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Abstract

A classical result from graph theory is that every graph with chromatic number
χ > t contains a subgraph with all degrees at least t, and therefore contains a copy
of every t-edge tree. Bohman, Frieze, and Mubayi recently posed this problem for
r-uniform hypergraphs. An r-tree is a connected r-uniform hypergraph with no pair
of edges intersecting in more than one vertex, and no sequence of distinct vertices
and edges (v1, e1, . . . , vk, ek) with all ei ∋ {vi, vi+1}, where we take vk+1 to be v1.
Bohman, Frieze, and Mubayi proved that χ > 2rt is sufficient to embed every r-tree
with t edges, and asked whether the dependence on r was necessary. In this note,
we completely solve their problem, proving the tight result that χ > t is sufficient
to embed any r-tree with t edges.

1 Introduction

An r-graph is a hypergraph where all edges have size r, and a proper coloring is an
assignment of a color to each vertex such that no edge is monochromatic. The chromatic
number χ is the minimum k for which there is a proper coloring with k colors. A natural
question is to investigate what properties can be forced by sufficiently large chromatic
number. In the case of graphs, much is known, from trivialities such as χ > t implying
the existence of a subgraph with all degrees at least t, to deeper results such as χ > 4
implying non-planarity. Far less is known for hypergraphs, but a folklore observation
(see, e.g., [3]) is that whenever χ > 2, there is a pair of edges that intersect in a single
vertex. This structure corresponds to a 2-edge hypertree, which in general is a connected
hypergraph with no pair of edges intersecting in more than one vertex, and no sequence
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of distinct vertices and edges (v1, e1, . . . , vk, ek) with all ei ∋ {vi, vi+1}, where we take vk+1

to be v1.
For graphs, χ > t implies that there is a subgraph with all degrees at least t, in

which we can embed any t-edge tree. Bohman, Frieze, and Mubayi recently posed the
problem of generalizing this result to r-graphs. As they noted, this is not entirely trivial
because there are hypergraphs with arbitrarily large minimum degree, but no copy of the
path with 3 edges. Indeed, consider the 3-graph with vertex set {v1, . . . , vn} and edges
consisting of all triples containing v1.

Observe that an r-uniform hypertree (henceforth referred to as an r-tree) with t edges
always has exactly 1 + (r − 1)t vertices. So, the complete r-graph on (r − 1)t vertices
does not contain any r-tree with t edges, while its chromatic number is exactly t. On the
other hand, Bohman, Frieze, and Mubayi proved in [1] that every r-graph with χ > 2rt
contains a copy of every r-tree with t edges. They believed that their bound was far
from the truth, and remarked at the end of their paper that it would be interesting to
determine whether it should depend on r in an essential way. In this note, we completely
solve their problem, proving the following tight result.

Theorem 1 Every r-uniform hypergraph with chromatic number greater than t contains
a copy of every r-uniform hypertree with t edges.

2 Proof

It suffices to show that for any r-tree T with t edges, every T -free r-graph H can be
properly colored with the integers {1, . . . , t}. Although the proof is short, the following
special case helps to illuminate the argument. Suppose the r-tree T is a path with t edges,
and there is a proper t-coloring of H−e∗1, the hypergraph on the same vertex set but with
an arbitrary edge e∗1 removed. The edge e∗1 is monochromatic, say in color 1, or else we
are done. Let v∗

1 be an arbitrary vertex of e∗1. Either we can recolor v∗

1 in color 2 without
making any edge monochromatic in color 2 (and hence are done because e∗1 is no longer
monochromatic), or else some edge e∗2 ∋ v∗

1 has all vertices except v∗

1 colored 2. Note that
since all vertices in e∗2 are colored 2 except for v∗

1, and all vertices in e∗1 are colored 1, the
two edges intersect only at v∗

1, thus forming a copy of the 2-edge path.
Suppose for a moment that e∗2 is the unique edge containing v∗

1 which has all vertices
except v∗

1 colored 2. Repeating the argument, we select v∗

2 ∈ e∗2, and either find an edge
e∗3 ∋ v∗

2 with all other vertices colored 3 (thus forming a 3-edge path together with e∗2 and
e∗1), or obtain a proper coloring of H by recoloring v∗

2 with color 3 and v∗

1 with color 2.
Unfortunately, when e∗2 is not unique, the recoloring of v∗

1 with color 2 may make another
edge monochromatic, so a more careful argument is needed in general. Nevertheless, for
illustration only, let us make the simplifying uniqueness assumption, and continue in this
way to find successively longer paths e∗1, e

∗

2, . . . , e
∗

s. Yet H has no t-edge path, so this must
stop before we need to use t + 1 colors. Then, we will be able to properly t-color H by
recoloring each vertex v∗

i with color i + 1.
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Proof of Theorem 1. Let T be an r-tree with t edges. We will show that every T -free
r-graph H can be properly colored with the integers {1, . . . , t}. Preprocess T by labeling
its edges and coloring its vertices as follows. Let e1 be an arbitrary edge of T , and label
the other edges with e2, . . . , et such that for each i ≥ 2, all edges ej along the (unique)
path linking ei and e1 are indexed with j < i. This can be done by exploring T via
breadth-first-search, for instance. Then, color each vertex v ∈ T with the integer equal
to the minimal index i for which ei ∋ v.

