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Abstract

The chromatic polynomial gives the number of proper λ-colourings of a graph G.
This paper considers factorisation of the chromatic polynomial as a first step in an
algebraic study of the roots of this polynomial. The chromatic polynomial of a graph
is said to have a chromatic factorisation if P (G,λ) = P (H1, λ)P (H2, λ)/P (Kr , λ) for
some graphs H1 and H2 and clique Kr. It is known that the chromatic polynomial
of any clique-separable graph, that is, a graph containing a separating r-clique, has
a chromatic factorisation. We show that there exist other chromatic polynomials
that have chromatic factorisations but are not the chromatic polynomial of any
clique-separable graph and identify all such chromatic polynomials of degree at
most 10. We introduce the notion of a certificate of factorisation, that is, a sequence
of algebraic transformations based on identities for the chromatic polynomial that
explains the factorisations for a graph. We find an upper bound of n22n2/2 for
the lengths of these certificates, and find much smaller certificates for all chromatic
factorisations of graphs of order ≤ 9.

1 Introduction

The number of proper λ-colourings of a graph G is given by the chromatic polynomial
P (G, λ) ∈ Z[λ]. This polynomial was introduced by Birkhoff [5, 6] in an attempt to
prove the four colour theorem by algebraic means. Read and Tutte [17] comment that
calculating the chromatic polynomial of a graph is at least as difficult as determining the
chromatic number of the graph which is known to be NP-complete [10].

The study of chromatic roots, the roots of chromatic polynomials, may be divided
into three areas: integer chromatic roots, real chromatic roots and complex chromatic
roots. Surveys of results on this topic have been given by Woodall [26] and Jackson [9].
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The integer roots have provided information on some properties of graphs including the
chromatic number and connectivity [23, 26, 24]. Studies of the real roots include the
identification of intervals that are zero-free in R [23, 26, 8, 22, 27, 9]. Studies of complex
roots have emphasised the limits of zeros of chromatic polynomials of families of graphs
in the complex plane [4, 2, 3, 17, 14, 19, 20].

The chromatic polynomial also has applications in statistical mechanics where the
partition function generalises this polynomial. The limit points of the complex zeros of
this function are of particular interest, as they correspond to possible locations of physical
phase transitions. Furthermore, no phase transitions are located in any zero-free region
of the complex plane [11]. Sokal gives a good overview of the applications to statistical
mechanics in [21].

Although there has been considerable work on the location of chromatic roots, there
has been little work on the algebraic properties of these roots. The main exception to
this is the the exclusion of the Beraha numbers Bi = 2 cos 2π/i, i ≥ 5, as possible roots
(except possibly B10), proved algebraically by Salas and Sokal [18] and in the case of B5

by Tutte [23].
Our motivation is to begin the study of the algebraic structure of chromatic poly-

nomials and their roots. A first step is understanding factorisations of the chromatic
polynomial, and this is the subject of this paper.

We say the chromatic polynomial of a graph G has a chromatic factorisation if there
exist graphs H1 and H2 with fewer vertices than G such that

P (G, λ) =
P (H1, λ)P (H2, λ)

P (Kr, λ)
(1)

for some r ≥ 0, where by convention P (K0, λ) := 1. The graph G is said to have a
chromatic factorisation, if P (G, λ) has a chromatic factorisation. The graph G is said to be
clique-separable if G is disconnected or is isomorphic to the graph obtained by identifying
graphs H1 and H2 at some clique. It is well-known that the chromatic polynomial of any
clique-separable graph has a chromatic factorisation [28, 16]. A graph G′ is chromatically
equivalent to G if P (G, λ) = P (G′, λ). We denote this by G ∼ H . A graph is said to be
quasi-clique-separable if it is chromatically equivalent to a clique-separable graph. Any
quasi-clique-separable graph has a chromatic factorisation.

Clique-separability is the most obvious way to determine some information about the
factorisation of P (G, λ) just from the structure of G itself. It is therefore natural to begin
investigation of factorisation of P (G, λ) by looking at situations where it factorises like
the case of a clique-separable graph.

A search of all chromatic polynomials of degree at most 10 was undertaken to identify
which of these polynomials had chromatic factorisations. This demonstrated that there
exist chromatic polynomials that have chromatic factorisations but which are not the
chromatic polynomial of any clique-separable graph. We identified 512 such factorisations.

In order to provide an explanation of these factorisations, we introduce the notion of
a certificate of factorisation. This certificate is a sequence of steps using various identities
for the chromatic polynomial that explains the chromatic factorisation of a given chro-
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matic polynomial. The certificate starts with the chromatic polynomial P (G, λ) and by
applying steps using known properties of the chromatic polynomial and basic algebraic
operations expresses P (G, λ) as P (H1, λ)P (H2, λ)/P (Kr, λ). In such cases a certificate
of factorisation can always be found, in principle. However, naive approaches to finding
certificates may not be feasible, as they may produce certificates of exponential length.
We establish an upper bound on certificate length of n22n2/2. Furthermore, as calculating
the chromatic polynomial is NP-hard, it is not surprising that finding a certificate appears
to be difficult.

In the light of these remarks short certificates of factorisation might be expected to
be rare, and significant when they occur. Most of the certificates we give are in fact
reasonably short. Furthermore, the two shortest certificates we found appear to be the
shortest possible, when the graph is not quasi-clique-separable.

We find it helpful to group some certificates of factorisation together into schemas. A
schema is, in effect, a template for a certificate of factorisation. Although the schema may
include some of the actual certification steps, the schema also includes gaps, where each
gap must be replaced by a sequence of certification steps to form an actual certificate. So
a schema represents a class of certificates that all share certain designated subsequences
of steps. These certificates may be said to belong to the schema.

We give a useful schema for certificates of factorisation and a number of classes of
certificates belonging to this schema. Certificates from this schema can explain most
chromatic factorisations of graphs of order at most 9. We give some other certificates,
not from this schema, which explain the remaining cases.

If a graph is clique-separable, then (1) is a certificate of factorisation. Graphs that have
a chromatic factorisation that satisfies this simplest of certificates have a common struc-
tural property, namely clique-separability. The graphs that have chromatic factorisations
that satisfy the schema presented in this paper also have a common structural prop-
erty. Although these graphs are not clique-separable, they can be obtained by adding, or
removing, an edge from some clique-separable graph. Graphs that have chromatic fac-
torisations satisfying some particular certificate belonging to this schema have additional
common structure. In [13] we give an infinite family of graphs that have chromatic fac-
torisations satisfying a certificate belonging to this schema. In addition to the common
properties of all graphs with chromatic factorisations satisfying the schema, these graphs
are triangle-free K4-homeomorphs.

The paper is organised as follows. Section 2 provides definitions and some properties
of chromatic polynomials. Section 3 then presents the results of our search for previously
unexplained chromatic factorisations in graphs of order at most 10. In Section 4 certifi-
cates of factorisation are defined and an upper bound on the length of these certificates
is proved. A schema for certificates of factorisation is then introduced and a number of
certificates produced from this schema.
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2 Preliminaries

2.1 Definitions

Standard definitions are used. We refer the reader to [7] for more information. As the
presence of multiple edges does not affect the number of colourings, we will assume graphs
have no multiple edges. The chromatic number of a graph G, denoted χ(G), is the
minimum number of colours required to colour the vertices of the graph so that no adjacent
vertices are assigned the same colour.

