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Abstract

We investigate the distributions of the different possible values of polynomial

maps Fq
n −→ Fq , x 7−→ P (x) . In particular, we are interested in the distribution

of their zeros, which are somehow dispersed over the whole domain Fq
n . We show

that if U is a “not too small” subspace of Fq
n (as a vector space over the prime

field Fp ), then the derived maps Fq
n/U −→ Fq , x + U 7−→

∑

x̃∈x+U P (x̃) are

constant and, in certain cases, not zero. Such observations lead to a refinement

of Warning’s classical result about the number of simultaneous zeros x ∈ Fq
n of

systems P1, . . . , Pm ∈ Fq[X1, . . . , Xn] of polynomials over finite fields Fq . The

simultaneous zeros are distributed over all elements of certain partitions (factor

spaces) Fq
n/U of Fq

n . |Fq
n/U | is then Warning’s well known lower bound for the

number of these zeros.

Introduction

As described in the abstract, we will investigate the distributions of the different possible

values of polynomial maps Fq
n −→ Fq , x 7−→ P (x) . In particular, we are interested in

the distribution of their zeros in the domain Fq
n. It turns out that they are somehow

dispersed over the whole domain Fq
n, a property that strongly relies on the finiteness

of the ground field Fq . The original goal behind this was to present a new sharpening

(supplementation) of the following classical result, due to Chevalley and Warning, about

the set of simultaneous zeros V := { x ∈ Fq
n �

P1(x) = · · · = Pm(x) = 0 } of polynomials V

P1, . . . , Pm ∈ Fq[X1, . . . , Xn] over finite fields Fq of characteristic p : m, n

Fq , p
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Theorem 0.1. If
∑m

i=1 deg(Pi) < n , then

p divides |V|

and hence the Pi do not have one unique common zero, i.e., |V| 6= 1 .

This theorem goes back to a conjecture of Dickson and Artin [Ar] and has a short

and elegant proof [Scha, Theorem4.3], [Schm]. There are a lot of different sharpenings

and supplementations, which follow two main streams. The first one [MSCK, MoMo,

Wan, Ax, Ka] tries to improve the divisibility property and led, e.g., to the following

improvement by Katz (see [MSCK, Wan, Wan2, AdSp, AdSp2, Sp] for generalizations to

exponential sums):

Theorem 0.2. If Σ :=
∑m

i=1 deg(Pi) < n and M := max
1≤i≤m

(deg(Pi)) , then Σ, M

q

⌈

n−Σ
M

⌉

divides |V| .

The second stream tries to give a lower bound for the cardinality of the set of simul-

taneous zeros V , if this set is not empty. Warning‘s Theorem0.3 below (see [Schm]) is

the classical result in this direction:

Theorem 0.3. If there are simultaneous zeros, i.e., if V 6= ∅ , then

qn−Σ ≤ |V| .

This bound is best possible; only by using measures, more differentiated than the

degrees deg(Pi) of the polynomials Pi , it can be improved further (see [MoMo, Theo-

rem2]). Our Corollary 2.4 does not improve the Warning bond, but refines the simple

enumerative statement by saying more about the location of the zeroes. It uses the same,

usually easily assessable, sum Σ :=
∑m

i=1 deg(Pi) of the degrees deg(Pi) , but could be

stated for other measures (as in [MoMo]) as well. Note that we formulated Corollary 2.4

only for prime fields, but, in order to apply it to nonprime fields, it can be combined with

Lemma3.1.

Beside the described two main streams, we found in [Scha] a version that works over

Z/pkZ and over Z . We call this version a “Not Exactly One Theorem” as |V| 6= 1 is

stated. In that same paper we also demonstrated that some other versions of Theorem0.1

– other “ 6=1 -Theorems”– which work over subgrids X1 × · · · × Xn of the full grid Fq
n,

e.g., the important Boolean grid {0, 1}n, are very useful and flexible in application.

Our paper is structured as follows:

In Section 1 we present the main method behind this paper, the so called “polynomial

method” (the well known Combinatorial Nullstellensatz 1.2 and its quantitative version
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Theorem1.3). A generalized kind of permanent, together with some of its properties, is

provided in this first section as well.

