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Abstract

We consider the problem of generating upper bounds for the probability of the

union of events when the individual probabilities of the events as well as the proba-

bilities of pairs of these events are known. By formulating the problem as a Linear

Program, we can obtain bounds as objective function values corresponding to dual

basic feasible solutions. The new upper bounds are based on underlying bipartite

and threshold type graph structures.

1 Introduction

The Boolean probability bounding problem can be formulated as follows: let A1, ..., An

be a finite set of arbitrary events in a probability space Ω, and let us assume that the

individual probabilities P (Ai), i = 1, ..., n, as well as the probabilities P

(

⋂

1≤i1<...<il≤n

Ail

)

,

l = 2, ..., m, of up to m-tuples of these events are known, where m < n. Using this
information we want to generate upper and lower bounds for the probability of a Boolean
function of these events. The integer m is usually referred to as the degree of these bounds.

The Boolean probability bounding scheme is a particular instance of the optimization
version of the probabilistic satisfiability (PSAT) problem. The decision version of PSAT
consists in determining whether, given the probabilities that m logical sentences defined
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on n logical variables are true, such probability assignment is consistent. The optimiza-
tion version of PSAT in concerned with determining bounds on the probability that an
additional sentence is true. PSAT is known to be NP-hard (see e.g. [7]).

Both versions of PSAT were first proposed as general problem in the theory of prob-
ability by George Boole, who suggested algebraic methods to solve it.

Hailperin [5] formulated Boole’s general problem as a Linear Program and showed
that Boole’s method is equivalent to Fourier’s elimination. Kounias and Marin [8] utilized
Hailperin’s linear model in their work on the Boolean probability bounding scheme and
generated bounds of degree two.

Dawson and Sankoff [4] proposed a sharp lower bound for the probability that at least
one out of n events occurs, using the first two binomial moments of the occurrences and
a linear programming formulation.

Hunter [6] found an upper bound of degree two expressed in terms of underlying
spanning trees, Bukszár and Prékopa [2] by means of cherry-trees, and Bukszár and
Szantai [3] by means of hypercherry trees.

Let us introduce the following notations: let Gm = (V, E) denote the hypergraph where

V = {1, ..., n} and E =
m
⋃

k=2

Ek where Ek = {I ⊆ V | |I| = k}, k = 2, ..., m. Further let

Γ = V ∪ E .
For each subset J ⊆ V let us define the event CJ =

(
⋂

i∈J Ai

) (
⋂

i∈Jc Ac
i

)

where
Jc = V \ J , and Ac

i = Ω \ Ai, i = 1, ..., n, and to each subset J ⊆ V let us associate a
decision variable xJ = Pr (CJ) and a scalar cJ .

Let us further introduce the notation pI = P
(
⋂

i∈I Ai

)

where I ∈ Γ, and let us set
p∅ = 1 by definition.

Let us note that the equality
∑

I⊆J⊆V P (CJ) = P
(
⋂

i∈I Ai

)

holds for all subsets I ∈
Γ∪{∅}, because the 2n (disjoint) events CJ ’s form a partition of the probability space Ω.
We can write this equivalently as

∑

I⊆J⊆V xJ = pI .
Finally, let p denote the vector with components pI ∈ [0, 1], I ∈ Γ ∪ {∅}, let x be

the vector with components xJ ∈ [0, 1], J ⊆ V, and let H = (hIJ) denote the incidence
matrix whose entries are defined by hIJ = 1 if I ⊆ J , hIJ = 0 otherwise.

The matrix H has
m
∑

i=0

(

n

i

)

rows and 2n columns.

In the vectors p and x, and in the row and column indices of the matrix H the order
of the elements will follow the lexicographic order of the subscript sets.