If disjoint graphs, H1 and H2, each contain a clique of size at least r, let G be the graph
formed by identifying an r-clique in H1 with an r-clique in H2. We say G is an r-gluing,
or clique-gluing, of H1 and H2. If G can be obtained by a sequence of clique-gluings, we
say G is an (r1, . . . , rt)-gluing where:

• An (r1)-gluing is an r1-gluing of graphs H1 and H2

• An (r1, . . . , rt)-gluing of graphs H1, . . . , Ht+1 is an rt-gluing of Ht+1 and a graph
obtained by an (r1, . . . , rt−1)-gluing of graphs H1, . . . , Ht.

If G is a graph formed by an r-gluing of graphs H1 and H2, and a graph G′ is the
graph formed by identifying a different pair of r-cliques in H1 and H2 (if a different pair
exists), then G′ is a re-gluing of G. Although the graphs G and G′ may not be isomorphic,
they are chromatically equivalent.

Let G be the graph obtained from graphs G1 and G2 by identifying vertices a1 and b1

in G1 with vertices a2 and b2 in G2 respectively. Then the graph obtained by identifying
vertices a1 and b1 in G1 with vertices b2 and a2 in G2 respectively is said to be 2-isomorphic
to G.

2.2 Basic Properties

Some basic properties of the chromatic polynomial are listed in this section. Further
details can be found in [15, 16, 17, 23, 28].

The deletion-contraction relation states that for any e ∈ E,

P (G, λ) = P (G \ e, λ) − P (G/e, λ).

The addition-identification relation states that for any u, v ∈ V , uv 6∈ E,

P (G, λ) = P (G + uv, λ) + P (G/uv, λ),

where we write G/uv for the graph obtained from G by identifying u and v and deleting
any multiple edges so formed.
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2.3 Computations

The chromatic polynomial can be calculated in terms of the complete graph basis, that
is as a sum of chromatic polynomials of complete graphs, or in terms of the null graph
basis, that is as a sum of chromatic polynomials of null graphs. The chromatic polyno-
mials of all non-isomorphic connected graphs of order at most 10 were calculated in the
null graph basis by the repeated application of the deletion-contraction relation.1 Each
chromatic polynomial was then factorised in Z[λ] using Pari [1]. We identified all non-
clique-separable graphs using the algorithm in [25]. Any quasi-clique-separable graphs
were then removed from this list. All possible chromatic factorisations of the chromatic
polynomials of the remaining non-clique-separable graphs were constructed and basic
search techniques used to determine if there exist graphs H1 and H2 satisfying such a
factorisation.

3 Chromatic Factorisation

If the chromatic polynomial of a graph G has a chromatic factorisation then

P (G, λ) =
P (H1, λ)P (H2, λ)

P (Kr, λ)
(2)

where H1 and H2 are graphs of lower order than G and 0 ≤ r ≤ min{χ(H1), χ(H2)}, and
neither H1 nor H2 are isomorphic to Kr. The chromatic factors of P (G, λ) are H1 and
H2.

Any quasi-clique-separable graph has a chromatic factorisation. We say that a graph
is strongly non-clique-separable if it is not quasi-clique-separable. We found that a number
of chromatic polynomials of strongly non-clique-separable graphs have chromatic factori-
sations, by undertaking a search of all chromatic polynomials of strongly non-clique-
separable graphs of at most 10. In all such cases, the graphs have at least 8 vertices.
There are 512 such polynomials corresponding to 3118 non-isomorphic graphs and 4705
non-isomorphic pairs (G, g), where g is the unordered pair {H1, H2}, satisfying (2). (The
pairs (G, {H1, H2}) and (G′, {H ′

1, H
′

2}) are isomorphic if G ∼= G′ and either H1
∼= H ′

1 and
H2

∼= H ′

2, or H1
∼= H ′

2 and H2
∼= H ′

1.) Details are given in Tables 1 and 2.
These 512 chromatic polynomials have chromatic factorisations that cannot be ex-

plained by the graph being quasi-clique-separable. In order to provide an explanation for
these factorisations, we introduce the concept of a certificate of factorisation in Section
4. Certificates are then presented to explain the chromatic factorisations of some of these
polynomials.

1These graphs are provided by B. McKay at http://cs.anu.edu.au/people/bdm/data/graphs.html.
Code for calculating chromatic polynomials was provided by J. Reicher. Chromatic polynomials cal-
culated by this code agreed with the author’s own code that produced chromatic polynomials in the
complete graph basis and hand calculations.
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n A B C

8 1,650 663 2
9 21,121 5319 25
10 584,432 74,016 485

8 ≤ n ≤ 10 607,203 79,998 512

Table 1: Numbers of chromatic polynomials of degree at most 10. (A) Total number of
chromatic polynomials, (B) number of chromatic polynomials of clique-separable graphs
and (C) number of chromatic polynomials of strongly non-clique-separable graphs with
chromatic factorisations.

n # chromatic polys. # graphs # pairs (G, {H1, H2})

8 2 3 3
9 25 97 114
10 485 3018 4588
8 ≤ n ≤ 10 512 3118 4705

Table 2: Chromatic factorisations of chromatic polynomials of degree n ≤ 10 of strongly
non-clique-separable graph.

4 Certificates of Factorisation

Definition A certificate of factorisation of P (G, λ) with chromatic factors H1 and H2 is a
sequence P0, P1, . . . , Pi where each Pj is an expression formed from chromatic polynomials
P ( , λ) as follows. Each chromatic polynomial P ( , λ) is treated as a formal symbol and
not an actual polynomial. Let {p0, p1, . . .} be the set of formal symbols representing
chromatic polynomials P ( , λ). Let Q(p0, p1, . . .) be the field of rational functions in
indeterminates p1, p2, . . .. The sequence P0, P1, . . . , Pi starts and ends with P0 = P (G, λ)
and Pi = P (H1, λ)P (H2, λ)/P (Kr, λ) respectively. Each Pj, 1 ≤ j ≤ i, in the sequence is
obtained from Pj−1 by one of the following certification steps:

(CS1) P (G′, λ) becomes P (G′ \ e, λ) − P (G′/e, λ) for some e ∈ E(G′)

(CS2) P (G1, λ) − P (G2, λ) becomes P (G′, λ) where G′ is isomorphic to G1 + uv, uv 6∈
E(G1), and G1/uv is isomorphic to G2

(CS3) P (G′, λ) becomes P (G′ + uv, λ) + P (G′/uv, λ) for some uv 6∈ E(G′)

(CS4) P (G1, λ)+P (G2, λ) becomes P (G′, λ) where G′ is isomorphic to G1\e, e ∈ E(G1),
and G1/e is isomorphic to G2

(CS5) P (G1, λ)−P (G2, λ) becomes P (G′, λ) where G′ is isomorphic to G2/e, e ∈ E(G2),
and G1 is isomorphic to G2 \ e
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(CS6) P (G′, λ) becomes P (G1, λ)P (G2, λ)/P (Kr, λ) where G′ is isomorphic to the graph
obtained by an r-gluing of G1 and G2

(CS7) P (G1, λ)P (G2, λ)/P (Kr, λ) becomes P (G′, λ) where G′ is isomorphic to the graph
obtained by an r-gluing of G1 and G2

(CS8) By applying the field axioms, for Q(p0, p1, . . .), a finite number of times, so as to
produce a different expression for the same field element

(CS9) P (G′, λ) becomes P (G′′, λ) where G′ ∼ G′′

Each Pj is a formal expression. If these expressions were evaluated to actual polynomials,
all these polynomials would be equal. Thus, the certificate of factorisation fully explains
the chromatic factorisation of P (G, λ).