Section 2 contains our new sharpening (Corollary 2.4) of Chevalley and Warning’s The-

orem0.1, as well as our main result Theorem2.3. They are only formulated for finite

prime fields Fp . However, they may also be applied to arbitrary finite fields Fq by using

Lemma3.1 of the next section. The results in Section 2 are based on a series of lemmas

at its beginning. Our generalized kind of permanent plays a major role in them.

Section 3 provides with Lemma3.1 the keytool for applications in nonprime finite fields.

However, this tool lets some space for further questions, so that we close with the two

conjectures 3.2 and 3.3.

1 Basics

Throughout the whole paper we will use the following convenient notation:

Let n ∈ N := {0, 1, 2, . . .} then N

(n] = (0, n] := {1, 2, . . . , n} , (n]

[n) = [0, n) := {0, 1, . . . , n−1} , [n)

[n] = [0, n] := {0, 1, . . . , n} . (Note that 0 ∈ [n] .) [n]

In order to introduce the so called “polynomial method” we also need the following

definition:

Definition 1.1 (d-grids). Assume d = (dj) ∈ Nn, and let F be a field. A d-grid is a d, F

Cartesian product X := X1 × · · · × Xn of subsets Xj ⊆ F of size |Xj| = dj + 1 . X

We frequently use Alon and Tarsi’s Combinatorial Nullstellensatz [Al, Theorem1.2],

which provides some information about the polynomial map P |X : X −→ F , x 7−→ P (x) P |X

when only incomplete information about a polynomial P ∈ F[X] := F[X1, . . . , Xn] is F[X]

given:

Theorem 1.2 (Combinatorial Nullstellensatz). Let X be a d-grid. For each polyno-

mial P =
∑

δ∈Nn PδX
δ ∈ F[X] of total degree deg(P ) ≤

∑

j dj , Pd

Pd 6= 0 =⇒ P |X 6≡ 0 .

In [Scha, Teorem3.3] we have proven a stronger result. We have shown that

Pd =
∑

x∈X

N(x)−1P (x) (1)

with a certain map N : X −→ F . We will use this sharpening once in the case X = Fp
n.

In this case N ≡ (−1)n by [Scha, Lemma1.4(iv)] so that:
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Theorem 1.3 (Coefficient formula). Let d := (p − 1, p − 1, . . . , p − 1) ∈ Nn. For

polynomials P =
∑

δ∈Nn PδX
δ ∈ Fp[X] of total degree deg(P ) ≤

∑

j dj = (p − 1)n ,

Pd = (−1)n
∑

x∈Fp
n
P (x) .

This special version of our Coefficient Formula (1) follows also from the well known

∑

a∈Fp

ai =

{

0 if 0 ≤ i ≤ p − 2 ,

−1 if i = p − 1 ,
(2)

and is an easy fact. In [Scha, Section 5] we applied the general Coefficient Formula (1) to

the matrix polynomial, a generalization of the graph polynomial (see also [AlTa] or [Ya]).

This led to several results about graph colorings and permanents. Here, in this paper,

the matrix polynomial occurs in the construction of certain other polynomials, we have

to provide it again:

We always assume A = (ai,j) ∈ Fm×n, and the product of this matrix with X := A, X

(X1, . . . , Xn)T is AX := (
∑

j∈(n] aijXj)i∈(m] ∈ F[X1, X2, · · · , Xn]
m = F[X]m . Now, the AX

matrix polynomial Π(AX) is defined as follows:

Definition 1.4 (Matrix polynomial). The matrix polynomial of A = (ai,j) ∈ Fm×n is

given by Π(AX)

Π(AX) :=
∏

i∈(m]

∑

j∈(n]

aijXj ∈ F[X] .

It turns out that the coefficients of the matrix polynomial are some kind of permanents.

We define:

Definition 1.5 (δ-permanent). For δ ∈ Nn the δ-permanent of A = (ai,j) ∈ Fm×n is

define through perδ(A)

perδ(A) :=
∑

σ : (m]→(n]

|σ−1|=δ

πA(σ) ,

where πA(σ)

|σ−1|πA(σ) :=
∏

i∈(m]

ai,σ(i) and |σ−1| :=
(

|σ−1(j)|
)

j∈(n]
.

Now, indeed:

Lemma 1.6.

