A note on $K^{-}_{\Delta+1}$ -free precolouring with Δ colours

Tom Rackham

Mathematical Institute University of Oxford Oxford OX1 3LB, UK

rackham@maths.ox.ac.uk

Submitted: Jan 30, 2008; Accepted: Sep 13, 2009; Published: Sep 18, 2009 Mathematics Subject Classification: 05C15

Abstract

Let G be a simple graph of maximum degree $\Delta \ge 3$, not containing $K_{\Delta+1}$, and \mathcal{L} a list assignment to V(G) such that $|\mathcal{L}(v)| = \Delta$ for all $v \in V(G)$. Given a set $P \subset V(G)$ of pairwise distance at least d then Albertson, Kostochka and West (2004) and Axenovich (2003) have shown that every \mathcal{L} -precolouring of P extends to a \mathcal{L} -colouring of G provided $d \ge 8$.

Let $K_{\Delta+1}^-$ denote the graph $K_{\Delta+1}$ with one edge removed. In this paper, we consider the problem above and the effect on the pairwise distance required when we additionally forbid either $K_{\Delta+1}^-$ or K_{Δ} as a subgraph of G. We have the corollary that an extra assumption of 3-edge-connectivity in the above result is sufficient to reduce this distance from 8 to 4.

This bound is sharp with respect to both the connectivity and distance. In particular, this corrects the results of Voigt (2007, 2008) for which counterexamples are given.

1 Introduction

Let G be a simple graph of maximum degree $\Delta \ge 3$, not containing $K_{\Delta+1}$, then Brooks' theorem [3] states that G is Δ -(vertex-)colourable. Given two vertices x and y of such a graph, which are far apart in terms of a shortest path between them, it is natural to ask whether there exist two Δ -colourings, one with x and y coloured the same and another when they are coloured differently. This was answered affirmatively by Sajith and Saxena [6] for the case $\Delta = 3$, who showed that there exists some (large) sufficient distance between x and y. Rackham [5] showed, for any $\Delta \ge 3$, the question is affirmative provided x and y are distance at least 6 apart and that this is best possible in each case. (The distance between two vertices is the number of edges on a shortest path.) More generally we have the following distance-constraint precolouring problem: given $P \subset V(G)$ of any size in a graph G of maximum degree $\Delta \geq 3$, does there exist some sufficient pairwise distance d(P) between vertices of P such that every Δ -colouring of P extends to a Δ -colouring of G? The global bound was given by Albertson, Kostochka and West [1] and Axenovich [2] who showed that $d(P) \geq 8$ is sufficient in every case, and this is sharp provided $|P| \geq \Delta$. With a small number of precoloured vertices, $2 \leq |P| < \Delta$, then Rackham [5] proved that $d(P) \geq 6$ is sufficient, and this is sharp in each case. The graphs in Figure 1 provide a lower bound of 5 when $2 \leq |P| < \Delta$ and 7 when $|P| \geq \Delta$. For each graph, consider a precolouring of all the vertices of P (indicated with a dashed box) with the same colour; such precolourings cannot be extended to any proper Δ -colouring.

Figure 1: 2-connected graphs & no precolouring extension for distances 5 and 7

Brooks' theorem also has a natural strengthening to list-colourings due to Vizing [7]. Let G be a graph of maximum degree $\Delta \geq 3$, not containing $K_{\Delta+1}$, and let \mathcal{L} be a list assignment to V(G) such that $|\mathcal{L}(v)| = \Delta$ for all $v \in V(G)$. Vizing's result gives the existence of a proper \mathcal{L} -colouring of G. We can ask the same distance-constraint precolouring question in this list-colouring context. In fact, the result of Albertson, Kostochka and West [1] and Axenovich [2] holds. That is, given a set $P \subset V(G)$ such that $d(P) \geq 8$, every precolouring of P extends to a \mathcal{L} -colouring of G. List-colouring extension of a set P in a graph G is equivalent to the vertices of P being assigned lists of size 1 and the remainder assigned lists of size Δ . We use the list-colouring formulation of the distance constraint problem throughout this paper.