We say that P (G, λ) (and by overloading the terminology its chromatic factorisation,
and also G itself) satisfies its certificate of factorisation.

Step (CS9) requires that G′ ∼ G′′. In order to be able to show that two graphs are
chromatically equivalent, we define a certificate of equivalence. A certificate of equivalence
is similar to a certificate of factorisation. It is a sequence of steps P0, P1, . . . , Pi where the
steps are the same certification steps (excluding the step of interchanging P (G′, λ) and
P (G′′, λ) when G′ ∼ G′′), and P0 = P (G, λ) and Pi = P (H, λ) where G ∼ H .

An additional certification step of interchanging graphs that are 2-isomorphic could
be added to the certification steps. As 2-isomorphic graphs are chromatically equivalent
(since their cycle matroids are isomorphic), the certificate of factorisation can use (CS9)
to interchange 2-isomorphic graphs. In the case of certificates of equivalence, showing G
and G′ are 2-isomorphic can be achieved using a sequence of the existing steps, as follows.

In the case where G′ is a re-gluing of G, the steps are

P (G, λ) =
P (H1, λ)P (H2, λ)

P (K2, λ)
= P (G′, λ).

In the case where G′ is not a re-gluing of G, as the graphs are 2-isomorphic there
exists uv 6∈ E(G) and wx 6∈ E(G′) such that G + uv is a re-gluing of G + wx and G/uv
is isomorphic to G′/wx. Thus the steps are

P (G, λ) = P (G + uv, λ) + P (G/uv, λ)

=
P (H1, λ)P (H2, λ)

P (K2, λ)
+ P (G′/wx, λ)

= P (G′ + wx, λ) + P (G′/wx, λ)

= P (G′, λ).

An extended certificate of factorisation is a certificate of factorisation which only uses
certification steps (CS1–CS8). Thus, an extended certificate of factorisation can be ob-
tained from a certificate of factorisation by replacing any step of type (CS9) (if such
exists) by the sequence of steps in a certificate of equivalence showing G′ ∼ G′′.
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The average length of the certificates of factorisation we found for all strongly non-
clique-separable graphs of order 9 was 16.88 steps (and an average length of 19.2 steps
for the extended certificate of factorisation).

Two certificates of factorisation, C = (P0, P1, . . . , Pi) and C ′ = (P ′

0, P
′

1, . . . , P
′

i ), are
equivalent if there is a bijection f from the symbols P ( , λ) appearing in C to those
appearing in C ′ such that the replacement of all symbols in C by their images under f
transforms C into C ′, with all certification steps still being valid. A CF-class (Certificate
of Factorisation class) of graphs is a maximal set of graphs with equivalent certificates
of factorisation. Note that these classes may overlap, as a graph may have different,
inequivalent certificates of factorisation. Informally, a CF-class is a maximal set of all
graphs having “essentially” the same certificate of factorisation. Later (in Section 4.3) we
will see that a graph’s CF-class can be related to its structure.

4.1 Simple Certificates

If G is a clique-separable graph, then (2) is a certificate of factorisation. If G is chromati-
cally equivalent to a clique-separable graph G′, then P (G, λ) has the following certificate:

P (G, λ) = P (G′, λ)

=
P (H1, λ)P (H2, λ)

P (Kr, λ)

Certificate 1.
Graph G is chromatically equivalent to Graph G′.

However, these simple certificates cannot explain all chromatic factorisations. In Sec-
tion 4.3 more complex certificates for chromatic factorisations are presented.

4.2 Construction of Certificates of Factorisation

It would appear that finding certificates of factorisation for strongly non-clique-separable
graphs is hard. The length of the certificate for a graph of n vertices is ≤ n22n2/2.
We establish this bound below, using a naive approach to constructing a certificate of
factorisation for any chromatic factorisation. Certificates of this form are exponential
both in length and in time taken to compute them. In Section 4.3 we present a schema
for certificates of factorisation that produces much shorter certificates than this approach,
in cases to which it applies.

Any chromatic polynomial can be expressed as the sum of chromatic polynomials of
complete graphs by repeated application of the addition-identification relation [16].

Proposition 1 The chromatic polynomial of a graph G can be expressed as the sum of
chromatic polynomials of complete graphs in at most 2m − 1 applications of the addition-
identification relation where m is the number of edges in the complement G.
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Theorem 2 If G is a strongly non-clique-separable graph having chromatic factorisation
P (G, λ) = P (H1, λ)P (H2, λ)/P (Kr, λ), then there exists an extended certificate of fac-
torisation for P (G, λ) of length ≤ n22n2/2.

Proof Let n, n1, n2 be the number of vertices in G, H1 and H2 respectively, and let m, m1

and m2 be the number of edges in G, H1 and H2 respectively.
A certificate can be obtained as follows. Firstly, express both P (H1, λ) and P (H2, λ)

as sums of chromatic polynomials of complete graphs. By Proposition 1 this gives a
sequence of at most 2m1 + 2m2 − 2 steps showing

P (H1, λ)P (H2, λ)

P (Kr, λ)
=

(
∑n1

i=χ(H1)
aiP (Ki, λ))(

∑n2

j=χ(H2)
bjP (Kj, λ))

P (Kr, λ)
(3)

where the ai and bj are positive integers and an1
= bn2

= 1.
Applying Step (CS8) to the product in (3),

(
∑n1

i=χ(H1)
aiP (Ki, λ))(

∑n2

j=χ(H2)
bjP (Kj, λ))

P (Kr, λ)
=

∑

i,j

aibjP (Ki, λ)P (Kj, λ)

P (Kr, λ)
. (4)

For each i, j, let Gij be the graph formed by an r-gluing of Ki and Kj. (This is always
possible as χ(H1) ≥ r and χ(H2) ≥ r.) Then by performing a sequence of (n1 − χ(H1) +
1)(n2 − χ(H2) + 1) ≤ (n1 − 2)(n2 − 2) clique-gluings, we obtain

∑

i,j

aibjP (Ki, λ)P (Kj, λ)

P (Kr, λ)
=

∑

i,j

aibjP (Gij, λ). (5)