Π(AX) =
∑

δ∈Nn
perδ(A) Xδ .
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Based on this connection to the matrix polynomial, the δ-permanents will play a major

roll in this paper. Therefore, some simple properties shall be provided:

At first we see that the maps

A 7−→ πA(σ) and A 7−→ perδ(A) are multilinear in the rows of A . (3)

We also see that perδ(A) = 0 if
∑

j δj 6= m . If m = n then per := per(1,1,...,1) is the per

usual permanent [Minc]; and, if
∑

j δj = m , it is easy to see that

(
∏

j∈(n] δj!
)

perδ(A) = per(A〈|δ〉), (4)

where A〈|δ〉 is a matrix that contains the jth column of A exactly δj times. But note A〈|δ〉

that perδ(A) is, in general, not determined by per(A〈|δ〉) . If (
∏

j∈(n] δj!) 1 = 0 in F ,

the δ-permanent perδ(A) may take arbitrary values, while per(A〈|δ〉) = 0 .

The notation A〈k|〉 , with a single number k ∈ N , stands for a matrix that contains A〈k|〉

each row of A exactly k times. We have some nice roles for the δ-permanent of such

matrices with multiple rows:

Lemma 1.7. Let F be a field of characteristic p . For matrices A = (ai,j) ∈ Fm×n and

tuples δ = (δj) ∈ [ph)n hold:

(i) If A contains ph identical rows, then

perδ(A) = 0 . (5)

(ii) If A′ is obtained from A by adding a multiple of one row to another, then

perδ(A
′〈ph− 1|〉) = perδ(A〈ph− 1|〉) . (6)

(iii) If rank(A) < m , then

perδ(A〈ph− 1|〉) = 0 . (7)

Proof. To prove (i), we may suppose that the first ph rows of A coincide. Now let

τ : (m] → (m] be the cyclic permutation of these rows: τ = (1 2 . . . ph) . For each map τ

σ : (m] → (n] with |σ−1| :=
(

|σ−1(j)|
)

j∈(n]
= δ , the maps of the form σ ◦ τ i : (m] → (n] |σ−1|

also have the property |σ−1| = δ , and Tσ

πA(σ′) = πA(σ′′) for each two σ′, σ′′ ∈ Tσ := {σ ◦ τ i � 0 ≤ i < ph } . (8)

We use this, to partition the summation range in the definition of perδ , in order to bundle

equal summands. As we will explain below, for every map σ ,

p divides |Tσ | , i.e., |Tσ | 1 = 0 , (9)
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and hence
∑

σ′∈Tσ

πA(σ′) = 0 . (10)

It follows that indeed

perδ(A) :=
∑

σ: |σ−1|=δ

πA(σ) =
∑

Tσ : |σ−1|=δ

∑

σ′∈Tσ

πA(σ′) =
∑

Tσ : |σ−1|=δ

0 = 0 . (11)

The used statement (9) holds, since the least integer i ≥ 1 with

σ ◦ τ i = σ (12)

is a multiple of p . Otherwise,

1 = gcd(i, ph) = αi + βph with some α, β ∈ Z , (13)

and hence
σ ◦ τ1 = σ ◦ ταi+βph

= σ ◦ (τ i)α ◦ Idβ (12)
= σ , (14)

which would mean that σ is constant on all ph points of (ph] , i.e.,

|σ−1(σ(1))| ≥ ph , (15)

and that contradicts
|σ−1| = δ ∈ [ph)n . (16)

Part (ii) follows through repeated applications of part (i), using the multilinearity (3) .

The last part (iii) follows from part (ii) and the well known fact that every matrix

A ∈ Fp
m×n with rank(A) < m can be transformed, by elementary row operations, into a

matrix with a zero row.

2 Main results

In this section, we investigate the distribution of the different possible values of polynomial

maps Fp
n −→ Fp , x 7−→ P (x) using affine linear subspaces v + U of Fp

n (Theorem2.3). v + U

This leads to a sharpening (Corollary 2.4) of Warning’s classical Theorem0.3 about the

number of simultaneous zeros of systems of polynomial equations over finite fields. We

formulated this, and most other results of this section, for prime fields Fp . This is a major

restriction, as we will see, but it seems to be difficult to handle the more general case of

arbitrary finite fields Fpk . The regrettable lack of generality can partially be compensated

by Lemma3.1 in the succeeding section. This lemma enables the application of results

over finite prime fields Fp to arbitrary finite fields Fpk . However, there will remain a

certain gap.