The Boolean probability bounding problem can thus be restated as a linear program
of the form

Max or Min
∑

J⊆V

cJxJ

st
∑

I⊆J⊆V

hIJxJ = pI ∀I ∈ Γ ∪ {∅}

xJ ≥ 0 ∀J ⊆ V
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or in matrix form for the maximization problem

Max cT x
st Hx = p

x ≥ 0
(1)

where the vector c has components cJ , J ⊆ V.
In particular, if cT = [0, 1, ..., 1] problems (1) and (2) provide us with bounds for the

probability P (A1 ∪ ... ∪ An) that at least one out of n events occurs.
As an illustration consider for example the case n = 3, m = 2, cT = [0, 1, ..., 1],

pI = 0.5 for |I| = 1, pI = 0.25 for |I| = 2:

Max x1 + x2 + x3 + x12 + x13 + x23 + x123

st

x∅ +x1 +x2 +x3 +x12 +x13 +x23 +x123 = 1.00
x1 +x12 +x13 +x123 = 0.50

x2 +x12 +x23 +x123 = 0.50
x3 +x13 +x23 +x123 = 0.50

x12 +x123 = 0.25
x13 +x123 = 0.25

x23 +x123 = 0.25
x∅, x1, x2, x3, x12, x13, x23, x123 ≥ 0.

The optimal objective function value of the maximization problem is 1, achieved for
x∅ = x12 = x13 = x23 = 0 and x1 = x2 = x3 = x123 = 0.25.

Consider then the dual of problem (1):

Min pT w
st HTw ≥ c.

(2)

Recall that if a linear programming problem is a maximization, the objective function
value corresponding to any dual feasible basis is an upper bound for its optimum value.
The best bound corresponds to the optimal basis and is called sharp because no better
bound can be given based on the knowledge of the vector p. Thus, bounds can be obtained
provided that we can construct dual feasible bases.

2 Bounds of degree 2

Consider problem (1) for m = 2 and cost coefficients cT = [0, 1, ..., 1]. The objective
function then becomes

∑

J⊆V

cJxJ =
∑

∅6=J⊆V

xJ .

In the linear program (1) we have 1 + n +
(

n

2

)

constraints and 2n variables. The
first constraint

∑

J⊆V

xJ = 1 becomes superfluous because we are going to maximize the

quantity
∑

∅6=J⊆V

xJ . If the optimum value of the maximization problem is found to be
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larger than 1 then, by taking into account the constraint
∑

J⊆V

xJ = 1, we can trivially set

the upper bound to 1. Therefore the first row of the matrix Has well as the first column
corresponding to the variable x∅ can be disregarded from our formulation. In (1) we now
have n +

(

n

2

)

constraints and 2n − 1 variables.
As Prékopa et al. suggested in [11], it is then possible to interpret the n +

(

n

2

)

compo-
nents of any dual feasible solution w = (wγ)γ∈Γ of problem (2) as node and edge weights
in G2, that is a weight wi is assigned to node i ∈ V and a weight wi,j is assigned to edge
{i, j} ∈ E2.

In what follows we will let E(S) denote the edge set of a subset S ⊆ V and w(S) =
∑

γ∈S wγ +
∑

γ∈E(S) wγ represent the weight of subset S for a given dual feasible solution

w = (wγ)γ∈Γ.
For the instance under study (cT = [0, 1, ..., 1] and m = 2) problem (2) can then be

written as
Min

∑

γ∈Γ

pγwγ

st w(S) ≥ 1 ∀S ⊆ V.
(3)

The lemma that follows provides a sufficient and necessary condition for a given vector
to be a basic feasible solution of problem (3) by use of the graph structure introduced at
the beginning of section 2.

Lemma 1 Given a collection = = {Iγ}γ∈Γ of column subscripts of the matrix H, a vector
w = (wγ)γ∈Γ is a dual basic feasible solution of problem (1) generated by the basis = if the
following conditions are satisfied.

(i) The vector w = (wγ)γ∈Γ is the unique solution of the system of equations w(Iγ) = 1
for all subsets Iγ ∈ =, γ ∈ Γ.

(ii) For all subsets S ⊆ V such that S /∈ = the inequality w(S) ≥ 1 holds.