Now each P (Gij, λ) in (5) can be expressed as the sum of chromatic polynomials of
complete graphs. There are at most (n1 − χ(H1) + 1)(n2 − χ(H2) + 1) ≤ (n1 − 2)(n2 − 2)
of these graphs Gij. Each of the Gij has at most n vertices and at least

(

r
2

)

edges. So,

each Gij must have at most
(

n
2

)

−
(

r
2

)

< n(n − 1)/2 edges. Thus, by Proposition 1, in

< (n1 − 2)(n2 − 2)(2n(n−1)/2 − 1) steps we obtain

∑

i,j

aibjP (Gij, λ) =

n
∑

k=χ(G)

ckP (Kk, λ) (6)

where each ck is a positive integer and cn = 1. But the right hand sum in (6) must also
be the expression for P (G, λ) as the sum of chromatic polynomials of complete graphs,
since this expression is unique. Thus reversing this sequence of steps we have the desired
certificate, namely
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P (G, λ)

=

n
∑

k=χ(G)

ckP (Kk, λ) in ≤ 2m − 1 steps by Proposition 1

=
∑

i,j

aibjP (Gij, λ) in ≤ (n1 − 2)(n2 − 2)(2n(n−1)/2 − 1) steps by (6)

=
∑

i,j

aibjP (Ki, λ)P (Kj, λ)

P (Kr, λ)
in ≤ (n1 − 2)(n2 − 2) steps by (5)

=
(
∑n1

i=χ(H1)
aiP (Ki, λ))(

∑n2

j=χ(H2)
bjP (Kj, λ))

P (Kr, λ)
in a single application of (CS8)

=
P (H1, λ)P (H2, λ)

P (Kr, λ)
in ≤ 2m1 + 2m2 − 2 steps by (3). (7)

This certificate has at most 2m−1+(n1 −2)(n2−2)(2n(n−1)/2 −1)+(n1 −2)(n2−2)+
1+2m1 +2m2−2 steps. Now as (n1−2)(n2−2) ≤ (n−3)2 and 2m1 +2m2−2 < 2(n−2)(n−3)/2,
the total number of steps in the certificate is

< (n − 3)22n(n−1)/2 + 2n(n−3)/2 + 2(n−2)(n−3)/2 (8)

which is ≤ n22n2/2. �

The proof in Theorem 2 gives us the means to find a certificate of factorisation, albeit
a very long one, whenever a graph has a chromatic factorisation.

Although a certificate of factorisation can always be found by this simple approach,
the length of certificate means that this method is infeasible for all but very small graphs.
The upper bound in (8) shows that this approach produces certificates for strongly non-
clique-separable graphs of order 8 and 9 with < 6,711,967,744 and < 2,474,037,477,376
steps respectively. Our certificates for graphs of order 9 were < 57 steps and on average
16.88 steps. This approach also does not provide any insight into any link between the
structure of a strongly non-clique-separable graph and its chromatic factorisation.

In Section 4.3 a more efficient schema for some certificates of factorisation is presented.
These certificates are much more concise than those produced by (7). The lengths of these
certificates (which we call A–E) are given in Table 3 with the certificates A–E themselves
given in Appendix A.1. The schema can be used to form certificates for most of the
chromatic factorisations of the strongly non-clique-separable graphs of degree at most
9. The average length of certificates of factorisation using this schema for strongly non-
clique-separable graphs of order 9 was 13.0625 steps (and an average length of 15.6875
steps for the extended certificate of factorisation). Both certificates A and B have constant
length of 8 and 7 steps respectively, which makes them the shortest known certificates for
strongly non-clique-separable graphs. Certificates for the chromatic factorisations of all
strongly non-clique-separable graphs of degree 9 not explained by this schema (which we
call F–K) are given in Appendix A.2. The lengths of these certificates were at most 57
steps with an average length of 23.67 steps.
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Certificate n # Chromatic polynomials s s

D 8 2 10 ≤ s ≤ 11 10 ≤ s ≤ 11
A 9 2 8 8
B 9 1 7 7
C 9 2 10 ≤ s ≤ 11 10 ≤ s ≤ 11
D 9 9 10 ≤ s ≤ 23 12 ≤ s ≤ 24
E 9 2 18 ≤ s ≤ 21 21 ≤ s ≤ 34
F 9 1 18 18
G 9 3 12 ≤ s ≤ 18 16 ≤ s ≤ 18
H 9 1 26 26
I 9 1 39 39
J 9 1 57 66
K 9 2 12 ≤ s ≤ 15 12 ≤ s ≤ 16

Table 3: Number of steps s (s) in certificates of (extended) factorisation for chromatic
polynomials of 8- and 9-vertex strongly non-clique-separable graphs. For each certificate
the number of chromatic polynomials with this certificate is given.

Theorem 3 If G ∼ G′, then there exists a certificate of equivalence of length < 2n2/2.

Proof By Proposition (1) the chromatic polynomials of G and G′ can each be expressed
as a sum of complete graphs in at most 2m − 1 applications of the addition-identification
relation. Thus, in at most 2(2m − 1) < 2n2/2 steps it can be shown that both G and G′

can be expressed as the same sum of complete graphs. �

4.3 New Chromatic Factorisations

Strongly non-clique-separable graphs are precisely those to which Certificate 1 does not
apply. So, if such a graph has a chromatic factorisation, a more complex certificate will
be needed to explain it. This section considers such certificates. We identify some useful
classes of certificates and give numbers of chromatic factorisations that are explained by
various types of certificate.

These classes of certificates are remarkably short in comparison to the upper bound
of n22n2/2 given in Section 4.2, and are the shortest known certificates of factorisation for
strongly non-clique-separable graphs.

In this section we consider strongly non-clique-separable graphs that are almost clique-
separable, that is graphs that can obtained by adding a single edge to, or removing a single
edge from, a clique-separable graph. We present a schema for certificates of factorisation
for these graphs. This allows us to link the structure of these graphs to their CF-class.
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4.3.1 Graphs that are almost clique-separable

In most cases of strongly non-clique-separable graph with chromatic factorisations we
examined (n ≤ 10), there either exists an edge e ∈ E(G) such that both G\e and G/e are
clique-separable, or there exists uv 6∈ E(G) such that both G + uv and G/uv are clique-
separable. In these cases, the chromatic polynomial of G can be expressed as the sum (or
difference) of two clique-separable chromatic polynomials by the use of a single addition-
identification or deletion-contraction relation. The majority of certificates presented in
this section use this technique as their starting point.

Now, if G is a strongly non-clique-separable graph with the chromatic factorisation
P (G, λ) = P (H1, λ)P (H2, λ)/P (Kr, λ), we say that P (H1, λ) can be isolated by a single
application of the addition-identification relation if G + uv, uv 6∈ E(G), is an s-gluing of
H1 and some graph H3, r ≥ s, and G/uv is a t-gluing of H1 and some graph H4, r ≥ t.
If G + uv is isomorphic to an s-gluing of H1 and some graph H3, we say P (H1, λ) can be
partially isolated by a single application of the addition-identification relation.