Voigt [8], [9] considered the question of the effect of an additional connectivity assumption on the distance required. However, the results of both papers are incorrect. The following claims were made:

• (Theorem 2 of [8]:) Let G = (V, E) be a 2-connected graph with $k = \Delta(G) \ge 4$ which is not $K_{k+1}, W \subseteq V$ an independent subset of the vertex set, $d(W) \ge 4$, and \mathcal{L} a list assignment with $|\mathcal{L}| = k$ for all $v \in V$. Then every precoloring of W extends to a proper \mathcal{L} -list coloring of V. • (Theorem 2 of [9]:) Let G = (V, E) be a 2-connected graph with $k = \Delta(G) = 3$ which is not $K_4, W \subseteq V$ an independent subset of the vertex set, \mathcal{L} a list assignment with $|\mathcal{L}| = 3$ for all $v \in V$ and $d(W) \ge 6$. Then every precoloring of W extends to a proper \mathcal{L} -list coloring of V.

The graphs shown in Figure 1 are sufficient to provide counterexamples to both statements above. They show that the previously known sufficient distances of 6 and 8 cannot be improved by an additional assumption of 2-connectivity. The error in both proofs is due to a mistaken assumption of connectedness early in the proof.

In Section 2 of this paper we address this question of increased connectivity on the pairwise distance required. Our main result is that 3-edge-connectivity is the correct condition for an improvement in the pairwise distance required:

Theorem 1. Let G be a 3-edge-connected graph with $\Delta := \Delta(G) \ge 3$, and let $P \subset V(G)$. Let \mathcal{L} be a list assignment to V(G) such that $|\mathcal{L}(v)| = \Delta$ for all $v \in G$. If $d(P) \ge 4$ then any colouring of P extends to a \mathcal{L} -colouring of G.

This result is sharp, for each $\Delta \ge 3$, with respect to both connectivity (as mentioned above, see Figure 1) and distance (see Figure 2). Note that this is a global bound for each $\Delta \ge 3$ and any number of precoloured vertices |P|.

Let $K_{\Delta+1}^-$ denote the graph $K_{\Delta+1}$ with one edge removed. Our proof method of Theorem 1 does not look directly at the problem with the additional assumption of 3edge-connectivity, but rather we exclude $K_{\Delta+1}^-$ as a subgraph. (A 3-edge-connected graph of maximum degree Δ cannot contain $K_{\Delta+1}^-$ as a proper subgraph.) Since Brooks' theorem itself requires the exclusion of $K_{\Delta+1}$ components, this would seem like a natural approach to take. In Section 3 we also consider the effect of excluding K_{Δ} only. In this situation, the sufficient distance required depends on |P| and Δ but there is mostly an improvement from distance 4. (See Theorem 5 for the details.)

Key lemma

Our main tool is an extension of both Brooks' theorem and Vizing's theorem given by Kostochka, Stiebitz and Wirth [4], and the general approach is that of Axenovich [2]. A *block* of a graph is a maximal 2-connected subgraph. A *Gallai tree* is a graph all of whose blocks are either complete graphs, odd cycles or single edges. A *leaf block* of a Gallai tree is a block containing at most one cut-vertex. Then:

Theorem 2 (Kostochka, Stiebitz and Wirth [4]). Let G be a connected and let \mathcal{L} be a listassignment of V(G) such that $|\mathcal{L}(v)| \ge d(v)$ for each $v \in V(G)$. If G is not \mathcal{L} -colourable then it is a Gallai tree and $|\mathcal{L}(v)| = d(v)$ for each $v \in V(G)$.