Proof. Let hJ , J ⊆ V, designate a column vector of the matrix H. Let B denote a
nonsingular square submatrix of H of order m and let = = {Iγ}γ∈Γ denote the collection of
subscripts whose columns form B. Recall that a matrix B is said to be a dual feasible basis
of problem (1) if cT

BB−1hIγ
= cIγ

for all subsets Iγ ∈ =, γ ∈ Γ, and cT
BB−1hJ ≥ cJ for all

subsets J /∈ =. The corresponding dual basic feasible solution is the vector wT = cT
BB−1.

In our case, condition (i) guarantees that the matrix B is nonsingular and that the
equalities cT

BB−1hIγ
= cIγ

hold for all basic sets Iγ ∈ =, γ ∈ Γ, and condition (ii) ensures
that the inequalities cT

BB−1hJ ≥ cJ are satisfied for all nonbasic sets J /∈ =.

Remark 2 Let G∗ = (Γ ∪ =, E∗) denote the bipartite graph where E ∗ = {I ∈ Γ, J ∈ = |
I ⊆ J}. A necessary condition for a collection = = {Iγ}γ∈Γ of column subscripts of H to
form a basis is that there exists a perfect matching in the bipartite graph G∗, otherwise if
no perfect matching exists the matrix B would be singular (see e.g. [10]). Therefore in
constructing a basis = = {Iγ}γ∈Γ we want to make sure to cover all the nodes and edges
of G2.
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The new families of dual feasible bases presented in the propositions that follow are
obtained by partitioning the graph G2 in two components and then assigning nonnegative
weights to each component and nonpositive weights to the edges connecting them.

Proposition 3 Assume n ≥ 5. Let V = A ∪ B be a partition of the vertex set V and
k = |A| where 2 ≤ k ≤

⌊

n
2

⌋

. Let l denote a positive integer such that k ≤ l ≤ n − k − 1,
(

n−k

2

)

≤
(

n−k

l

)

, and
(

k

2

)

≤
(

n−k

l+1

)

Then the vector w = (wγ)γ∈Γ with components

wγ =















1 if γ ∈ V
−1 if γ = {i, j}, i ∈ A, j ∈ B
l−1
k

if γ = {i, j}, i ∈ A, j ∈ A
k−1

l
if γ = {i, j}, i ∈ B, j ∈ B

is a dual basic feasible solution of problem (1).

Proof. Let As ⊆ A (Br ⊆ B) denote a subset of cardinality s, 1 ≤ s ≤ k (r,
1 ≤ r ≤ n − k).

Define = = {Iγ}γ∈Γ to be the collection of column labels of the matrix H where

Ii = {i} for i ∈ V

Ii,j =







{i, j} if i ∈ A, j ∈ B
A ∪ Bl+1 if i, j ∈ A
A ∪ Bl if i, j ∈ B, where i, j ∈ Bl.

The vector w is a dual basic feasible solution of problem (1) generated by the basis =
because conditions (i) and (ii) of lemma 1 are met, as shown below.

(i) For all i ∈ V w(Ii) = 1 if and only if wi = 1.
For all {i, j} ∈ E2 such that i ∈ A, j ∈ B w(Ii,j) = w({i, j}) = wi + wj + wi,j =

2 + wi,j = 1 if and only if wi,j = −1.
The symmetry of the constraints ensures that wh,k = x for all h, k ∈ A and wh,k = y

for all h, k ∈ B.
Then for all {i, j} ∈ E(A)

w(Ii,j) = w(A∪ Bl+1) =
∑

f∈A∪Bl+1

wf +
∑

f,g∈A

wf,g +
∑

f,g∈Bl+1

wf,g +
∑

f∈A,g∈Bl+1

wf,g

= (k + l + 1)(1) +

(

k

2

)

x +

(

l + 1

2

)

y + k(l + 1)(−1) = 1

if and only if
k(k − 1)

2
x +

(l + 1)l

2
y = kl − l. (I)

For all {i, j} ∈ E(B)

w(Ii,j) = w(A∪ Bl) =
∑

f∈A∪Bl

wf +
∑

f,g∈A

wf,g +
∑

f,g∈Bl

wf,g +
∑

f∈A,g∈Bl

wf,g

= (k + l)(1) +

(

k

2

)

x +

(

l

2

)

y + kl(−1) = 1
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if and only if
k(k − 1)