We begin this section with a series of lemmas. Already in the proof of the following

technical one we will use the Combinatorial Nullstellensatz 1.2 for the first time. To
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this end we have to ensure that a certain “leading coefficient” is not zero, and that the

multinomial coefficients in Equation (27) do not vanish modulo p . This is where we need

p to be prime, which causes the restrictions of this section. Nevertheless, even for primes

p the following lemma is not trivial. It forms the basis of the results in this paper:

Lemma 2.1. Let r ∈ (n] , and define ∆r := { δ ∈ [p)n
� ∑

j δj = r(p − 1) } . To each ∆r

0 6≡ λ = (λδ) ∈ Fp
∆r, there exists a matrix A = (ai,j) ∈ Fp

r×n of rank r such that
∑

δ∈∆r

λδ perδ(A〈p − 1|〉) 6= 0 .

Proof. As λ 6≡ 0 , there is a d ∈ ∆r with

λd 6= 0 . (17)

Set j0 := 1 , and define ji ∈ (n] for all i ∈ (r] as the least number with
∑

j∈(ji]

dj ≥ (p − 1) i . (18)

Define

A′′ = (a′′i,j) i∈(r]
j∈(n]

through a′′i,j :=

{

1 if ji−1 ≤ j ≤ ji ,

0 else ,
(19)

and set
a′′i,∗ := (a′′i,j)j∈(n] ∈ Fp

1×n . (20)

We want to show that
perd(A

′′〈p − 1|〉) 6= 0 . (21)

To see this, realize that there is just one unique partition

d = d1 + d2 + · · · + dr (22)

of the tuple d = (dj) ∈ ∆r ⊆ [p)n into tuples di = (di
j) ∈ [p)n with the properties

ji−1 ≤ supp(di) ≤ ji , (23)

i.e.,
a′′i,j 6= 0 for all j ∈ supp(di) , (24)

and
di
1 + di

2 + · · · + di
n = p − 1 . (25)

Here, the last equation means that each of the unique di = (di
1, . . . , d

i
n) is itself a partition

of p − 1 , so that the multinomial coefficients
(

p−1
di

)

:=
(

p−1
di
1,...,di

n

)

are well-defined. From

the uniqueness of the di follows

perd(A
′′〈p − 1|〉) =

∏

i∈(r]

perdi

(

a′′i,∗〈p − 1|〉
)

=
∏

i∈(r]

(

p − 1

di

)

1 6= 0 , (26)
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since
(p−1

di

)

= (p−1)!
Q

j∈(n] di
j !

(27)

is not dividable by p for all i ∈ (r] .

Now set
A′ := (a′′i,j Xj) i∈(r]

j∈(n]

∈ Fp[X]r×n (28)

and
P (X) :=

∑

δ∈∆r

λδ perδ(A
′〈p − 1|〉) ∈ Fp[X] . (29)

Then
deg(P ) ≤ r(p − 1) =

∑

j dj (30)

and
Pd Xd = λd perd(A

′〈p − 1|〉) = λd perd(A
′′〈p − 1|〉)Xd 6= 0 . (31)

Hence by Theorem1.2, there is a x ∈ Fp
n such that

0 6= P (x) =
∑

δ∈∆r

λδ perδ(A〈p − 1|〉) with A := (a′′
i,j xj) ∈ Fp

r×n . (32)

In this the matrix A necessarily has rank r by Lemma1.7 (iii) .

Now we are able to construct our main tool:

Lemma 2.2. Let r ∈ [n] and an Fp-subspace U ≤ Fp
n of dimension dim(U) = n− r be U , r

given.