Similarly, if there exists e ∈ E(G) such that G \ e is an s-gluing of H1 and some graph
H3, r ≥ s, and G/e is a t-gluing of H1 and some graph H4, r ≥ t, we say that the chro-
matic factor P (H1, λ) can be isolated by a single application of the deletion-contraction
relation. If G \ e is isomorphic to an s-gluing of H1 and some graph H3, we say P (H1, λ)
can be partially isolated by a single application of the deletion-contraction relation.

Degree of P (G, λ): Certificates
8 9

P (H1, λ) can be isolated by single deletion-
contraction

2 12 B, D, E

P (H1, λ) can be isolated by single deletion-
contraction, but the certificate uses partial
isolation.

0 2 G

P (H1, λ) can be isolated by single addition-
identification

0 4 A, C

P (H1, λ) cannot be isolated but can be par-
tially isolated by single deletion-contraction

0 3 G, K

P (H1, λ) cannot be isolated or partially
isolated by single addition-identification or
deletion-contraction

0 3 H, I, J

P (G, λ) has 3 chromatic factors 0 1 F

TOTAL: 2 25

Table 4: Number of chromatic factorisations where chromatic factor H1 can be isolated
by a single operation, and P (G, λ) is the chromatic polynomial of a strongly non-clique-
separable graph.
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Table 4 lists the number of instances where one of the chromatic factors could be
isolated, or partially isolated, in one of the above ways in all chromatic polynomials of
strongly non-clique-separable graphs of at most 9 vertices. A chromatic factor could
be isolated by a single application of either the addition-identification or the deletion-
contraction relation in all of the chromatic polynomials of degree 8 and most of the
chromatic polynomials of degree 9. Thus, the initial step in most of the certificates is to
isolate a chromatic factor.

4.3.2 A Schema for Certificates of Factorisation

The schema for certificates of factorisation presented in this section has isolation of the
chromatic factor H1 as the initial step, that is

P (G, λ) =P (G′, λ) ± P (G/uv, λ)

=
P (H1, λ)P (H3, λ)

P (Ks, λ)
±

P (H1, λ)P (H4, λ)

P (Kt, λ)

=
P (H1, λ)

P (Kr, λ)

(

P (Kr, λ)P (H3, λ)

P (Ks, λ)
±

P (Kr, λ)P (H4, λ)

P (Kt, λ)

)

(9)

where G′ ∼= G + uv if uv 6∈ E(G), otherwise G′ ∼= G \ uv.
Suppose the initial steps in the certificate are those in (9). Suppose also that there

exist graphs H5 and H6 and sequences of certification steps showing:

P (H5, λ) =
P (Kr, λ)P (H3, λ)

P (Ks, λ)
, (10)

P (H6, λ) =
P (Kr, λ)P (H4, λ)

P (Kt, λ)
and (11)

P (H2, λ) = P (H5, λ) ± P (H6, λ). (12)

Then the following, Schema 1, is a schema for a class of certificate:
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P (G, λ) =P (G′, λ) ± P (G/uv, λ)

=
P (H1, λ)P (H3, λ)

P (Ks, λ)
±

P (H1, λ)P (H4, λ)

P (Kt, λ)

=
P (H1, λ)

P (Kr, λ)

(

P (Kr, λ)P (H3, λ)

P (Ks, λ)
±

P (Kr, λ)P (H4, λ)

P (Kt, λ)

)

Insert certification steps showing (10) and (11)

=
P (H1, λ)

P (Kr, λ)
(P (H5, λ) ± P (H6, λ))

Insert certification steps showing (12)

=
P (H1, λ)P (H2, λ)

P (Kr, λ)

where G′ ∼= G + uv if uv 6∈ E(G), otherwise G′ ∼= G \ uv.

Schema 1 for Certificates of Factorisation

Appendix A.1 lists some certificates (A–E) that satisfy Schema 1. Most chromatic
factorisations of strongly non-clique-separable graphs of degree at most 9 (in fact all but
9) satisfied this schema. Certificates for the remaining nine chromatic polynomials (F–K)
are given in Appendix A.2. Three of these certificates, F, G and K (corresponding to six
of the nine cases), contain some of the elements of Schema 1.

4.3.3 Some Schema 1 Certificates of Factorisation

In this section we will consider certificates that satisfy Schema 1. There are many different
sequences of steps that can be used in the certification steps to show (10) and (11) in
Schema 1. We present two possible sequences for (10) and three possible sequences for
(11).

Certification steps to show (10).
Now, if (10) holds then one of the following applies:
Case 1. r = s and H5

∼= H3.
In this case the numerator and denominator have a common factor, P (Kr, λ). Thus, the
certification step is to replace P (H3, λ)P (Kr, λ)/P (Ks, λ) by P (H3, λ). This step is used
in Certificate C step (27), in Certificate D step (29), in Certificate E step (30) and in
Certificate K step (32).
Case 2. r > s and H5 is isomorphic to an s-gluing of H3 and Kr.
In this case the certification step is to replace P (H3, λ)P (Kr, λ)/P (Ks, λ) by P (H5, λ).
This step is used in Certificate A step (23) where H5

∼= H2 + wx, and in Certificate B
step (25) where H5

∼= H2 \ f .
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Certification steps to show (11).
If (11) holds then one of the following applies:
Case 1. r = t and H6

∼= H4.
In this case the numerator and denominator have a common factor, P (Kr, λ). Thus, the
certification step is to replace P (H4, λ)P (Kr, λ)/P (Kt, λ) by P (H4, λ). This step is used
in Certificate D step (29), in Certificate E step (30) and in Certificate K step (32).
Case 2. r > t and H6 is isomorphic to a t-gluing of H4 and Kr.
In this case the certification step is to replace P (H4, λ)P (Kr, λ)/P (Kt, λ) by P (H6, λ).
This step is used in Certificate B step (25) where H6

∼= H2/f and in Certificate C step
(28).
Case 3. r > t + 1 and H6 is not isomorphic to a t-gluing of H4 and Kr, but H6 is
isomorphic to the graph obtained by an (r − 1, t)-gluing of graphs H4, Kr and Kr−1.
In this case there are two certification steps. The first step replaces the expression
P (H4, λ)P (Kr, λ)/P (Kt, λ) by P (H4, λ)P (Kr, λ)P (Kr−1, λ)/ (P (Kr−1, λ)P (Kt, λ)). The
second step replaces the latter expression by P (H6, λ) where H6 is the graph obtained
by an (r − 1, t)-gluing of graphs H4, Kr and Kr−1. These steps are used in Certificate A
steps (22) and (23) where H2/wx is isomorphic to a (2, 1)-gluing of graphs H4, K3 and
K2

Certification steps to show (12).
Schema 1 also requires certification steps to show (12). We will consider the case where
|V (H5)| = |V (H6)| + 1. In this case, it is clear that either

Case 1

P (H2, λ) = P (H5, λ) + P (H6, λ) and (13)

|E(H2)| = |E(H5)| − 1, (14)

or

Case 2

P (H2, λ) = P (H5, λ) − P (H6, λ) and (15)

|E(H2)| = |E(H5)| + 1. (16)

Case 1 When (14) holds, there exist e0, . . . , ep ∈ E(H5) and f1, . . . , fp 6∈ E(H5) such
that

H5 \ {e0, . . . , ep} + {f1, . . . , fp} ∼= H2, p ≥ 0. (17)

When p = 0,
H5 \ e0

∼= H2,

so
H5

∼= H2 + e0.
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For (13) to hold we must then have

H6 ∼ H2/e0,

which would certainly be satisfied if

H6
∼= H2/e0.

