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Abstract

A coin set is a strictly increasing list of positive integers that always begins with

1. A coin set is called greedy when the simple greedy change-making algorithm

always produces the fewest number of coins in change. Here, the greedy change-

making algorithm repeatedly selects the largest denomination coin less than the

remaining amount until it has assembled the correct change. Pearson has provided

an efficient algorithm for determining whether a coin set is greedy. We study a

stricter property on coin sets, called total greediness, which requires that all initial

subsequences of the coin set also be greedy, and a simple property makes it easy

to test if a coin set is totally greedy. We begin to explore the theory of greedy

obstructions– those coin sets that cannot be extended to greedy coin sets by the

addition of coins in larger denominations.

1 Introduction

One well-known property of US coin denominations comes from the famous “change mak-
ing problem.” In particular, suppose a cashier needs to return a value of c cents change
to a customer. The cashier has pennies (worth 1 cent), nickels (worth 5 cents), dimes
(worth ten cents) and quarters (worth 25 cents). There may be several different ways to
represent c cents using this coin set; for example, eleven cents could be made using eleven
pennies, or two nickels and a penny, or a dime and a penny. We call a representation of c
cents optimal if it uses the fewest number of coins possible; so the dime and penny is the
optimal representation of eleven cents in the US coin set. In general, for a coin set C with
denominations (a1, a2, a3, . . . ak) we denote by N [C, y] the number of coins in an optimal
representation of y using coin set C, or just N [y] when C is clear from context. In what
follows, we restrict ourself to coin sets C where a1 = 1; so that N [C, y] ≤ y is finite for
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all values y. Elements of C will, naturally, be referred to as “coins,” and in what follows,
we will always list the coins in increasing order so that 1 < a2 < a3 . . . < ak.

The following simple greedy algorithm will produce an optimal representation of any
value c for the US coin set (1, 5, 10, 25). Choose as many quarters as possible without
exceeding the value c, then choose as many dimes as possible to make up the remainder,
then choose as many nickels as possible, and finally make up the rest with pennies.
However, it is easy to construct coin sets for which this greedy algorithm fails to always
produce an optimal representation; for example if the coin set is (1, 4, 5), the greedy
algorithm uses four coins to construct 8 cents (5+1+1+1), but N [8] = 2 (4+4). The
number of coins used to construct c cents greedily in coin set C will be denoted by G[C, c]
or G[c] when C is fixed.

We will use the following notation. If C = (1, a2, . . . , ak) is a coin set, then r11 ⊕
r2a2⊕ . . .⊕rkak will be used to denote the multiset consisting of r1 coins of denomination
1, r2 coins of denomination a2, up to rk coins of denomination ak.

Definition 1.1 If C = (1, a2, a3, . . . , ak) is a coin set and x is a positive integer, we
define the greedy representation for x recursively as follows. Let i be the largest index
such that ai ≤ x. Then the greedy representation of x is ai ⊕ { the greedy representation
of x − ai}. The number of coins used to construct x cents greedily in coin set C will be
denoted by G[C, x] or G[x] when C is fixed.

Definition 1.2 A coin set C = (1, a2, a3, . . . , ak) is greedy if the greedy algorithm pro-
duces an optimal representation of c for all positive integer values, c.

Greedy coin sets are termed “canonical” in [2] and [4]. If the optimal representation of
c uses fewer coins than the greedy representation, c will be referred to as a counterexample
to greediness. The following theorem is due to Kozen and Zaks [2].

Theorem 1.3 If coin set (1, a2, a3, . . . , ak) is not greedy, there is a counterexample c,
with a3 + 1 < c < ak + ak−1.

Obviously the search for a counterexample could be quite long, if the coins are large.
Pearson [4] has provided a polynomial algorithm for determining whether a coin set is
greedy, that runs in O(k3log2ak) time, where k is the number of coins in the coin set and
ak is the largest coin; if ak is bounded by a constant, it runs in O(k3) time. In this paper,
we investigate a stricter property of coin sets, called total greediness which is defined as
follows:

Definition 1.4 A coin set (1, a2, a3, . . . , ak) is totally greedy if for each i, 1 ≤ i ≤ k, the
coin set (1, . . . , ai) is greedy.

That is, not only is the coin set greedy, but each initial segment of the coin set is also
(totally) greedy.