There is a (generally not unique) system of polynomials 1v+U =
∑

δ∈Nn(1v+U )δ X
δ ∈ (1v+U )δ

Fp[X] – corresponding to the cosets v + U ∈ Fp
n/U – such that for each coset v + U :

(i) 1v+U(x) =

{

1 if x ∈ v + U ,

0 if x ∈ Fp
n \ v + U ;

and

(ii) deg(1v+U ) ≤ r(p − 1) ; and

(iii) (1v+U)δ = (1U)δ for all δ ∈ ∆r := { δ ∈ [p)n
� ∑

j δj = r(p − 1) } . ∆r

Let 0 6≡ λ = (λδ) ∈ Fp
∆r ; then the subspace U (and the polynomials 1v+U ) may be

chosen in such a way that, in addition,

(iv)
∑

δ∈∆r

λδ(1U)δ 6= 0 .
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Proof. Let
∑

j∈(n]

ai,jXj = 0 , i = 1, . . . , r (33)

be a system of equations defining U ; then the polynomials

1v+U :=
∏

i∈(r]

(

1 −
(

∑

j∈(n]

(

ai,j(Xj − vj)
)

)p−1 )

∈ Fp[X] (34)

fulfill the conditions (i), (ii) and (iii).

Part (iv) holds for r = 0 . For r > 0 , we have to find a matrix A = (ai,j) ∈ Fp
r×n

of rank r such that the polynomial 1U = 10+U defined by (34) fulfills the inequality in

part (iv); the searched (n−r)-dimensional subspace U is then given through Equation (33)

using this same matrix A . For δ ∈ ∆r , we have

(1U )δ = (−1)r
(

(Π(AX))p−1
)

δ
= (−1)r

(

Π(A〈p − 1|〉X)
)

δ

1.6
= (−1)r perδ(A〈p − 1|〉) , (35)

and we obtain statement (iv) if we choose A by Lemma2.1 :

∑

δ∈∆r

λδ(1U )δ = (−1)r
∑

δ∈∆r

λδ perδ(A〈p − 1|〉)
2.1
6= 0 . (36)

The following main result of this paper, now tells us something about the distribution

of the different possible values P (x) of the polynomial maps Fp
n −→ Fp , x 7−→ P (x) .

We examine certain partitions (factor spaces) Fp
n/U of Fp

n, and show in part (iv) that

the derived maps Fp
n/U −→ Fp , x + U 7−→

∑

x̃∈x+U P (x̃) are constant. This and the

stronger part (iii) already follow easily from [LiNi, Lemma6.4].

What is new is that in certain cases this constant map is also not zero (part (ii)). It

depends on a divisibility property of the degree deg(P ) whether we can guaranty the

existence of a suitable subspace U or not. The weaker version of this in part (i) does

not require this property. Note also, that the restrictive assumptions about the partial

degrees degXj
(P ) in this theorem may be left away without losing much of its power.

We will see this in the subsequent corollary below:

Theorem 2.3. For polynomials 0 6= P ∈ Fp[X1, . . . , Xn] with restricted partial degrees

degXj
(P ) ≤ p − 1 for j = 1, . . . , n holds:

(i) There exists a subspace U ⊆ Fp
n of dimension

dim(U) =
⌈ deg(P )

p−1

⌉

such that, for all v ∈ Fp
n, P |v+U 6≡ 0 .

(ii) If p − 1 divides deg(P ) , i.e., if deg(P )
p−1

=
⌈ deg(P )

p−1

⌉

, then:

There exists a subspace U ⊆ Fp
n of dimension

dim(U) = deg(P )
p−1

such that
∑

x∈U P (x) 6= 0 .
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(iii) For any subspace U ⊆ Fp
n of dimension

dim(U) > deg(P )
p−1

∑

x∈U P (x) = 0 .

(iv) For any subspace U ⊆ Fp
n of dimension

dim(U) ≥ deg(P )
p−1

, and for all v ∈ Fp
n,

∑

x∈v+U P (x) =
∑

x∈U P (x) .

Proof. To prove part (i), let d := (p−1, p−1, . . . , p−1) ∈ Nn , and let Xµ be a monomial

in P of maximal degree ( µ ≤ d ).