2
x +

l(l − 1)

2
y = kl − k − l + 1. (II)

The unique solution of the system of equations I−II is given by x = l−1
k

and y = k−1
l

.
(ii) The only nontrivial case that needs to be considered to prove that the vector w is

feasible for problem (3) is S = As ∪ Br, 1 ≤ s ≤ k, 1 ≤ r ≤ n − k.
Then

w(S) = w(As ∪ Br) =
∑

f∈As∪Br

wf +
∑

f,g∈As

wf,g +
∑

f,g∈Br

wf,g +
∑

f∈As,g∈Br

wf,g

= s + r +

(

s

2

)

x +

(

r

2

)

y + rs(−1)

=
yr2 + r(2 − 2s − y) + xs2 − xs + 2s

2
.

Consider the following cases.
Case 1: s = 1. Then w(A1 ∪ Br) = 1 + yr(r−1)

2
≥ 1 because r ≥ 1 and y ≥ 0.

Case 2: s = k. Then w(A∪ Br) = r2−r(1+2l)+l(l+1)+2
2

. Therefore the inequality w(A ∪
Br) ≥ 1 holds if and only if r2 − r(1 + 2l) + l(l + 1) ≥ 0 equivalently r ≤ l or r ≥ l + 1.

Case 3: 2 ≤ s ≤ k − 1. Consider the polynomial

P(r|s, l) = w(S) − 1 =
yr2 + r(2 − 2s − y) + xs2 − xs + 2s

2
− 1

where r ∈ [1, n− k], and let ∆(s, l) denote the discriminant of the equation P(r|s, l) = 0.
We will show that ∆(s, l) < 0 for every s ∈ [2, k−1], l ∈ [k, n−k−1], thus P(r|s, l) > 0

for any r, equivalently w(As ∪ Br) ≥ 1 for any subset As ∪ Br ⊆ V.
The expression of the discriminant is given by

∆(s, l) = (2 − 2s − y)2 − 4y(xs2 − xs + 2s − 2)

=
4(1 − s)(k − s)l2 + 4(k − 1)(1 − s)(k − s)l + k(k − 1)2

kl2
.

The inequality ∆(s, l) < 0 can be written as ∆∗(s, l) = −kl2∆(s, l) > 0.
Because the partial derivative of the function ∆∗(s, l) with respect to the variable l

∂∆∗(s, l)

∂l
= 8(s − 1)(k − s)l + 4(k − 1)(s − 1)(k − s) = 4(s − 1)(k − s)(2l + k − 1)

is positive when l ≥ −(k−1
2

), the function ∆∗(s, l) is increasing in l on the interval
[k, n − k − 1] . If we show that the inequality ∆∗(s, l = k) ≥ 0 is satisfied for any
s ∈ [2, k − 1], the argument will be complete.

Because ∆∗(s, l = k) = k [4(1 − 2k)s2 + 4(2k2 + k − 1)s − (3k − 1)2] , the sign of the

first derivative d(∆∗(s,l=k))
ds

= k [8(1 − 2k)s + 4(2k2 + k − 1)] is nonnegative for s ≤ 4(k+1),
that is the function ∆∗(s, l = k) is increasing in s on the interval [2, k − 1].
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Therefore to conclude that the function ∆∗(s, l = k) is nonnegative on the interval
s ∈ [2, k − 1] it then suffices to notice that ∆∗(s = 2, l = k) = 7k2 − 18k + 7 ≥ 13 > 0,
because in the case under study k ≥ 3.

The bound generated by evaluating the objective function of problem (3) at the dual
basic feasible solution described by the above proposition is given by

P (
n
⋃

i=1

Ai) ≤
∑

j∈V

pj −
∑

i∈A,j∈B

pi,j +
l − 1

k

∑

i,j∈A

pi,j +
k − 1

l

∑

i,j∈B

pi,j.

Remark 4 The assumptions k ≤ l ≤ n−k−1,
(

n−k

2

)

≤
(

n−k

l

)

, and
(

k

2

)

≤
(

n−k

l+1

)

guarantee
that there is a sufficient number of sets needed to form a basis as described in the above
proof. Moreover l = k is the smallest value for which the proposition holds true.