Lemma 1.5 There are greedy coin sets that are not totally greedy.
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Proof. The proof is by construction. Let C = (1, 2, 4, 5, 8). To show C is greedy, one
only has to check that there is no counterexample, c, where 5 < c < 13, by Theorem 1.3.
This is a small number of values and is easily checked by hand. Alternatively, one can use
Stan Wagon’s implementation of Pearson’s algorithm in MathematicaTM [6] or his elegant
implementation for small examples [7]. However, (1, 2, 4, 5) is not greedy because the
optimal representation of 8 is 2 · 4 (2 coins), while the greedy representation is 5⊕ 2⊕ 1
(3 coins). 2

In this paper, we present a O(k2 log2 ak)-time algorithm to determine if a coin set
C = (1, a2, a3, . . . , ak) is totally greedy. We are also inspired by Lemma 1.5 to investi-
gate further when adding additional coins in larger denominations can restore the greedy
property to a non-greedy coin set, and when they cannot. This motivates the following
definition:

Definition 1.6 A coin set (1, a2 . . . ak) is a greedy obstruction or simply an obstruction
if and only if the coin set is not greedy, and no coin set which extends (1, a2, . . . ak) by
appending a finite set of coins of denominations larger than ak can be greedy. A minimal
obstruction is an obstruction that has no proper subsequence that is an obstruction.

2 The Greedy Extension Theorem

In this section, we prove a theorem about totally greedy coin sets and exhibit an algorithm
that tests whether a coin set is totally greedy. The theorem turns out to be equivalent
to a result of Magazine, Nemhauser and Trotter [3], but an independent proof is supplied
for completeness.

Lemma 2.1 N [x + y] ≤ N [x] + N [y].

Proof. Follows from the fact that an optimal representation for x when added to a opti-
mal representation for y is a representation for x+y. 2

If x is a rational number, dxe denotes the ceiling of x, that is, the smallest integer
greater than or equal to x.

Theorem 2.2 The Greedy Extension Theorem [GET]. Suppose C1 = (a1, a2 . . . ak)
is greedy and C2 = (a1, a2 . . . ak, ak+1). Let m = dak+1/ake . Then C2 is greedy if and
only if G[C2, mak] ≤ m.

Proof. Let Gi[y] denote the number of coins in the greedy representation of y using coin
set Ci, i = 1, 2. Clearly, C2 is greedy only if G2[mak] ≤ m.

Conversely, suppose that G2[mak] ≤ m. We note that G1 is “subadditive”; that is,
G1[x + y] ≤ G1[x] + G1[y], by the lemma above, since C1 is greedy. We relabel ak = a,
ak+1 = b. Then G2[ma] ≤ m is true if and only if G1[ma − b] < m; this is so because
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ma = b + (ma− b), so G2[ma] = 1 +G2[ma− b] = 1+ G1[ma− b] where this last equality
follows since ma − b < a, by the minimality of m.

We must show that C2 is greedy, that is, for any positive integer y, G2[y] = N [C2, y].
Let [y]i denote the greedy representation of y using coin set Ci, i = 1, 2. By way of contra-
diction, let x be the minimal counterexample for C2, that is, the smallest positive integer
for which the greedy algorithm does not produce the optimal representation. Clearly, we
can assume that x > b. Then, for some nonnegative integers k, l and s, we can represent
[x]2 as kb ⊕ la ⊕ [s]2 = kb ⊕ la ⊕ [s]1 since s < a; so G2[x] = k + l + G1[s].

If there was another way to represent x using fewer than G2[x] coins, then this repre-
sentation cannot also begin with kb; for, otherwise the reduction must come from la⊕ [s]1
which then would also be representable using fewer than G1[x− kb] coins in C1. However
this would contradict that C1 is a greedy coin set.

Hence the representation must remove q coins of denomination b, for some q > 0 and
then to compensate for these q coins, an optimal representation of qb using only the coins
from C1 must be found. Next, b = (m − 1)a + r, 0 < r ≤ a. Since C1 is greedy, the
optimal representation for x must begin with (k − q) coins of denomination b, followed
by l + q(m − 1) coins of denomination a, followed by [qr + s]1, the greedy representation
of qr + s in coin set C1.

Let D be the difference between the number of coins in the optimal representation of
x and the greedy representation of x using coin set C2. Then x being a counterexample
to the theorem implies that D < 0. We have

D = −q + q(m − 1) + G1[qr + s] − G1[s]. (1)

Since b = (m − 1)a + r, ma − b = a − r. Since ma = b + (ma − b) and ma − b < a and
G2[ma] ≤ m, it follows that m ≥ G2[ma] > G2[ma − b] = G1[ma − b], where the last
equality follows from ma − b < a.

Thus for some positive integer t, we can write m = G1[ma − b] + t = G1[a − r] + t.
Substituting for m in Equation 1, we have D = −q+q(G1[a−r]+t−1)+G1[qr+s]−G1[s].
Since s < a, we can rewrite q + G1[s] as G1[s + qa]. Also, qG1[a − r] ≥ G1[q(a − r)] by
subadditivity. Therefore D ≥ q(t − 1 + G1[q(a − r)] + G1[qr + s] − G1[s + qa]. However,
q(a − r) + (qr + s) = s + qa, and so again, by subadditivity, G1[s + qa] ≤ G1[q(a − r)] +
G1[qr + s]; thus G1[q(a − r)] + G1[qr + s] − G1[s + qa] ≥ 0. This together with t ≥ 1
implies that D ≥ 0, a contradiction. Thus the greedy representation uses the minimal
number of coins and is optimal. 2

We remark that Theorem 2.2 is equivalent to a special case of a theorem proved by
Magazine, Nemhauser and Trotter in 1975 [3]. The equivalence follows by setting all the
ci = 1 in their Theorem 1, and noting that G2[mak] = 1 + G1[mak − ak+1].