We set

r :=
⌊

∑

j dj −
∑

j µj

p − 1

⌋

= n −
⌈

∑

j µj

p − 1

⌉

∈ Z (37)

and
∆r := { δ′ ∈ [p)n � ∑

jδ
′
j = r(p − 1) } . (38)

Choose a δ ∈ ∆r with
δ ≤ d − µ , (39)

and set
d̄ := µ + δ . (40)

Define λ = (λδ′) ∈ Fp
∆r by setting

λδ′ := Pd̄−δ′ (= 0 if d̄ − δ′ � 0 ) . (41)

Note that
λ 6≡ 0 as λδ = Pµ 6= 0 . (42)

Now, for every v ∈ Fp
n, the monomial X d̄ occurs in

Q := P 1v+U , (43)

where U and the 1v+U are as in Lemma2.2 (iv) . That is so, since only the monomials of

maximal degree in P , respectively in 1v+U , may contribute something to the coefficient

Qd̄ , so that
Qd̄ =

∑

δ′∈∆r

Pd̄−δ′(1v+U )δ′
2.2
=

∑

δ′∈∆r

λδ′(1U )δ′
2.2
6= 0 . (44)

It follows that for each d̄-subgrid X̄ of the d-grid Fp
n

Q|
X̄

1.2
6≡ 0 , (45)

so that finally
Q|Fp

n 6≡ 0 and P |v+U 6≡ 0 . (46)

The proofs of the parts (ii),(iii) and (iv) work almost identically. The following

equation can be used instead of conclusion (45):

∑

x∈v+U P (x) =
∑

x∈Fp
n Q(x)

1.3
= (−1)n Qd . (47)
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Part (ii) follows from the equations (44) and (47) as d = d̄ in this case.

As we do not need property 2.2 (iv) (and the resulting Inequality (44) ) in the proof of

parts (iii) and (iv), we may take Equation (43) with an arbitrary U ≤ Fp
n to define Q .

Part (iii) follows now from
∑

j dj > deg(Q) as Qd = 0 in this case. Part (iv) follows, as

Qd does not depend on v (2.2 (iii)).

The assumption of restricted partial degrees, degXj
(P ) ≤ p − 1 for j = 1, . . . , n ,

may seam rather restrictive. However, every map on Fp
n can (uniquely) be described

by a (interpolation) polynomial of this type (see, e.g., [Scha, Equivalence 2.4 (i)&(iv)]).

If a concrete polynomial P ∈ Fp[X] is already given, then the unique (interpolation)

polynomial P/Fp
n with the properties P/Fp

n

(P/Fp
n)|Fp

n = P |Fp
n and degXj

(P/Fp
n) ≤ p − 1 for j = 1, . . . , n (48)

can easily be derived from P by reduction of exponents, using that

xp = x1 in Fp . (49)

Even more, it may not even be necessary to perform this reduction, because the total

degree deg(P ) is an upper bound to deg(P/Fp
n) ,

deg(P/Fp
n) ≤ deg(P ) . (50)

This is important, since in more abstract situations, when we are dealing with whole

classes of polynomials, we may not be able to determine deg(P/Fp
n) . Then, the conclu-

sions of Theorem2.3, applied to P/Fp
n, can be combined with the upper bound (50).

Furthermore, if p− 1 divides the degrees of the homogenous components of P , then

reduction of exponents, using Equation (49), does not affect this property. Therefore, p−1

divides also the degrees of the homogenous components of P/Fp
n and also deg(P/Fp

n) .

Thus, by part (ii) and part (iv) of Theorem2.3, there exists a subspace U ⊆ Fp
n of

dimension

dim(U) = deg(P/Fp
n)

p−1
≤ deg(P )

p−1
(51)

with the property:

∑

x∈v+U P (x) =
∑

x∈U P (x) 6= 0 for all v ∈ Fp
n . (52)

With this kind of observations, we are prepared to prove the following corollary, which

is a sharpening of Warning’s classical result [Schm] about the number of simultaneous

zeros of systems of polynomial equations over finite fields (i.e., the second inequality in

part (i) below). The sharpening tells us that the simultaneous zeros are distributed over

all elements of certain partitions (factor spaces) Fq
n/U of Fq

n , and pn−
P

i deg(Pi) ≤ |Fq
n/U |

is then the well known lower bound for the number of these zeros:
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Corollary 2.4. Let P1, . . . , Pm ∈ Fp[X] be polynomials with a simultaneous zero, and

V := { x ∈ Fp
n �

P1(x) = · · · = Pm(x) = 0 } 6= ∅ , then:

(i) There exists a subspace U ⊆ Fp
n of dimension

dim(U) ≤
∑

i deg(Pi) such that, for all v ∈ Fp
n, V ∩ (v + U) 6= ∅ .

