertices joined to all vertices of X. By definition, $d(X) \leq t$ for each $X \subset A$ with |X| = s; hence,

$$t\binom{m}{s} \ge \sum_{X \subset A, |X|=s} d(X) = \sum_{u \in B} \binom{d(u)}{s}.$$
 (1)

The electronic journal of combinatorics 15 (2008), #N6

Following [2], p. 398, set

$$f(x) = \begin{cases} \binom{x}{s} & \text{if } x \ge s - 1\\ 0 & \text{if } x < s - 1, \end{cases}$$

and note that f(x) is a convex function. Therefore,

$$\sum_{u \in B} \binom{d(u)}{s} = \sum_{u \in B} f(d(u)) \ge nf\left(\frac{1}{n}\sum_{u \in B} d(u)\right) = n\binom{e(F)/n}{s} \ge n\binom{cm/2^{r-1}}{s}.$$

Combining this inequality with (1), and rearranging, we find that

$$t \ge n \frac{(cm/2^{r-1})(cm/2^{r-1}-1)\cdots(cm/2^{r-1}-s+1)}{m(m-1)\cdots(m-s+1)} > n \left(\frac{cm/2^{r-1}-s+1}{m}\right)^s$$
$$\ge n \left(\frac{c}{2^r}\right)^s \ge n \left(e^{\ln(c/2^r)}\right)^{c^r 4^{-r^2+r}\ln n} = n^{1+c^r 4^{-r^2+r}\ln(c/2^r)}.$$

Since $c/2^r \leq 1/8 < 1/e$ and $x \ln x$ is decreasing for 0 < x < 1/e, and in view of

$$\frac{2^{2r^2 - 2r - 1}}{r + 1} \ge 1 \ge \ln 2,$$

we see that

$$c4^{-r^{2}+r}\ln(c/2^{r}) \ge \left((c/2^{r})\ln(c/2^{r})\right)2^{-2r^{2}+3r} \ge -\left(2^{-r+1}\left(r+1\right)\right)2^{-2r^{2}+3r}$$
$$\ge -(r+1)2^{-2r^{2}+2r+1}\ln 2 \ge -1.$$

Now, $c^r 4^{-r^2+r} \ln(c/2^r) \ge -c^{r-1}$ and so,

$$t > n^{1+c^r 4^{-r^2+r} \ln(c/2^r)} \ge n^{1-c^{r-1}}.$$

-		_
Г		п
L		
L		

Proof of Theorem 3 Let $M \subset H(G)$ satisfy $|M| \ge cn^r$. To prove that M covers an induced subgraph of type $H(s, \ldots s, t)$ with $s = \lfloor c^r 4^{-r^2+r} \ln n \rfloor$ and $t > n^{1-c^{r-1}}$ we shall use induction on r.

Assume r = 2 and let A and B be two disjoint copies of V(G). We can suppose that $H = K_2$, as otherwise we can apply the subsequent argument to the complement of G.

Let us define a bipartite graph F with parts A and B, joining $u \in A$ to $v \in B$ if $uv \in M$. Set $s = \lfloor (c^2/16) \ln n \rfloor$ and note that $s \leq (c/4)n + 1$. Since $e(F) = |M| \geq cn^2 > (c/2)n^2$, Lemma 4 implies that F contains a $K_2(s,t)$ with $t > n^{1-c}$. Hence M covers an induced graph of type $K_2(s,t)$, proving the assertion for r = 2. Now let r > 2 and assume the assertion true for r - 1.

Let $V(H) = \{v_1, \dots, v_r\}$ and $H' = H[\{v_1, \dots, v_{r-1}\}].$

We first show that there exists $L \subset M$ with $|L| > (c/2)n^r$ such that $d_L(h) > (c/2)n$ for all $h \in H'(L)$. Indeed, set L = M and apply the following procedure.

While there exists an $h \in H'(L)$ with $d_L(h) \leq (c/2)n$ do Remove from L all members extending h.

When this procedure stops, we have $d_L(h) > (c/2)n$ for all $h \in H'(L)$, and also

$$|M| - |L| \le \frac{c}{2}n |H'(M)| < \frac{c}{2}n \cdot n^{r-1},$$

giving $|L| > (c/2)n^r$, as claimed.

Since $H'(L) \subset H'(G)$ and

$$|H'(L)| \ge |L|/n > (c/2)n^r/n = (c/2)n^{r-1},$$

the induction assumption implies that H'(L) covers an induced subgraph $R \subset G$ of type $H'(p, \ldots, p)$ with $p = \lfloor (c/2)^{r-1} 4^{-(r-1)^2+r-1} \ln n \rfloor$. Here we use the inequalities

$$n^{1-c^{r-2}} \ge n^{1-c} \ge n^{1/2} > 2^{-4} \ln n \ge (c/2)^{r-1} 4^{-(r-1)^2 + r-1} \ln n.$$

Write U_1, \ldots, U_{r-1} for the vertex classes of R. Since H'(L) covers R, we know that there exist $h_1, \ldots, h_p \in H'(L)$ such that $h_1(H'), \ldots, h_p(H')$ are disjoint subgraphs of Rcontaining a vertex from U_i , for all $i \in [r-1]$. For every $i \in [p]$, let

 $W_i = \{ v : (\text{there exists } g \in L \text{ extending } h_i) \& (g(v_r) = v) \}.$

That is to say, each vertex in W_i together with the vertices of $h_i(H')$ induces a copy of H.