This gives the following useful corollary:

Lemma 3. Let G be a connected graph with $\Delta(G) := \Delta \ge 3$, $P \subset V(G)$, \mathcal{L} be a list assignment to V(G) such that

- $|\mathcal{L}(v)| = d(v) = \Delta$ for all $v \in V(G) \setminus P$
- $|\mathcal{L}(v)| = 1$ for all $v \in P$

and G cannot be \mathcal{L} -list coloured. Suppose $G \setminus P$ (the graph induced on vertex set $V(G) \setminus P$) is connected. Then $G \setminus P$ is a Gallai tree T.

Moreover, if $d(P) \ge 3$ then all vertices of T have degree $\Delta - 1$ (if adjacent to some v in P) or Δ (if not). If |P| = 2, then every vertex of T has degree at least $\Delta - 2$.

Proof. Consider the graph $G \setminus P$ with list assignment \mathcal{L}' defined by: $\mathcal{L}'(v) := \mathcal{L}(v) - c(N_P(v))$, where $c(N_P(v))$ denotes the set of colours of the neighbours of v restricted to the set P. (This is the empty set if v is not adjacent to any vertex of P.) The graph $G \setminus P$ is not \mathcal{L}' -colourable since G is not \mathcal{L}' -colourable; so by Theorem 2 the graph $G \setminus P$ is a Gallai tree.

The condition $d(P) \ge 3$ implies that each vertex of T is adjacent in G to at most one vertex of P, and thus the degree in T of each vertex is either $\Delta - 1$ (if it had been adjacent to some vertex in P) or Δ (if not). If |P| = 2, then each vertex of T is adjacent in G to at most two vertices of P, and so the degree in T of each vertex is at least $\Delta - 2$.

2 Distance 4 extension for $K^{-}_{\Delta+1}$ -free graphs

In this section we consider the distance-constraint precolouring problem for graphs not containing $K_{\Delta+1}^- := K_{\Delta+1} - e$ as a subgraph. We find the following:

Theorem 4. Let G be a connected graph with $\Delta := \Delta(G) \ge 3$ containing no $K_{\Delta+1}^$ subgraph, and let $P \subset V(G)$. Let \mathcal{L} be a list assignment to V(G) such that $|\mathcal{L}(v)| = \Delta$ for all $v \in G$. If $d(P) \ge 4$ then any colouring of P extends to an \mathcal{L} -colouring of G.

Our main theorem (Theorem 1) now follows as a corollary:

Proof of Theorem 1. It is sufficient to observe that a 3-edge-connected graph of maximum degree Δ , which is neither $K_{\Delta+1}^-$ nor K_{Δ} , cannot contain $K_{\Delta+1}^-$ as a subgraph. This holds since there are at most two edges incident with, but not contained in, a $K_{\Delta+1}^-$ subgraph.

Theorem 1 and Theorem 4 are both sharp with respect to connectivity and distance, as demonstrated by the graphs in Figures 1 and 2. For each graph, precolour the vertices of P with colour 1 and give the list $\{1, 2, \ldots, \Delta\}$ to all other vertices; such precolourings cannot be extended from the lists.

Proof of Theorem 4. Let G be a counterexample to Theorem 4 with the smallest number of vertices. Let $P \subseteq V(G)$ with $d(P) \ge 4$ and consider a precolouring of P which cannot be extended. By minimality, $G \setminus v$ is not a counterexample for any $v \in G \setminus P$ and hence if there exists a $v \in V \setminus P$ with $d(v) < \Delta$ then we could extend the precolouring first to $G \setminus v$ and then to G, a contradiction. So $d(v) = \Delta$ for all $v \in V \setminus P$ and G satisfies the conditions of Lemma 3.

Figure 2: $K_{\Delta+1}^-$ -free graphs of high edge-connectivity with no precolouring extension at distance 3

Thus $G \setminus P$ is a connected Gallai tree T with the specified restriction on the degree sequence. We now split the argument based on the nature of a leaf block B of T. (We choose a leaf block B arbitrarily.)