In particular, |V| ≥ pn−
P

i deg(Pi) .

(ii) If, in addition, the polynomials Pi are homogeneous modulo p − 1 , i.e., if the

homogeneous components inside any Pi have the same degree modulo p − 1 , then:

There exists a subspace U ⊆ Fp
n of dimension

dim(U) ≤
∑

i deg(Pi) such that,

for all v ∈ Fp
n,

∣

∣V ∩ (v + U)
∣

∣ ≡
∣

∣V ∩ (U)
∣

∣ 6≡ 0 (mod p) .

(iii) For any subspace U ⊆ Fp
n of dimension

dim(U) >
∑

i deg(Pi)
∣

∣V ∩ (U)
∣

∣ ≡ 0 (mod p) .

(iv) For any subspace U ⊆ Fp
n of dimension

dim(U) ≥
∑

i deg(Pi) , and all v ∈ Fp
n,

∣

∣V ∩ (v + U)
∣

∣ ≡
∣

∣V ∩ (U)
∣

∣ (mod p) .

Proof. Define
P :=

∏

i∈(m]

(1 − P p−1
i ) ; (53)

then, for each x ∈ Fp
n,

x ∈ supp(P ) ⇐⇒ P (x) 6= 0 ⇐⇒ P1(x) = · · · = Pm(x) = 0 ⇐⇒ x ∈ V . (54)

By Theorem2.3 (i), there is a subspace U ≤ Fp
n with

dim(U) =
⌈

deg(P/Fp
n)

p−1

⌉

≤
⌈

deg(P )
p−1

⌉

=
∑

i
deg(Pi) , (55)

and
∅ 6= supp(P |v+U ) = supp(P ) ∩ (v + U) = V ∩ (v + U) for all v ∈ Fp

n . (56)

This is the main statement of part (i), and the remaining lower bond for |V| in part (i)

follows from it.

Since
P (x) ∈ {0, 1} for all x ∈ Fp

n , (57)

the parts (iii) and (iv) follow from the corresponding parts of Theorem2.3, as part (ii)

follows from observation (52).

the electronic journal of combinatorics 15 (2008), #R145 12



Our sharpening Corollary 2.4(i) could suggest that, for any subset Ṽ ⊆ Fp
n with at

least pn−m elements, there is a subspace U ≤ Fp
n of dimension m such that

Ṽ ∩ (v + U) 6= ∅ for all v ∈ Fp
n . (58)

This is not the case. If, for example, p = 5 , n = 2 and m = 1 , then any subset

Ṽ := { (0, 0), (0, 1), (1, 0), (2, 2), (a, b) } ⊆ F5
2 of 5 = pn−m points does not have this

property. To any subspace U ≤ Fp
n of dimension 1 , there is a v′ ∈ F5

2 such that v′ + U

contains two of the “first” four elements of Ṽ , so that there must be another v ∈ F5
2

with Ṽ ∩ (v + U) = ∅ . In other words, the first property of the sets V of simultaneous

zeros in Corollary 2.4(i), is something special for sets of this size.

3 Generalizations

We formulated all our results in the last section for prime fields Fp , but we may also

apply them to arbitrary finite fields Fpk by using the following lemma. It is based on

elementary techniques from field theory which were used in a similar way in [Ba, Prop. 3.3]

and [MoMo, Lemma1]. The degree restriction deg(P̄ ) ≤ k deg(P ) in this lemma can be

sharpened using the so-called p-weight degree wp(P ) of P . See [MoMo] for the simple

idea behind this improvement, and for the definition of wp . We provide:

Lemma 3.1. Let α ∈ Fpk be a primitive element of the extension Fpk ⊇ Fp , Fpk = Fp(α) .

For each x = (xj) ∈ X := Fpk
(n], let x̄ = (x̄i,j) ∈ X̄ := Fp

[k)×(n] be the unique point with

xj = x̄0,jα
0 + · · · + x̄k−1,jα

k−1 for all j ∈ (n] , so that x 7−→ x̄ is a bijection X −→ X̄ .