Corollary 2.3 Coin set (1, 2, b) is greedy for any b > 2.

Proof. (1) and (1, 2) are surely greedy. Let m = db/2e. Clearly, m ≥ 2. If b is even,
2m = b and G[2m] = 1 < m. If b is odd, 2m = b + 1; hence, in this case, G[2m] = 2 ≤ m.

2
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Corollary 2.4 (1, 3, 5 . . . , 2k − 1) is greedy, for each positive integer k.

Proof. The smallest integer m such that m(2k−3) ≥ (2k−1) is m = 2, but, 2(2k−3) =
(2k − 1) + (2k − 5). 2

Corollary 2.5 (1, a, 2a − 1) is greedy, for any a > 1.

Proof Let m = d(2a − 1)/ae, so m = 2. But then, ma = (2a − 1) + 1 and the coin set is
greedy by GET. 2

Corollary 2.6 Let m = db/ae. Then (1, a, b) is (totally) greedy if and only if ma−b < m.

Proof. (1, a) is totally greedy. ma = b + (ma− b) and (ma− b) < a, since (m− 1)a < b.
Thus G[ma] = 1 + (ma − b) ≤ m if and only if (1, a, b) is a totally greedy coin set. 2

Corollary 2.7 Suppose m = db/ae and b = (m − 1)a + r, for some 0 < r ≤ a. Then,
(1, a, b) is greedy iff a − r ≤ m − 1.

Proof. By Corollary 2.6, with b = (m−1)a+r, (1, a, b) is greedy iff 1+ma−((m−1)a+r) ≤
m. This is equivalent to 1 + a − r ≤ m, that is, a − r ≤ m − 1. 2

Corollary 2.8 (Kozen and Zaks [2]) Coin set (1, a, b) with b = aq + r, 0 ≤ r < a is
(totally) greedy if and only if r = 0 or a − q ≤ r.

Proof. If r = 0, qa = b and (1, a, b) is greedy. Otherwise, since b = aq+r, and 0 < r < a,
q = m − 1 and the result follows from Corollary 2.7. 2

Corollary 2.9 Suppose m = db/ae and suppose that b = (m−1)a+r, 0 < r ≤ a. Then,
(1, a, b) is greedy iff b > (a − r)(a − 1).

Proof. Suppose first that (1, a, b) is greedy. Then, by Corollary 2.6, m > (ma − b) or
b > m(a−1). Also, by Corollary 2.7, m > (a−r). Hence, by transitivity, b > (a−r)(a−1).

Conversely, suppose that b > (a− r)(a− 1). If m > (a− r), then (1, a, b) is greedy by
Corollary 2.7. Suppose then that m ≤ (a−r). Equivalently, m ≤ ma−b, or b ≤ m(a−1).
However, in this case, b ≤ (a − r)(a − 1), a contradiction. 2

Corollary 2.10 (1, a, (a − 1)2) is not greedy.

Proof. We make use of Corollary 2.9. b = (a − 1)2 implies m = a − 1 and hence r = 1.
Thus b = (a − r)(a − 1). 2

Corollary 2.11 If b > (a − 1)2, then (1, a, b) is greedy.
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Proof.We make use of Corollary 2.9. Since r > 0, b > (a− 1)2 implies b > (a− r)(a− 1).
2

The preceding two corollaries imply that (1, 3, b) is greedy iff b 6= 4. Also, it is easily
seen, using Corollary 2.9, that (1, 4, 5), (1, 4, 6), (1, 4, 9) aren’t greedy, while Corollary 2.11
implies that (1, 4, b) is greedy if b > 9; thus (1, 4, b) is greedy iff b 6= 5, 6, 9. For (1, 5, b) the
situation is somewhat more complicated. If b > 16, the triple is greedy by Corollary 2.11.
Moreover it is easy to show, using Corollary 2.9, that (1, 5, 6), (1, 5, 7), (1, 5, 8),(1, 5, 11),
and (1, 5, 12) are not greedy, while (1, 5, 9) and (1, 5, 10) , (1, 5, 13), (1, 5, 14) and (1, 5, 15)
are greedy. Hence (1, 5, b) is greedy iff b 6= 6, 7, 8, 11, 12.

The Greedy Extension Theorem also leads to an easy method to construct a variety
of arbitrarily large (totally) greedy coin sets.