We now induct on the number of edges of H . Let e∗1 be an edge of H , and suppose that
there is a proper t-coloring of H −e∗1, the hypergraph on the same vertex set, but without
the edge e∗1. If this is already a proper coloring of H , then we are done. Otherwise,
without loss of generality all vertices of e∗1 received the color 1. The following recoloring
algorithm formalizes the above heuristic.

1. Let H ′ ⊂ H be a maximal colored-copy of a subtree of T containing e1, and let
T ′ ⊂ T be that subtree. This means there is a color-preserving injective graph
homomorphism φ : T ′ → H with maximal T ′ ∋ e1, which exists because e∗1 itself is
a colored-copy of e1.

2. Since H is T -free, there is an edge es in T but not T ′, which is incident to some
vertex v ∈ T ′. Change the color of φ(v) ∈ H to s. Terminate if φ(v) ∈ e∗1; otherwise,
return to step 1.

The maximality of H ′ ensures that the recoloring step never creates any new monochro-
matic edges. Indeed, suppose for contradiction that H has an edge e′ ∋ φ(v) with all
vertices except φ(v) colored s. Our preprocessing of T ensures that no vertex in the
colored-copy H ′ of T ′ has color s, so e′ intersects H ′ only at φ(v). Thus H ′ + e′ would be
a colored copy of T ′ + es, contradicting maximality.

Also, the algorithm terminates because the recoloring step always increases the (inte-
ger) color of φ(v), but no color ever exceeds t. To see this, observe that since we had a
colored-copy, the color of φ(v) originally equalled the color of v ∈ T , which we defined
to be the minimal index i such that ei ∋ v. By our preprocessing of T , es 6∈ T ′ implies
that some lower-indexed edge also contains v. Hence φ(v) indeed had color less than s.
Therefore, we eventually obtain a proper coloring of H . �

3 Concluding remarks

• The standard proof of the graph case of Theorem 1 uses the fact that every t-edge
tree can be embedded in any graph with minimum degree at least t. This is not
true for hypergraphs, so our proof uses a completely different argument that does
not rely on degrees at all. Consequently, our proof also gives a new perspective on
the graph case.

• Results for graphs that used χ > t to embed t-edge trees can now be extended
to uniform hypergraphs. Consider, for example, the following classical result of
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Chvátal, referred to as “one of the most elegant results of Graph Ramsey Theory”
by Graham, Rothschild, and Spencer in their book [4]. The Graph Ramsey number
R(H1, H2) is the smallest n such that every red-blue edge-coloring of Kn contains
either a red copy of H1 or a blue copy of H2. When H1 is a complete graph Kk and
H2 is any t-edge tree, Chvátal determined that R(H1, H2) is precisely (k − 1)t + 1.

Using Theorem 1, we can lift one of the standard proofs of this result to r-graphs.
Indeed, suppose we have a red-blue edge-coloring of the complete r-graph on (k −
1)t + 1 vertices, and let H be the hypergraph on the same vertex set formed by
taking only the blue edges. If χ(H) ≤ t, then H has an independent set of size at

least ⌈ (k−1)t+1
t

⌉ = k, which corresponds to a red complete r-graph on that many
vertices. Otherwise, if χ(H) > t, then Theorem 1 implies that any t-edge tree can
be found in the blue graph H .

On the other hand, the r-graph obtained by taking the disjoint union of ⌊k−1
r−1

⌋ copies
of the complete r-graph on (r−1)t vertices does not contain any r-tree with t edges,
while its independence number is at most k − 1. So, if we color all of its edges blue,
and add in all missing edges with color red, then we obtain an edge-coloring of the
complete r-graph on ⌊k−1

r−1
⌋ · (r − 1)t vertices with no red K

(r)
k and no blue r-tree

with t edges. Therefore, the r-graph result is tight when r − 1 divides k − 1, and
asymptotically tight for k ≫ r.

Acknowledgment. The author thanks his Ph.D. advisor, Benny Sudakov, for introduc-
ing him to this problem, and for remarks that helped to improve the exposition of this
note. Also, he thanks Asaf Shapira for pointing out the application of the main theorem
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[3] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some
related questions, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P.
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