Proposition 5 Assume n ≥ 5. Let V = A ∪ B be a partition of the vertex set V and
l = |A| where 1 ≤ l ≤ n − 1. Then the vector w = (wγ)γ∈Γ with components

wγ =















1 if γ ∈ V
−1 if γ = {i, j}, i ∈ A, j ∈ B
0 if γ = {i, j}, i, j ∈ A
l − 1 if γ = {i, j}, i, j ∈ B

is a dual basic feasible solution of problem (1).

Proof. Define = = {Iγ}γ∈Γ to be the collection of column labels of the matrix
H where

Ii = {i} for i ∈ V

Ii,j =







{i} ∪ {j} if i ∈ A, j ∈ B
{i} ∪ {j} ∪ {k} if i, j ∈ A, where k ∈ B
{i} ∪ {j} ∪ A if i, j ∈ B

The vector w is a dual basic feasible solution of problem (1) generated by the basis =
because conditions (i) and (ii) of lemma 1 are met, as shown below.

(i) For all i ∈ V w(Ii) = 1 if and only if wi = 1.
For all {i, j} ∈ E2 with i ∈ A, j ∈ B w(Ii,j) = w({i}∪{j}) = wi+wj+wi,j = 2+wi,j = 1

if and only if wi,j = −1.
For all {i, j} ∈ E(A)

w(Ii,j) = w({i} ∪ {i} ∪ {k}) = wi + wj + wk + wi,j + wi,k + wj,k = 3 − 2 + wi,j = 1

if and only if wi,j = 0.
Finally for all i, j ∈ E(B)

w(Ii,j) = w({i} ∪ {j} ∪ A) =
∑

h∈{i}∪{j}∪A

wh +
∑

h∈A

wh,i +
∑

h∈A

wh,j +
∑

h,k∈A

wh,k + wi,j

= l + 2 + 2l(−1) +

(

l

2

)

(0) + wi,j

= 2 − l + wi,j = 1
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if and only if wi,j = l − 1.
(ii) The only nontrivial case that need to be considered to prove that the vector w is

feasible for problem (3) is S = As∪Br, where As ⊆ A, |As| = s, 1 ≤ s ≤ l, and Br ⊆ B,
|Br| = r, 1 ≤ r ≤ n − l. Then

w(As ∪ Br) =
∑

f∈As∪Br

wf +
∑

f,g∈As

wf,g +
∑

f,g∈Br

wf,g +
∑

f∈As,g∈Br

wf,g

= s + r + (l − 1)

(

r

2

)

− sr

=
(l − 1)r2 − r(2s − 2 + l − 1) + 2s

2
.

Therefore the inequality w(As ∪ Br) ≥ 1 holds if and only if (l − 1)r2 − r(2s − 2 + l −
1) + 2s − 2 ≥ 0 equivalently r ≤ s−2

l−1
or r ≥ 1, since s−2

l−1
< 1 because s < l + 1.

The bound generated by evaluating the objective function of problem (3) at the basic
feasible solution described by the above proposition is given by

P (

n
⋃

i=1

Ai) ≤
∑

i∈V

pi + (l − 1)
∑

i,j∈B

pi,j −
∑

i∈A,j∈B

pi,j.

The following corollary shows that a known bound [11] can be obtained as a special
case of the bound presented in proposition 7.

Corollary 6 Assume n ≥ 5. For fixed i1, i2 ∈ V, let A = V \ {{i1} ∪ {i2}}. Then the
vector w = (wγ)γ∈Γwith components

wγ =















1 if γ ∈ V
−1 if γ = {ik, j}, k = 1, 2, j ∈ A
0 if γ = {i, j}, i, j ∈ A
n − 3 if γ = {i1, i2}

is a dual basic feasible solution of problem (1).

Proof. Set B = {i1, i2} in proposition 6.
We conclude the section presenting a new bound that is obtained by means of an

underlying threshold-type graph structure.