Corollary 2.12 Suppose (a1, a2, a3) is (totally) greedy and for i ≥ 3, ai+1 = mai −
(w1ai−1 + w2ai−2), where m is an integer greater than 1, and the w’s are non-negative
integers satisfying

(1) w1 + w2 ≤ m − 1,
(2) w1ai−1 + w2ai−2 < ai,
(3) w2ai−2 < ai−1,

Then any finite initial segment of (ai)
∞

i=1 is a totally greedy coin set.

Proof. We make use of induction and GET. By hypothesis, (a1, a2, a3) is totally greedy.
Assume C1 = (a1, a2 . . . ai) is totally greedy, i ≥ 3, and C2 = (a1, a2 . . . ai, ai+1); then
mai = ai+1 + (w1ai−1 + w2ai−2). Clearly, mai ≥ ai+1; also, (m − 1)ai = mai − ai =
ai+1 + ((w1ai−1 + w2ai−2) − ai) < ai+1, by (2). Hence m = dai+1/aie. In addition,
G[C2, mai] = 1 + G[C2, (w1ai−1 + w2ai−2)], by condition (2); however, G[C2, (w1ai−1 +
w2ai−2)] = w1 + w2, by conditions (2) and (3). Hence, G[C2, mai] = 1 + w1 + w2 ≤ m, by
condition (1). Therefore C2 is totally greedy, if C1 is totally greedy, by GET. It follows,
by induction, that (ai)

k
i=1 is totally greedy for all k ≥ 3; also, since (a1, a2, a3) is totally

greedy, any finite initial segment of (ai)
∞

i=1 is a totally greedy coin set. 2

If any finite initial segment of (ai)
∞

i=1 is a totally greedy coin set, we will call (ai)
∞

i=1

a tg-sequence. Corollary 2.12 immediately shows that the Fibonacci sequence is a tg-
sequence; ai+1 = 2ai − ai−2 with (a0 = 1), a1 = 1, a2 = 2, a3 = 3 satisfies the conditions
of Corollary 2.12 and is an equivalent definition of the Fibonacci sequence. Other ap-
propriate linear recurrences give other (less familiar) tg-sequences, for example setting
ai+1 = 7ai − 3ai−1 − 2ai−2, with a1 = 1, a2 = 3 and a3 = 5 yields the tg-sequence:
(1, 3, 5, 24, 147, 947, 6140, . . .).

3 Testing for Total Greediness

The greedy extension theorem provides the basis for an algorithm for deciding whether
a coin set is totally greedy, which as we shall show, runs in O(k2 log2 ak), where k is the
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number of coins in the coin set and ak is the value of the largest coin. The algorithm is
based on the following theorem:

Theorem 3.1 Let C = (1, a2, . . . , ak) be a coin set with k coins. Suppose that Ci =
(1, a2, . . . , ai) and mi = dai+1/aie, 2 ≤ i < k. Then C is totally greedy if and only if
G[Ci+1, miai] ≤ mi, for 2 ≤ i < k.

Proof. If C is totally greedy, then each Ci+1 is greedy and so G[Ci+1, miai] ≤ mi, 2 ≤
i < k. So suppose that G[Ci+1, miai] ≤ mi, 2 ≤ i < k. Clearly, (1, a2) is greedy and now
GET together with G[Ci+1, miai] ≤ mi implies that if Ci is greedy then Ci+1 is greedy. It
follows, by induction, that Ci is greedy, 2 ≤ i ≤ k, that is, C is totally greedy. 2

Theorem 3.2 Let C = (1, a2, . . . , ak) be a coin set with k coins and let ak be the size of
the largest coin. Then it can be determined if C is totally greedy in O(k2 log2 ak) time.

Proof. Let Ci be the coin set consisting of the first i coins of C. By Theorem 3.1,
C is totally greedy if and only if for each i, 2 ≤ i ≤ k − 1, G[Ci+1, miai] ≤ mi, where
mi = dai+1/aie. When i = k − 1, to test this condition, we first need to determine the
value of mk−1, which can be obtained by taking the ceiling of ak/ak−1. Note that mk−1 is
certainly less that ak. Thus mk−1·ak−1 is less than a2

k and thus has at most log a2
k = 2 log ak

digits. To determine the greedy representation of mk−1 ·ak−1, one simply applies the divi-
sion algorithm and rewrites mk−1 ·ak−1 as xkak +rk, and then sets rk−1 = rk and xk−1 = 0
if rk < ak−1; otherwise rk−1 is rewritten recursively as xk−1ak−1 + rk−2, and rk−2 is ex-
panded. Continuing down to r1, G[Ck, mk−1ak−1] =