The addition-identification relation is used to replace P (H5, λ) + P (H6, λ) with P (H2, λ)
in this certification step. This is used in Certificate A step (24).

Case 2 Similarly, when (16) holds, there exist e1, . . . , ep ∈ E(H5) and f0, . . . , fp 6∈ E(H5)
such that

H5 + {f0, . . . , fp} \ {e1, . . . , ep} ∼= H2, p ≥ 0. (18)

When p = 0,
H5 + f0

∼= H2,

so
H5

∼= H2 \ f0.

For (15) to hold we must then have

H6 ∼ H2/f0,

which would certainly be satisfied if

H6
∼= H2/f0.

The certification step uses the deletion-contraction relation to replace P (H5, λ)−P (H6, λ)
by P (H2, λ). This is used in Certificate B step (26).

Case 1 and Case 2 when p > 0. We have seen that Certificate A and Certificate
B, our shortest certificates, include the steps in Case 1 and Case 2 when p = 0. In the
case where either (17) or (18) holds and p > 0, a sequence of addition-identification and
deletion-contraction relations can be applied to show

P (H5, λ) = P (H2, λ) +

2p+1
∑

i=0

ciP (Di, λ), ci ∈ {1,−1} (19)

for some graphs Di. If a sequence of certification steps can be found that show

2p+1
∑

i=0

ciP (Di, λ) ± P (H6, λ) = 0 (20)

the electronic journal of combinatorics 16 (2009), #R74 16



then these steps can be combined with those used to show (19) to show

P (H5, λ) ± P (H6, λ) =P (H2, λ) +

2p+1
∑

i=0

ciP (Di, λ) ± P (H6, λ)

=P (H2, λ). (21)

Thus a sequence of addition-identification and deletion-contraction steps to show (19),
combined with the sequence of certification steps to show (20), shows that P (H2, λ) =
P (H5, λ) ± P (H6, λ) as required in Schema 1.

Tables 5 and 6 list the numbers of chromatic polynomials of degree at most 9 with
certificates that use sequences of steps of the kind we have been discussing, with p ≥ 0.
Examples of certificates of factorisation using this type of sequence of steps are provided
in Figure 1 (p = 0) and Figure 2 (p = 1) (these figures represent the chromatic polynomial
of a graph by the graph itself). Both these certificates satisfy Schema 1. The certificate
of factorisation in Figure 1 has the form of Certificate B, the shortest certificate we found
for strongly non-clique-separable graphs; and the certificate of factorisation in Figure 2
has the form of Certificate C.

Certificate P (G, λ) with degree 9

H2 + e ∼= H5, e 6∈ E(H2), where H5 is an
s-gluing of H3 and Kr

A 2

H2 + e + f − g ∼= H5, e, f 6∈ E(H2) and
g ∈ E(H2), where H5 is an s-gluing of
H3 and Kr

C 2

TOTAL: 4

Table 5: Relationship between graphs H2 and H5 in Certificate of Factorisation Schema
1 when graph H1 is isolated by a single addition-identification .

5 Conclusion

In order to explain the chromatic factorisation of strongly non-clique-separable graphs, the
concept of a certificate of factorisation was developed. A series of these certificates were
presented that provide explanations of all chromatic factorisations of graphs of order at
most 9. Most of these certificates were found to satisfy Schema 1. These certificates were
much shorter than those that could be obtained by a naive approach. It seems likely that
these certificates are the shortest possible certificates for strongly non-clique-separable
graphs that have chromatic factorisations. It would be interesting to find a better upper
bound on the lengths of certificates of factorisation than that presented in Theorem 2.

We have demonstrated that there exist strongly non-clique-separable graphs that have
chromatic factorisations. In [13] we demonstrate that there exist infinitely many strongly
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Figure 1: Example of chromatic factorisation satisfying Certificate B
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Figure 2: Example of chromatic factorisation satisfying Certificate C
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Certificate # P (G, λ) with
degree 8 degree 9

H2 − e ∼= H5, e ∈ E(H2) where H5 is an
s-gluing of H3 and Kr

B 0 1

H2 − e − f + g ∼= H5, e, f ∈ E(H2) and
g 6∈ E(H2) where H5 is an s-gluing of H5

and Kr

D 2 9

H2−e−f−g+h+i ∼= H5, e, f, g ∈ E(H2)
and h, i 6∈ E(H2) where H5 is an s-gluing
of H3 and Kr

E 0 2

TOTAL: 2 12

Table 6: Relationship between graphs H2 and H5 in Certificate of Factorisation Schema
1 when graph H1 is isolated by a single deletion-contraction .

non-clique-separable graphs that have chromatic factorisations, and provide a certificate
of factorisation satisfying Schema 1 for these graphs. The length of this certificate is O(1),
which is a large improvement on the general upper bound of n22n2/2 obtained by the more
naive approach.

The shortest certificates we found for chromatic factorisations of strongly non-clique-
separable graphs had less than 10 steps. However, it is not known if these are the shortest
certificates for these graphs. Finding shortest certificates, in general, is likely to be diffi-
cult.

An open problem is the characterisation of graphs belonging to the same CF-class.
Many of the certificates given in this article, particular those belonging to Schema 1,
explain chromatic factorisations of graphs that are almost clique-separable. In [13] we give
an infinite family of graphs that have a chromatic factorisation explained by Certificate
B. These graphs are graphs that can be obtained by replacing two non-adjacent edges in
K4 with paths of length 2n − 1 and 2n, n ≥ 2. As there are infinitely many graphs in
this family, we know that there exist infinitely many strongly non-clique-separable graphs
that have chromatic factorisations. However, the proportion of graphs that are strongly
non-clique-separable is unknown.

Another open question is which graphs can be chromatic factors. When is it possible
to find a graph G that has a chromatic factorisation with chromatic factors, H1 and
H2, where H1 and H2 are an arbitrary pair of r-colourable graphs? In [12] we show
that any triangle-free graph H1 with χ(H1) ≥ 3 is a chromatic factor of some chromatic
factorisation P (H1, λ)P (H2, λ)/P (K3, λ) explained by Certificate B. However, in this case
the second chromatic factor H2 must contain H1 as a subgraph, and must contain a
triangle.

the electronic journal of combinatorics 16 (2009), #R74 20



Acknowledgement

We thank Alan Sokal and the referee for their suggestions and comments.

References

[1] PARI/GP, version 2.3.0. 2006. Available from http://pari.math.u-bordeaux.fr/.