- Suppose B is a complete graph of order Δ . Note that B contains at most 1 cutvertex of T. There is at most one vertex $v \in P$ which is adjacent to a given vertex of B, since $d(P) \ge 4$. Vertex v cannot be adjacent to all non-cutvertices of B or else we would have a copy of $K_{\Delta+1}^-$. Therefore some $w \in B$ has degree at most $\Delta - 1$ in G, contradicting $d(w) = \Delta$ for all $w \in G \setminus P$.
- Suppose that *B* is either:
 - a single edge; or,
 - a complete graph of order at most $\Delta 1$; or,
 - an odd cycle and that $\Delta \ge 4$.

These conditions each imply that there is a non cut-vertex v in B with degree at most $\Delta - 2$ in $G \setminus P$, which contradicts Lemma 3.

• The leaves only the case when $\Delta = 3$ and B is an odd cycle of length at least 5. Since $d(P) \ge 4$, two different vertices of P cannot be incident to adjacent vertices of B and since we have at least 4 consecutive non-cutvertices of B, at least one of these w is not adjacent to some $v \in P$; so w has degree 2 in G, a contradiction.

These contradictions complete the proof of Theorem 4.

3 Distance 3 extension for K_{Δ} -free graphs

We now consider the exclusion of K_{Δ} , to find that we may often further improve the distance required:

Theorem 5. Let G be a connected graph with $\Delta := \Delta(G) \ge 3$ containing no K_{Δ} subgraph, and let $P \subset V(G)$. Let \mathcal{L} be a list assignment to V(G) such that $|\mathcal{L}(v)| = \Delta$ for all $v \in G$. If either:

- (i) $\Delta \ge 4$, $|P| \ge 3$ and $d(P) \ge 3$; or,
- (ii) $\Delta \ge 5$, |P| = 2 and $d(P) \ge 2$; or,
- (iii) $\Delta = 3$, $|P| \ge 3$ and $d(P) \ge 4$; or,
- (iv) $\Delta = 3 \text{ or } \Delta = 4$, $|P| = 2 \text{ and } d(P) \ge 3$

then any \mathcal{L} -colouring of P extends to a \mathcal{L} -colouring of G. Moreover, the inequalities concerning d(P) are best possible.

$$\begin{array}{c|c} & \Delta \\ & 3 & 4 \geqslant 5 \\ \hline |P| & 2 & 3^{(iv)} & 3^{(iv)} & 2^{(ii)} \\ & \geqslant 3 & 4^{(iii)} & 3^{(i)} & 3^{(i)} \end{array}$$

Table 1: Summary of distances required for K_{Δ} -free graphs

Proof of Theorem 5. As with the proof of Theorem 4, let G be a counterexample to Theorem 5 with the smallest number of vertices. It follows that G satisfies the conditions of Lemma 3. Thus $G \setminus P$ is a Gallai tree T and is connected by minimality. For cases (i), (iii) and (iv), P the condition $d(P) \ge 3$ implies that each vertex of T has degree $\Delta - 1$ or Δ . For case (ii), the condition that |P| = 2 implies that each vertex of T has degree at least $\Delta - 2$.

Let B be an arbitrary leaf block of T. Since G is K_{Δ} -free, B is either an odd cycle of a complete graph of order at most $\Delta - 1$. We now cover each of the four cases separately:

(i) G is K_{Δ} -free and so B is either an odd cycle, a single edge, or a complete graph of order less than Δ . Each of these gives a non cut-vertex of T with degree at most $\Delta - 2$, a contradiction.

We find a lower bound on the distance required by considering the following graph:

 $V(G) = \{x, y, z, a_1, \dots, a_{\Delta-1}\}$ $E(G) \text{ consists of a complete graph on the } a_i \text{ plus edges } \{xa_i : i = 0 \text{ or } 1 \text{ mod } 3\}, \{ya_i : i = 0 \text{ or } 2 \text{ mod } 3\}, \{za_i : i = 1 \text{ or } 2 \text{ mod } 3\}.$ $P = \{x, y, z\}$

Then a precolouring giving x, y and z different colours cannot be extended if the list of every vertex a_i consists of the 2 colours of its neighbours in P, plus $\Delta - 2$ additional (fixed) colours.