∑k
i=1 xk. Thus to check the condition

of the greedy extension theorem on Ck, when assuming Ci also satisfies the condition for
all i < k requires at most k + 1 integer division operations, each on integers of size at
most O(log ak). Here we use the simple upper bound on the complexity of integer division,
bounding it by O(q2), for q-digit integers [1]. We check the condition first on C1, then if it
passes, on C2, then if it passes, all the way up to Ck; each check costs less than the worst-
case cost of checking the condition on Ck, so the cost of checking the condition for all Ci

is ≤ k times (the cost of checking the condition on Ck) = kO(k log2 ak) = O(k2 log2 ak). 2

Certainly the above algorithm for testing total greediness is better than the naive
strategy of applying the fastest known algorithm for testing the ordinary greedy prop-
erty (due to Pearson [4]) which runs in O(k3 log2 ak) time on each initial segment of the
coin set, for a total running time of O(k4 log2 ak). (Pearson [4] proved his algorithm runs
in O(k3) time, but he is assuming constant time integer multiplication and division; all
results in this paper are stated in the bit model from whence we obtain the extra loga-
rithmic factors.) Since our total greedy test also proves ordinary greediness, it can first
be applied to a coin set whose (ordinary) greediness is of interest; if the coin set fails, the
(more expensive) Pearson test for greediness can then be applied.
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4 Short Greedy Sequences and Greedy Obstructions

In this section, we begin to explore the relationship between greediness, total greediness,
and begin to try to understand the theory of greedy obstructions for very short sequences.
Although we have seen that not every greedy coin set is totally greedy, we can prove the
following.

Theorem 4.1 Any greedy coin set with four elements is totally greedy.

Proof. Suppose false, that is, suppose that (1, a, b, c) is greedy but (1, a, b) is not greedy.
Let m = db/ae . Then b = (m − 1)a + r, 0 < r ≤ a − 1. Clearly c ≤ ma, since ma is
a counterexample to the greediness of (1, a, b) and it would persist as counterexample to
(1, a, b, c) if c > ma. Since, c ≤ ma, m is also the smallest integer such that ma ≥ c;
hence c = (m − 1)a + s, 0 < s ≤ a. Clearly r < s, since b < c.

It follows that c − b = s − r ≤ a − 1. If c − b = a − 1, then 2b = c + (2b − c).
2b− c = b− (c− b) = b− (a− 1) = (b− a) + 1 ≥ 2 since b− a ≥ 1, thus we know that the
greedy representation of 2b includes a coin of denomination c. We now show that 2b − c
cannot be represented by a single coin. Clearly 2b−c 6= b and 2b−c 6= c. Also, 2b−c 6= a,
since otherwise b = 2a − 1 and (1, a, b) would be greedy. Thus, 2b is a counterexample
to the greediness of (1, a, b, c), since the greedy representation of 2b now requires at least
three coins rather than two.

If c−b < a−1, equivalently b+a−c ≥ 2, then b+a can be represented as c⊕(b+a−c)·1.
Clearly, b + a − c is not equal to a, b, or c. Hence, in this case, the greedy representation
of b + a in (1, a, b, c) uses at least three coins rather than two. 2

Theorem 4.2 If (1, a, b) is nongreedy, then so is (1, a, b, c, d) for any integers c, d with
b < c < d.

Proof. Omitted for now, because this follows as a simple corollary of Theorem 4.5 which
is proved below. 2

We want to better understand those coin sets that are greedy but not totally greedy.
If the coins set has four elements we have seen that there aren’t any. We look next at five
element coin sets. We shall give a characterization of those five element coin sets that are
greedy but not totally greedy, but first we need to prove the following lemma.

Lemma 4.3 If Uc = (1, . . . , a, b, c) is greedy, Ub = (1, . . . , a, b) is not greedy, but Ua =
(1, . . . , a) is greedy, then it must be the case that b = a + r and c = a + s, where 0 < r <
s ≤ a. Moreover, 2b − c = ai, where ai is a coin, 1 < ai < a, a − ai = s − 2r, ai − r is a
coin, while a − r is not a coin, and either 2a = c or 2a − c is a coin less than ai.

Proof. Let m = db/ae. Then b = (m − 1)a + r, where 0 < r ≤ a − 2 (if r = a − 1,
b = ma − 1 and Ub would be greedy, by GET). If we adjoin c to Ub then we can assume
that c ≤ ma, since, otherwise, ma is a counterexample to the greediness of Ub by GET,
and would persist as a counterexample for Uc.
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Clearly m is also the smallest integer such that ma ≥ c. Therefore, c = (m − 1)a + s,
where r < s ≤ a. Thus, 2b − c = (m − 1)a + (2r − s) ≥ a + (2 − a) = 2, since m ≥ 2,
r ≥ 1, and s ≤ a.