Proposition 7 Assume n ≥ 5. Let V = A ∪ B be a partition of the vertex set V. Let
s = |A|, 1 ≤ s ≤ n − 1, and A = {a1, a2, ..., as}.

Let N (ak), k = 1, ..., s, denote the set of vertices i ∈ B that are connected to vertex
ak. Assume that N (a1) = B, N (ah) ⊆ N (ak) if h > k, and N (ah) ∩ N (ak) 6= ∅ for all
h, k = 1, ..., s. Then the vector w = (wγ)γ∈Γ with component

wγ =















1 if γ ∈ V
−1 if γ = {ak, j}, j ∈ N (ak), 1 ≤ k ≤ s
|N (ah) ∩N (ak)| − 1 if γ = {ah, ak}, 1 ≤ h, k ≤ s
0 otherwise

is a dual basic feasible solution of problem (1).
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Proof. Define = = {Iγ}γ∈Γ to be the collection of column labels of the matrix H
where

Ii = {i} for i ∈ V

Ii,j =























{ak, j} if i = ak, j ∈ N (ak), 1 ≤ k ≤ s
{N (ah) ∩ N (ak)} ∪ {ah} ∪ {ak} if i = ah, j = ak, 1 ≤ h, k ≤ s
{a1} ∪ {i} ∪ {j} if i, j ∈ B

{ah} ∪ {ak} ∪ {j} ∪ N (ak)
if i = ak, j ∈ B \ N (ak), 1 ≤ k ≤ s
where h = max{t | j ∈ N (at)}.

The vector w is a dual basic feasible solution of problem (1) generated by the basis =
because conditions (i) and (ii) of lemma 1 are met, as shown below.

(i) For all i ∈ V w(Ii) = 1 if and only if wi = 1.
For all {ak, j} ∈ E2 with j ∈ N (ak), 1 ≤ k ≤ s,

w(Iak,j) = w({ak, j}) = wak
+ wj + wak,j = 2 + wak,j = 1

if and only if wak,j = −1.
For all {i, j} ∈ E(B)

w(Ii,j) = w({a1} ∪ {i} ∪ {j}) = wa1
+ wi + wj + wa1,i + wa1,j + wi,j = 3 − 2 + wi,j = 1

if and only if wi,j = 0.
For {i, j} = {ah, ak}, 1 ≤ h, k ≤ s,

w(Iah,ak
) = w({N (ah) ∩ N (ak)} ∪ {ah} ∪ {ak})

=
∑

f∈{N (ah)∩N (ak)}∪{ah}∪{ak}

wf +
∑

f∈N (ah)∩N (ak)

wah,f +
∑

f∈N (ah)∩N (ak)

wak,f

+
∑

f,g∈N (ah)∩N (ak)

wf,g + wah,ak

= |N (ah) ∩N (ak)| + 2 + |N (ah) ∩ N (ak)| (−1) + wah,ak

+ |N (ah) ∩ N (ak)| (−1) +

(

|N (ah) ∩N (ak)|

2

)

(0)

= 2 − |N (ah) ∩ N (ak)| + wah,ak
= 1

if and only if wah,ak
= |N (ah) ∩ N (ak)| − 1.

Finally for {ak, j} ∈ E2 with j ∈ B \ N (ak), 1 ≤ k ≤ s,

w(Iak,j) = w({ah} ∪ {ak} ∪ {j} ∪ N (ak))

= wah
+ wak

+ wj +
∑

f∈N (ak)

wf + wah,ak
+ wah,j + wak,j

+
∑

f∈N (ak)

wah,f +
∑

f∈N (ak)

wak,f +
∑

f∈N (ak)

wj,f

= 3 + |N (ak)| + |N (ah) ∩N (ak)| − 1 − 1 + wak ,j

+ |N (ak)| (−1) + |N (ak)| (−1) + |N (ak)| (0)

= 1 + wak,j = 1
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if and only if wak,j = 0, since |N (ah) ∩ N (ak)| = |N (ak)| because k > h.