[2] S. Beraha, J. Kahane, and N.J. Weiss. Limits of zeros of recursively defined polyno-
mials. Proc. Nat. Acad. Sci. USA, 72:4209, 1975.

[3] S. Beraha, J. Kahane, and N.J. Weiss. Limits of chromatic zeros of some families of
graphs. J. Combin. Theory Ser. B, 28:52–65, 1980.

[4] N.L. Biggs, R.M. Damerell, and D.A. Sands. Recursive families of graphs. J. Combin.
Theory Ser. B, 12:123–131, 1972.

[5] G.H. Birkhoff. A determinant formula for the number of ways of coloring a map.
Ann. of Math., 14:42–46, 1912–1913.

[6] G.H. Birkhoff. On the number of ways of coloring a map. Proc. Edinb. Math. Soc.
(2), 2:83–91, 1930.

[7] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 3rd edition, 2005.

[8] B. Jackson. A zero-free interval for chromatic polynomials of graphs. Combin. Probab.
Comput., 2:325–336, 1993.

[9] B. Jackson. Zeros of chromatic and flow polynomials of graphs. J. Geom., 76:95–109,
2003.

[10] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum,
Boston, 1972.

[11] T.D. Lee and C.N. Yang. Statisitcal theory of equations of state and phase transitions.
ii. lattice gas and Ising model. Phys. Rev., 87:410–419, 1952.

[12] K. Morgan and G. Farr. Chromatic factors. Submitted.

[13] K. Morgan and G. Farr. Certificates of factorisation for a class of triangle-free graphs.
Electron. J. Combin., 16:R75, 2009.

[14] R.C.Read and G.F. Royle. Chromatic roots of families of graphs. In Graph Theory,
Combinatorics and Applications. Proceedings of the Sixth Quadrennial International
Conference on the Theory and Applications of Graphs, Kalmazoo, MI, 1988, vol-
ume 2, pages 1009–1029, New York, 1991. Wiley-Interscience.

the electronic journal of combinatorics 16 (2009), #R74 21



[15] R. Read. Connectivity and chromatic uniqueness. Ars Combin., 23:209–218, 1987.

[16] R.C. Read. An introduction to chromatic polynomials. J. Combin. Theory, 4:52–73,
1968.

[17] R.C. Read and W.T. Tutte. Chromatic polynomials. In L.W. Beineke and R.J.
Wilson, editors, Selected Topics in Graph Theory, volume 3, pages 15–42. Academic
Press, London, 1988.

[18] J. Salas and A.D.Sokal. Transfer matrices and partition-function zeros for antiferro-
magnetic Potts models. I. General theory and square-lattice chromatic polynomial.
J. Stat. Phys., 104:609–699, 2001.

[19] A.D. Sokal. Chromatic polynomials, Potts models and all that. Phys. A, 279:324–332,
2000.

[20] A.D. Sokal. Chromatic roots are dense in the whole complex plane. Combin. Probab.
Comput., 13:221–261, 2004.

[21] A.D. Sokal. The Multivariate tutte polynomial (alias potts model) for graphs and
matroids. 327, London Math. Soc. Lecture Notes, 2005.

[22] C. Thomassen. The zero-free intervals for chromatic polynomials of graphs. Combin.
Probab. Comput., 6:497–506, 1997.

[23] W.T. Tutte. Chromials. In C. Berge and D Ray-Chaudhuri, editors, Hypergraph
Seminar, volume 411 of Lecture Notes in Mathematics, pages 243–266. Springer-
Verlag, Berlin, 1972.

[24] E.G. Whitehead Jr and L.C. Zhao. Cutpoints and the chromatic polynomial. J.
Graph Theory, 8:371–377, 1984.

[25] S.H. Whitesides. An algorithm for finding clique cut-sets. Inform. Process. Lett.,
12:31–32, 1981.

[26] D.R. Woodall. Zeros of chromatic polynomials. In P.J. Cameron, editor, Combi-
natorial Surveys: Proceedings of the Sixth British Combinatorial Conference, pages
199–223. Academic Press, London, 1977.

[27] D.R. Woodall. The largest real zero of the chromatic polynomial. Discrete Math.,
72:141–153, 1997.

[28] A.A. Zykov. On some properties of linear complexes. Amer. Math. Soc. Transl., 79,
1952. Translated from original article in Math. Sbornik, 24:163-188, 1949.

the electronic journal of combinatorics 16 (2009), #R74 22



Appendices

A Some Certificates of Factorisation

In this appendix a number of certificates of factorisation are presented. These certificates
explain the factorisation of all chromatic polynomials of strongly non-clique-separable
graphs of order at most 9. The certificates in Appendix A.1 are Schema 1 certificates.
Some further certificates are presented in Appendix A.2.

A.1 Schema 1 certificates

The certificates in this section provide explanations for the factorisations of all the degree
8 and 16 of the degree 9 chromatic polynomials of strongly non-clique-separable graphs.
Tables 5 and 6 provide a breakdown of the numbers of these polynomials that satisfy each
certificate.

P (G, λ) =P (G + uv, λ) + P (G/uv, λ)

=
P (H1, λ)P (H3, λ)

P (K2, λ)
+

P (H1, λ)P (H4, λ)

P (K1, λ)

=
P (H1, λ)

P (K3, λ)

(

P (K3, λ)P (H3, λ)

P (K2, λ)
+

P (K3, λ)P (H4, λ)

P (K1, λ)

)

=
P (H1, λ)

P (K3, λ)

(

P (K3, λ)P (H3, λ)

P (K2, λ)
+

P (K2, λ)P (K3, λ)P (H4, λ)

P (K2, λ)P (K1, λ)

)

(22)

=
P (H1, λ)

P (K3, λ)
(P (H2 + wx, λ) + P (H2/wx, λ)) (23)

=
P (H1, λ)P (H2, λ)

P (K3, λ)
. (24)

Certificate A. (Schema 1)
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P (G, λ) =P (G \ e, λ) − P (G/e, λ)

=
P (H1, λ)P (H3, λ)

P (K2, λ)
−

P (H1, λ)P (H4, λ)

P (K2, λ)

=
P (H1, λ)

P (K3, λ)

(

P (K3, λ)P (H3, λ)

P (K2, λ)
−

P (K3, λ)P (H4, λ)

P (K2, λ)

)

=
P (H1, λ)

P (K3, λ)
(P (H2 \ f, λ) − P (H2/f, λ)) (25)

=
P (H1, λ)P (H2, λ)

P (K3, λ)
. (26)

Certificate B. (Schema 1)

P (G, λ) =P (G + uv, λ) + P (G/uv, λ)

=
P (H1, λ)P (H3, λ)

P (K4, λ)
+

P (H1, λ)P (H4, λ)

P (K3, λ)

=
P (H1, λ)

P (K4, λ)

(

P (K4, λ)P (H3, λ)

P (K4, λ)
+

P (K4, λ)P (H4, λ)

P (K3, λ)

)

=
P (H1, λ)

P (K4, λ)

(

P (H3, λ) +
P (K4, λ)P (H4, λ)

P (K3, λ)

)

(27)

=
P (H1, λ)

P (K4, λ)
(P (H2 + e + f − g, λ) + P (H6, λ)) (28)

= . . .