Now, 2b = c+(2b−c), so G[Uc, 2b] = 1+G[Uc, 2b−c]. Therefore, 1+G[2b−c] ≤ 2 since
Uc is greedy. It follows that G[Uc, 2b− c] = 1. Clearly 2b− c 6= 1. (Recall that 2b− c ≥ 2.)
Thus, 2b − c is some coin, ai, greater than 1. Next we claim that ai 6= a. Suppose this
were false and ai = a. First, m = 2; otherwise, if m > 2, ai = (m − 1)a + (2r − s) >
2a + (2 − a) > a, which is impossible, assuming ai = a. Since m = 2 and still assuming
that a = ai, a = a+(2r−s), and so 2r = s; hence b = a+r, c = a+2r. Now Ua is greedy,
but Ub is not and m = 2. Therefore, using GET, 2a cannot be represented in Ub with 2
coins. However 2a = (a+r)+(a−r) = b+(a−r); thus a−r is not a coin. Uc is greedy and
c = a+2r. Thus, a+ b = 2a+r = (a+2r)+(a−r) = c+(a−r), which implies that a−r
is a coin. Contradiction. Hence ai 6= a. Also, since 2b− c ≥ 2, ai ≥ 2. In addition, s > 2r
since a− ai = s− 2r and ai < a. Hence a− s = ai − 2r and ai ≥ 2r. Moreover ai − r is a
coin since a+s = 2a+2r−ai and a+(a+r) = (2a+2r−ai)+(ai−r) = (a+s)+(ai−r).

In a similar fashion we obtain conditions on 2a − c. For, 2a = c + (2a − c). Hence,
G[Uc, 2a− c] ≤ 1 which implies either 2a = c or 2a− c is some coin aj with aj < ai (since
a < b). 2

It is interesting to note that Lemma 4.3 also gives another proof of Theorem 4.1, since
if (1, a, b, c) were greedy but (1, a, b) were not greedy, then the lemma would imply the
existence of coin ai, between 1 and a.

Theorem 4.4 A coin set with five coins is greedy but not totally greedy iff it is of the
form (1, 2, a, a + 1, 2a), with a > 3.

Proof. Suppose that C = (1, 2, a, a+1, 2a), with a > 3. (1, 2, a) is greedy (Corollary 2.3);
however (1, 2, a, a + 1) is not greedy, if a > 3, by the GET theorem, and the minimal
counterexample is 2a. If C was not greedy, the Kozen-Zaks Theorem gives bounds for a
counterexample. The upper bound is 3a. Thus any counterexample x, to the greediness
of C must be of the form, x = 2a + r, 0 < r ≤ a. Clearly, 3a = 2a + a cannot be
a counterexample. Hence we can assume, 0 < r < a. If the optimal representation
of x uses 2a it must be the same as the greedy representation since the remainder r
must be represented in the greedy coin set (1, 2, a), since r < a. Therefore the minimal
counterexample must use two from {a, a + 1}; however if it uses a and a + 1 say, 2a + 1
could be replaced with 2a and 1 and we are back to the previous case. Similarly for the
other possibilities. Therefore C must be greedy.

Suppose now that Uc = (1, a2, a, b, c) is greedy but not totally greedy. Then it must
be that Ua = (1, a2, a) is greedy (by Theorem 4.2) and Ub = (1, a2, a, b) is not greedy.
Hence by Lemma 4.3, b = a + r, c = a + s, where 0, r < s ≤ a and s > 2r. Moreover,
2b−c = ai, ai a coin less than a and greater than 1. This means that ai = a2. In addition,
a − ai = s − 2r and a − r is not a coin, while ai − r is a coin and finally, either 2a = c or
2a − c is a coin less than ai.
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By the above, 2b − c = a2; now a2 − r, which is a coin, must be 1. Hence b = a + r =
a+a2−1 and c = 2b−a2 = 2a+a2−2. So, Uc = (a, a2, a, a+a2−1, 2a+a2−2). Moreover,
it cannot be that 2a − c is a coin less than a2, since this implies that 2a − c = 1. But
then, since c = 2a + a2 − 2, it follows that 2 − a2 = 1 and hence a2 = 1, a contradiction.
Hence 2a = c and thus a2 = 2. 2

Coin sets which are greedy, but not totally greedy, will be called conditionally greedy. If
we consider those coin sets with five elements, the largest of which is 30, Theorem 4.4 shows
that there are only 12 conditionally greedy coin sets in this range; we have calculated,
using the Kozen-Zaks algorithm, that there 682 greedy coin sets (out of 23,751 coin sets)
in this range. This means that there are 670 totally greedy coin sets of size five with
largest coin, 30. Thus we feel it is relatively rare for a coin set to be conditionally greedy.
We feel that this supports our strategy of testing for total greediness first when testing
for greediness.

4.1 Greedy Obstructions

Recall that a greedy obstruction was defined to be a coin set that was not greedy, and
furthermore could not be extended to a greedy coin set by the addition of a finite number
of coins in larger denominations. Some sequences are trivially greedy obstructions. For
instance, the sequence (1, 4, 5, 9) is a greedy obstruction because the optimal representa-
tion of 8 is 2 · 4 whereas the greedy representation is 5 ⊕ 3 · 1 and clearly, no coins of
denomination larger than 9 added to the coin set can be used to reduce the number of
coins in the greedy representation of 8. We call any such coin set which is not greedy,
and there exists a greedy counterexample of size smaller than the largest denomination
in the coin set a trivial greedy obstruction.