(ii) The only nontrivial case that needs to be considered to prove that the vector w is
feasible for problem (2) is S = C ∪ D, where C ⊆ A and D ⊆ B. We will show that the
inequality w(C ∪ D) ≥ 1 holds by induction on |C| .

If |C| = 1 let C = {ai1}, where 1 ≤ i1 ≤ s. Then

w(S) = w({ai1} ∪ D) =
∑

j∈{ai1
}∪D

wj +
∑

j∈D

wai1
,j +

∑

i,j∈D

wi,j

= 1 + |D| + |N (ai1) ∩ D| (−1) + 0 ≥ 1

because |N (ai1) ∩ D| ≤ |D| .
Let us assume that inequality w(C ∪ D) ≥ 1 holds for |C| = k.
If |C| = k + 1 let C = {ai1, ai2 , ..., aik , aik+1

}, where 1 ≤ i1 < i2 < ... < ik < ik+1 ≤ s,
then

w(S) = w({ai1, ai2 , ..., aik+1
} ∪ D)

= w({ai1, ai2 , ..., aik} ∪ D) + waik+1
+

∑

j∈D

waik+1
,j +

k
∑

l=1

wail
,aik+1

= w({ai1, ai2 , ..., aik} ∪ D) + 1 +
∣

∣N (aik+1
) ∩ D

∣

∣ (−1)

+
k

∑

l=1

[
∣

∣N (aik+1
) ∩ N (ail)

∣

∣ − 1
]

= w({ai1, ai2 , ..., aik} ∪ D) + 1 −
∣

∣N (aik+1
) ∩ D

∣

∣ +
∣

∣N (aik+1
) ∩N (ai1)

∣

∣ − 1

+

k
∑

l=2

[
∣

∣N (aik+1
) ∩ N (ail)

∣

∣ − 1
]

= w({ai1, ai2 , ..., aik} ∪ D) +
∣

∣N (aik+1
) ∩ N (ai1)

∣

∣

−
∣

∣N (aik+1
) ∩ D

∣

∣ +

k
∑

l=2

[
∣

∣N (aik+1
) ∩N (ail)

∣

∣ − 1
]

≥ 1

because w({ai1, ai2 , ..., aik}∪D) ≥ 1 by the induction hypothesis and
∣

∣N (aik+1
) ∩ N (ai1)

∣

∣−
∣

∣N (aik+1
) ∩ D

∣

∣ ≥ 0 since
∣

∣N (aik+1
) ∩N (ai1)

∣

∣ =
∣

∣N (aik+1
)
∣

∣ ≥
∣

∣N (aik+1
) ∩ D

∣

∣.

The bound generated by evaluating the objective function of problem (3) at the dual
basic feasible solution described by the above proposition is given by

P (

n
⋃

i=1

Ai) ≤
∑

i∈V

pi +

s
∑

h,k=1
h6=k

[|N (ah) ∩ N (ak)| − 1]pah,ak
−

s
∑

k=1

∑

j∈N (ak)

pak ,j.

Finally we will compare one of the new bounds with Kwerel’s bound [9] and Hunter’s

bound [6] for the system II in [1], for which n = 6, P

(

n
⋃

i=1

Ai

)

= 0.6740,
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p1 = 0.268, p2 = 0.312, p3 = 0.302, p4 = 0.172, p5 = 0.384, p6 = 0.278,
p12 = 0, p13 = 0.168, p14 = 0.033, p15 = 0.19, p16 = 0.155,
p23 = 0.078, p24 = 0.045, p25 = 0.156, p26 = 0.067,
p34 = 0.056, p35 = 0.201, p36 = 0.111,
p45 = 0.049, p46 = 0.089, p56 = 0.189.

Numerical results for the given system are given in the table below.

Upper Bounds of Degree 2

Kwerel’s bound 1
Hunter’s bound 0.891

Our bound* 0.813
Exact value 0.674

*Our bound was generated by setting A = {1, 2, 4}, B ={3, 5, 6}, and l = 1 in propo-
sition 6. It is possible to show that our bound is the best possible bound that can be
generated via the linear programming formulation of the Boolean Probability Bounding
Problem for the numerical example under study.
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