Write d for the degree of v_r in H and note that each $v \in W_i$ is joined to exactly d vertices of $h_i(H')$. Since by our selection, $|W_i| = d_L(h_i) \ge (c/2)n$ for all $i \in [p]$, there is a set $X_i \subset W_i$ with

$$|X_i| \ge (cn/2) / \binom{r-1}{d} \ge \frac{cn}{2^{r-1}}$$

such that all vertices of X_i have the same d neighbors in $h_i(H')$. Let $Y_i \subset [r-1]$ be defined as

 $Y_i = \{j : U_j \text{ contains a neighbor of a vertex in } X_i\}.$

Each of the sets Y_1, \ldots, Y_p is a *d*-element subset of [r-1]; by the pigeonhole principle, there exists a set $A \subset [p]$ with

$$|A| \ge p/\binom{r-1}{d} \ge \lceil p/2^{r-2} \rceil$$

such that the sets Y_i are the same for all $i \in A$. Note that for every $i \in A$ and every $v \in X_i$, the neighbors of v in $h_i(H')$ belong exactly to the same d vertex classes of R. Letting $m = \lfloor p/2^{r-2} \rfloor$, we may and shall assume that |A| = m.

Let us define a bipartite graph F with parts A and B = V(G), joining $i \in A$ to $v \in B$ if $v \in X_i$. Since $|X_i| > cn/2^{r-1}$ for all $i \in A$, we see that

$$e(F) > \frac{c}{2^{r-1}}mn.$$

Also, setting $s = \lfloor c^r 4^{-r^2 + r} \ln n \rfloor$, we find that

$$s \le c^{r} 4^{-r^{2}+r} \ln n = (c2^{-3r-3}) \left((c/2)^{r-1} 4^{-(r-1)^{2}+r-1} \right) \ln n$$

$$< (c2^{-2r-2}) \lfloor (c/2)^{r-1} 4^{-(r-1)^{2}+r-1} \ln n \rfloor + 1 \le (c/2^{r}) (p/2^{r-2}) + 1$$

$$\le (c/2^{r})m + 1.$$

By Lemma 4, F contains a complete bipartite graph $K_2(s,t)$ with parts $S \subset A$ and $T \subset B = V(G)$ such that |S| = s and $|T| = t > n^{1-c^{r-1}}$.

Let $G' = G[\bigcup_{i \in S} h_i(H')]$ and $G'' = G[\bigcup_{i \in S} h_i(H') \cup T]$. Note that G' is an induced subgraph of R and so G' is of type $H'(s, \ldots, s)$. To prove that G'' is of type $H(s, \ldots, s, t)$ select $v \in T$ and $h \in L$ such that $h|_{V(H')} = h_1$ and $h(v_r) = v$. By our construction vhas exactly d neighbors in $h_1(H')$, belonging say to the vertex classes U_1, \ldots, U_d . Since all neighbors of v in G' belong to the same vertex classes, and v has d neighbors in each $h_2(H'), \ldots, h_s(H')$, we see that v is joined to every vertex in $\bigcup_{i=1}^d U_i$, and is not joined to any vertex in $V(G') \setminus (\bigcup_{i=1}^d U_i)$. Since this holds for all vertices $v \in T$, we see that G'' is of type $H(s, \ldots, s, t)$.

To finish the proof, we shall show that L covers G''. By the induction assumption, L covers R, hence for every edge ij going across vertex classes of G', there exists $h \in L$ mapping some edge of H onto ij. On the other hand, let $u \in h_i(H')$ be joined to $v \in T$; by our construction there exist $h \in L$ such that $h|_{V(H')} = h_i$ and $h(v_r) = v$. Thus, $h^{-1}(u)v \in E(H)$, and h maps an edge of H onto uv. This proves condition (a) for covering.

Finally, taking s distinct vertices $u_1, \ldots, u_s \in T$, by the construction of T, for every $i \in S$, there exists $g_i \in L$ with $g_i|_{V(H')} = h_i$ and $g_i(v_r) = u_i$. Hence, L covers G'', completing the induction step and the proof of Theorem 3.

References

- B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184, Springer-Verlag, New York (1998).
- [2] L. Lovász, Combinatorial problems and exercises, North-Holland Publishing Co., Amsterdam-New York (1979).
- [3] V. Nikiforov, Graphs with many *r*-cliques have large complete *r*-partite subgraphs, to appear in *Bull. London Math. Soc.*