Nontrivial greedy obstructions are a more interesting class. (A non-trivial greedy
obstruction is one where the smallest counterexample to greediness is larger than the
largest coin in the coin set.) An example is the sequence (1, 3, 4) – which certainly isn’t
greedy; moreover no finite sequence which begins (1, 3, 4) can be greedy; this is a special
case of the following theorem.

Theorem 4.5 Suppose V = (1, a, b) is non-greedy. Then it is a (non-trivial, minimal)
greedy obstruction.

Proof. We repeatedly use the following fact: (*) If U is a non-greedy coin set with
counterexample x and c is a coin adjoined to U where c > x, then U ∪{c} will be a trivial
greedy obstruction.

Let m = db/ae. Since V is not greedy, m ≤ ma − b, by Corollary 2.6.
We define four classes, B, C,D, E.
Let B be all coin sets U = (1, a, b, . . . , ck−1, ck) such that ck − ck−1 = b− a. Note that

V ∈ B.
Let C be all coin sets U = (1, a, b, . . . , ck−1, ck) such that ck − ck−1 ≤ a − 1.
Let D be all coin sets U = (1, a, b, . . . , ck−1, ck, ck+1) such that (†) a ≤ ck+1 − ck ≤

b − a + 1 and (1, a, b, . . . , ck) is non-greedy with counterexample ck−1 + b.

the electronic journal of combinatorics 15 (2008), #R90 10



Let E be the class of trivial obstructions.
We shall show that
(1) each of these classes consists of non-greedy coin sets (for E this is obvious).
(2) B ∪ C ∪ D ∪ E is closed under coin adjunction.
It follows immediately that V is an obstruction.
First we show that coin sets in B are non-greedy. Let U = (1, a, b, . . . , ck−1, ck), where

ck−ck−1 = b−a. It then follows that ck−1+(m−1)a = ck+(ma−b). However, ma−b ≥ m
(Corollary 2.6) and ma − b < a (by the minimality of m); hence ck−1 + (m − 1)a is
representable by m coins, whereas the above greedy representation requires at least m+1
coins.

Next suppose, U = (1, a, b, . . . , ck−1, ck) and U ∈ C. There are two cases to consider:
ck − ck−1 ≤ a − 2 and ck − ck−1 = a − 1.
Case A. Assume that ck − ck−1 ≤ a−2. Here, we claim that ck−1 +a is a counterexample
to greediness. For, ck−1+a = ck+(a+(ck−1−ck)). Now, ck−1+a is clearly representable by
two coins, whereas ck+(a+(ck−1−ck)) is the greedy representation, since a > a+(ck−1−ck)
and needs at least three coins because a + (ck−1 − ck) ≥ 2, by our Case A assumption.
Hence, any coin set in C satisfying Case A is non-greedy.
Case B. Assume ck − ck−1 = a − 1. Then, we claim that ck−1 + b is a counterexample.
For, ck−1 + b = ck + b + (ck−1 − ck) = ck + (b − a + 1). Clearly, b > b − a + 1 > 1, while
b− a + 1 is not a coin; for, if b− a + 1 = a, that is, if b = 2a− 1, then V would be greedy
by Corollary 2.5. Thus the greedy representation of ck−1 + b requires at least three coins
rather than two. Hence any coin set in C is not greedy.

Next let U = (1, a, b, . . . , ck−1, ck, ck+1), U ∈ D, that is a ≤ ck+1 − ck ≤ b − a + 1
and ck−1 + b is a counterexample for (1, a, b, . . . , ck). Since we have already shown that
coin sets in B are not greedy, we can assume that U 6∈ B, that is, ck+1 − ck 6= b − a. We
shall show that ck + b is a counterexample for U . For, ck + b = ck+1 + [(ck + b) − ck+1].
Now by (†), [(ck + b) − ck+1] ≥ a − 1 ≥ 2; the last inequality follows since a > 3, by
Corollary 2.3, since V is non-greedy. In addition, [(ck + b)− ck+1] < b, since ck − ck+1 < 0.
Also [(ck+b)−ck+1] is not a coin because [(ck+b)−ck+1] = a is false since we are assuming
that U 6∈ B and thus ck+1 − ck 6= b− a. Hence the greedy representation requires at least
three coins rather than two.

We now turn to (2). Let Y = B ∪ C ∪ D ∪ E . We wish to show that Y is closed under
coin adjunction.