For each polynomial P ∈ Fpk [X] with X = (Xj)j∈(n] , there is a polynomial P̄ ∈ Fp[X̄]

with X̄ = (Xi,j)(i,j)∈[k)×(n] of degree deg(P̄ ) ≤ k deg(P ) such that, for all x ∈ X ,

P̄ (x̄) = N (P (x)) ,

where N : Fpk −→ Fp is the norm of the field extension Fpk ⊇ Fp .

If P is homogeneous then P̄ is homogeneous as well. If all homogenous components

of P have degree t modulo s , then the homogenous components of P̄ have degree kt

modulo s .

Proof. Let A ∈ Fp
[k)×[k) be the companion matrix of the minimal polynomial fα of α .

We may identify Fp[A] with Fpk and A with α . In this way Fpk is a Fp-vector space

with basis A0, . . . , Ak−1 and a subfield of the matrix ring Fp
[k)×[k). The norm N of

the extension Fp(A)⊇ Fp is given by the determinant det . (See, e.g., [DuFo] for more

information about the norm and field extensions.) Now define

P̃ (X̄) = (P̃i,j(X̄)) ∈ Fp[A][X̄ ] ⊆ Fp
[k)×[k)[X̄ ] = Fp[X̄ ] [k)×[k) (59)
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by
P̃ (X̄) := P

(

(X0,jA
0 + . . . + Xk−1,jA

k−1)j∈(n]

)

. (60)

The entries P̃i,j(X̄) of this matrix have degree at most deg(P ) , so that

P̄ (X̄) := det(P̃ (X̄)) (61)

has degree at most k deg(P ) , and

P̄ (x̄) = det
(

P
(

(x̄0,jA
0 + . . . + x̄k−1,jA

k−1)j∈(n]

) )

= N (P (x)) . (62)

Since the set of the degrees of the monomials of the entries P̃i,j(X̄) is a subset of the

set of the monomial degrees of P , the last part of the lemma follows immediately.

When we combine this Lemma with Corollary 2.4(i) we obtain that, to any system of

polynomial P1, . . . , Pm ∈ Fq[X] (where q := pk ), with q := pk

V := { x ∈ Fq
n �

P1(x) = · · · = Pm(x) = 0 } 6= ∅ , (63)

there exists an Fp-linear subspace U ⊆ Fq
n of Fp-dimension

dimFp
(U) ≤ k

∑

i∈(m]

deg(Pi) (64)

such that

V ∩ (v + U) 6= ∅ for all v ∈ Fq
n . (65)

If it happens that this subspace is also an Fq-linear subspace, then it has Fq-dimension

dimFq
(U) =

dimFp (U)

k
≤

∑

i∈(m]

deg(Pi) (66)

and Corollary 2.4(i) would hold with q in the place of p . The only reason why we have

not been able to prove the existence of such an Fq-subspace is, that the multinomial

coefficient in Equation (27) (in the proof of the main Lemma2.1), with q > p in the place

of p , usually vanishes modulo p . This leads us to the following concluding conjectures:

Conjecture 3.2. Let P1, . . . , Pm ∈ Fq[X] be polynomials with a simultaneous zero, and

define V := { x ∈ Fp
n �

P1(x) = · · · = Pm(x) = 0 } 6= ∅ :

There exists an Fq-subspace U ⊆ Fp
n of Fq-dimension dimFq

(U) ≤
∑

i deg(Pi) such

that V ∩ (v + U) 6= ∅ for all v ∈ Fq
n.

This conjecture would follow from the following stronger one:

Conjecture 3.3. To any polynomial P ∈ Fq[X1, . . . , Xn] with P |Fq
n 6≡ 0 , there exists an

Fq-linear subspace U ⊆ Fq
n of Fq-dimension dimFq

(U) ≤
⌈ deg(P )

q−1

⌉

such that P |v+U 6≡ 0

for all v ∈ Fq
n.
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Note that, in the case of the second conjecture, not even an adequate Fp-subspace U ,

with corresponding Fp-dimension

dimFp
(U) ≤ k

⌈ deg(P )
q−1

⌉

, (67)

can be guaranteed using Lemma3.1 and our prime field version Theorem2.3. Only a

Fp-subspace U of Fp-dimension

dimFp
(U) ≤

⌈

k deg(P )
p−1

⌉

(68)

(with p − 1 instead of q − 1 in the nominator) can be guaranteed in this way.
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