(ii) The leaf block B has a non-cutvertex of degree at least $\Delta - 2$ and, since $\Delta \ge 5$, B cannot be an odd cycle. Thus B is a complete graph and must be of order $\Delta - 1$ since G is K_{Δ} -free.

If T consists of a unique leaf block B, then every vertex of B is adjacent to both vertices of P since the degree of any vertex is at most $\Delta - 2$ in T but equal to Δ in G. This gives a copy of K_{Δ} and thus rules out the possibility of T consisting of a single block.

If T contains two or more leaf blocks then the number of vertices of degree $\Delta - 2$ in T (i.e. the non-cutvertices of at least two leaf blocks of T) is at least $2(\Delta - 2)$ which is strictly greater than Δ for $\Delta \ge 5$. Since all such vertices must be adjacent to both vertices of P, which have degree at most Δ , we have a contradiction.

Conversely, consider the graph K_2 . The endpoints of this edge are at distance 1 and may not be simultaneously precoloured with the same colour. Thus, we trivially see that distance 2 may not be improved.

(iii) There is no improvement on the distance required of 4 so this case follows from Theorem 4, because K_{Δ} is a subgraph of $K_{\Delta+1}^-$. The graph shown in Figure 3 with the given list-assignment establishes that this distance cannot be improved.

Figure 3: Graph providing lower bound for Theorem 5 part (iii)

(iv) If $\Delta = 3$ then the degree in T of a non-cutvertex of B equals 2. Since G is K_3 -free, B must be an odd cycle of length at least 5. If T consists of a unique block B then every vertex of B is adjacent in G to one of the two vertices of P. Since the cycle is odd, this gives a K_3 subgraph in G and a contradiction. Otherwise, T has at least 2 leaf blocks each with at least 4 non cut-vertices, which must all be adjacent to a vertex of P. However, there are at most 6 edges incident with P and we have a contradiction.

If $\Delta = 4$ then B must have a non-cutvertex of degree in T equal to 3. However, since G is K_4 -free, we have the final contradiction required.

Graphs and list-assignments establishing a lower bound of distance 3 for part (iv) are shown in Figure 4. This completes the proof of Theorem 5.

Figure 4: Graphs providing lower bounds for Theorem 5 part (iv)

Acknowledgements: Thanks to the referee for finding the second graph in Figure 4 and for other helpful comments.

References

- M. O. Albertson, A. V. Kostochka, and D. B. West, *Precolouring extensions of Brooks'* theorem, SIAM J. Discrete Math. 18 (2004), 542–553.
- M. Axenovich, A note on graph colouring extensions and list-colourings, Electronic J. Comb. 10 (2003), #N1.
- [3] R. L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941), 194–197.
- [4] A. V. Kostochka, M. Stiebitz, and B. Wirth, The colour theorems of Brooks and Gallai extended, Discrete Math. 162 (1996), 299–303.
- [5] T. Rackham, A precolouring extension of Brooks' theorem, submitted.
- [6] G. Sajith and S. Saxena, Local nature of Brooks' colouring for degree 3 graphs, Graphs Combin. 19 (2003), no. 4, 551–565.
- [7] V. G. Vizing, Coloring the vertices of a graph in prescribed colors, Diskret. Analiz (1976), no. 29 Metody Diskret. Anal. v Teorii Kodov i Shem, 3–10, 101.
- [8] M. Voigt, Precoloring extension for 2-connected graphs, SIAM J. Discrete Math. 21 (2007), no. 1, 258–263 (electronic).
- [9] _____, Precoloring extension for 2-connected graphs with maximum degree three, Discrete Math. (2008), doi:10.1016/j.disc.2008.05.024.