Suppose first U ∈ C, U = (1, a, b, . . . , ck−1, ck). Let W = (1, a, b, . . . , ck−1, ck, ck+1).
We consider two cases, depending upon whether whether U falls under Case A or Case
B, above. Suppose U falls under Case A (where ck−1 + a is a counterexample for U).
We can assume, by (*), that ck+1 ≤ ck−1 + a. It then follows on subtracting ck, that
ck+1 − ck ≤ ck−1 − ck + a. But, if W 6∈ C, we can assume that a ≤ ck+1 − ck. Hence
a ≤ ck−1 − ck + a; an obvious contradiction, since ck > ck−1. This shows that any single
adjunction to a coin set U , U ∈ C, under Case A gives rise to a coin set in C or to a trivial
obstruction (in E).

Assume now U is an instance of Case B, that is, assume ck − ck−1 = a − 1. We can
also assume by (*) that ck+1 ≤ ck−1 + b, the counterexample for U in Case B (otherwise
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W ∈ E). Hence if W 6∈ C, then a ≤ ck+1−ck ≤ b+ck−1−ck. But, b+ck−1−ck = b−a+1.
Hence (†) a ≤ ck+1 − ck ≤ b−a+1. Also, as shown above, ck−1 + b is the counterexample
for U under Case B. Therefore W ∈ D. This shows that any coin set in C under coin
adjunction gives rise to a coin set in Y.

Assume now U = (1, a, b, . . . , ck−1, ck) and U ∈ B, that is ck − ck−1 = b − a. Let
W = (1, a, b, . . . , ck−1, ck, ck+1). First, as we have shown under (1), ck−1 + (m − 1)a is a
counterexample for U . Then by (*), ck+1 ≤ ck−1 +(m− 1)a. If W ∈ C, then W ∈ Y; thus
assume that W 6∈ C; hence, ck+1−ck ≥ a. Therefore, a ≤ ck+1−ck ≤ ck−1+(m−1)a−ck =
(ma − b), since ck−1 − ck = a − b. However, a ≤ ma − b contradicts the minimality of m.
Therefore either W ∈ C or W ∈ E which implies W ∈ Y.

Finally, assume that U ∈ D, where U = (1, a, b, . . . , ck, ck+1). Thus (†) a ≤ ck+1 −
ck ≤ b − a + 1 and (1, a, b, . . . , ck) is non-greedy with counterexample ck−1 + b. Let
W = (1, a, b, . . . , ck, ck+1, ck+2). We can assume W 6∈ C; hence a ≤ ck+2 − ck+1. Moreover,
as shown under (1), ck + b is a counterexample for U = (1, a, b, . . . , ck+1). Hence, by (*),
ck+2 ≤ ck + b. Therefore a ≤ ck+2 − ck+1 ≤ ck + b− ck+1 = b+(ck − ck+1). We can further
assume that U 6∈ C, since we have already shown that an adjunction to a coin set in C
leads to a coin set in Y. Hence a ≤ ck+1 − ck. Thus, a ≤ ck+2 − ck+1 ≤ b − a ≤ b − a + 1.
Thus we have verified (†). Also, since we have already shown under (1) that if U ∈ D,
U is non-greedy with counterexample ck + b, W ∈ D. This implies W ∈ Y and we have
completed the proof in all cases. 2

We next prove two corollaries, the first has already been proven as Theorem 4.1, but
we wish to point out that it follows immediately from Theorem 4.5. The second corollary
was stated above and although a direct proof can be given, we find it much easier to
derive it directly from Theorem 4.5.

Corollary 4.6 Every greedy coin set with four elements is totally greedy.

Proof. Suppose that (1, a, b, c) were greedy but not totally greedy. Since (1) and (1, a)
are clearly greedy, it must be that (1, a, b) is not greedy. Then, by Theorem 4.5, (1, a, b)
is a greedy obstruction which implies that (1, a, b, c) is not greedy! 2

Corollary 4.7 If (1, a, b) is nongreedy, then so is (1, a, b, c, d) for any integers, b, c with
b < c < d.

Proof. If (1, a, b) is nongreedy, it is a greedy obstruction; hence no extension of it can be
greedy. 2

4.2 Some Open Problems

We have shown that all non-greedy three element coin sets are greedy obstructions, but
that there exist four element non-greedy coin sets are not greedy obstructions. It remains
an open problem to characterize those non-trivial greedy obstructions with four elements.
Same problem for those with k elements, for each integer k > 4.
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It also would be useful to characterize those coin sets with more than five elements
which are greedy but not totally greedy. If an efficient characterization could be obtained,
it could lead to a more efficient characterization of greedy coin sets.

Finally, we ask about the asymptotics of the density of the set of totally greedy coin
sets within the set of greedy coin sets. If G(k, R) denotes the set of all greedy coin sets
with k coins all of value ≤ R, and TG(k, R) denotes the set of all totally greedy coin sets
with k coins all of value ≤ R, then what can be said about the ratio TG(k, R)/G(k, R)
as k → ∞?
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