=
P (H1, λ)P (H2, λ)

P (K4, λ)
.

Certificate C. (Schema 1)
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P (G, λ) =P (G \ e, λ) − P (G/e, λ)

=
P (K5, λ)P (H3, λ)

P (K4, λ)
−

P (K5, λ)P (H4, λ)

P (K4, λ)

=
P (K5, λ)

P (K4, λ)

(

P (K4, λ)P (H3, λ)

P (K4, λ)
−

P (K4, λ)P (H4, λ)

P (K4, λ)

)

=
P (K5, λ)

P (K4, λ)
(P (H3, λ) − P (H4, λ)) (29)

=
P (K5, λ)

P (K4, λ)
(P (H2 − e − f + g, λ) − P (H4, λ))

= . . .

=
P (K5, λ)P (H2, λ)

P (K4, λ)
.

Certificate D. (Schema 1)

P (G, λ) =P (G \ e, λ) − P (G/e, λ)

=
P (K5, λ)P (H3, λ)

P (K4, λ)
−

P (K5, λ)P (H4, λ)

P (K4, λ)

=
P (K5, λ)

P (K4, λ)

(

P (K4, λ)P (H3, λ)

P (K4, λ)
−

P (K4, λ)P (H4, λ)

P (K4, λ)

)

=
P (K5, λ)

P (K4, λ)
(P (H3, λ) − P (H4, λ)) (30)

=
P (K5, λ)

P (K4, λ)
(P (H2 − e − f − g + h + i, λ) − P (H4, λ))

= . . .

=
P (K5, λ)P (H2, λ)

P (K4, λ)
.

Certificate E. (Schema 1)
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A.2 Other Certificates of Factorisation

The certificates in the previous section did not explain all chromatic factorisations of
chromatic polynomials of degree 9. Table 7 lists the numbers of chromatic polynomials of
strongly non-clique-separable graphs of order nine with certificates not following Schema
1. This section presents the certificates used to explain these cases. Certificate F explains
a chromatic factorisation with three chromatic factors. It uses similar techniques to those
used in Schema 1. Certificates G and I express P (G, λ) as the sum of at least three
terms with each term having P (H1, λ) as a chromatic factor. In the case of Certificate
G, the only difference from Schema 1 is that it requires both an addition-identification
and a deletion-contraction operation to isolate P (H1, λ) rather than a single operation.
Certificates H and J both use the chromatic factorisation of another strongly non-clique-
separable graph. Certificate K only differs from Certificate D in the second step. In
Certificate D, the graph G/e is isomorphic to the graph obtained by an r-gluing of K5

and H4. In Certificate K, the graph G/e is not isomorphic to the graph obtained by an
r-gluing of K5 and H4, but is isomorphic to the graph obtained by a (4, 3)-gluing of K5,
K4 and H ′

4 where H4 is isomorphic to a 3-gluing of K4 and H ′

4.

Certificate # Chromatic
Polynomials

F 1
G 3
H 1
I 1
J 1
K 2

Table 7: Number of chromatic polynomials of degree 9 satisfying non-Schema 1 Certifi-
cates.
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P (G, λ) =P (G \ e, λ) − P (G/e, λ)

=P (G \ e + f, λ) + P (G \ e/f, λ) − P (G/e + g, λ) − P (G/e/g, λ)

=
P (K4, λ)P (K4, λ)P (H3, λ)

P (K3, λ)P (K3, λ)
+

P (K4, λ)P (H4, λ)

P (K3, λ)

−
P (K4, λ)P (K4, λ)P (H5, λ)

P (K3, λ)P (K3, λ)
−

P (K4, λ)P (H6, λ)

P (K3, λ)

=
P (K4, λ)P (K4, λ)

P (K3, λ)P (K3, λ)
(P (H3, λ) − P (H5, λ)) +

P (K4, λ)

P (K3, λ)
(P (H4, λ) − P (H6, λ))

= . . .

=
P (K4, λ)P (K4, λ)

P (K3, λ)P (K3, λ)
(P (H3, λ) − P (H5, λ)) +

P (K4, λ)P (K4, λ)P (H7, λ)

P (K3, λ)P (K3, λ)

=
P (K4, λ)P (K4, λ)

P (K3, λ)P (K3, λ)
(P (H3, λ) − P (H5, λ) + P (H7, λ))

=
P (K4, λ)P (K4, λ)

P (K3, λ)P (K3, λ)
(P (H2 + h − i, λ) − P (H5, λ) + P (H7, λ))

= . . .

=
P (K4, λ)P (K4, λ)P (H2, λ)

P (K3, λ)P (K3, λ)

Certificate F (3 chromatic factors).

P (G, λ) =P (G \ e, λ) − P (G/e, λ)

=P (G \ e, λ) − P (G/e \ f, λ) + P (G/e/f, λ)

=
P (K5, λ)P (H3, λ)

P (K4, λ)
−

P (K5, λ)P (H4, λ)

P (K4, λ)
+

P (K5, λ)P (H5, λ)

P (K4, λ)

=
P (K5, λ)

P (K4, λ)
(P (H3, λ) − P (H4, λ) + P (H5, λ))

=
P (K5, λ)

P (K4, λ)
(P (H2 − g − h + i, λ) − P (H4, λ) + P (H5, λ))

= . . .

=
P (K5, λ)P (H2, λ)

P (K4, λ)

Certificate G.
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P (G, λ) =P (G \ e, λ) − P (G/e, λ)

=P (G \ e \ f, λ) − P (G \ e/f, λ) − P (G/e, λ)

=P (G \ e \ f + g, λ) + P (G \ e \ f/g, λ) − P (G \ e/f, λ) − P (G/e, λ)

But G \ e \ f + g ∼= G′and the factorisation of P (G′, λ) is known

=P (G′, λ) + P (G \ e \ f/g, λ) − P (G \ e/f, λ) − P (G/e, λ)

=
P (H1, λ)P (H2 \ h, λ)

P (K3, λ)
+ P (G \ e \ f/g, λ) − P (G \ e/f, λ) − P (G/e, λ)

= . . .

=
P (H1, λ)P (H2 \ h, λ)

P (K3, λ)
−

P (H1, λ)P (H2/h, λ)

P (K3, λ)
(31)

=
P (H1, λ)P (H2, λ)

P (K3, λ)

Certificate H.

P (G, λ) =P (G \ e, λ) − P (G/e, λ)

=P (G \ e \ f, λ) − P (G \ e/f, λ) − P (G/e, λ)

=P (G \ e \ f + g, λ) + P (G \ e \ f/g, λ) − P (G \ e/f, λ) − P (G/e, λ)

=
P (H1, λ)P (H3, λ)

P (K4, λ)
+ P (G \ e \ f/g, λ) − P (G \ e/f, λ) − P (G/e, λ)

Further certification steps to get each term having chromatic

factor P (H1, λ)

=
P (H1, λ)

P (K3, λ)
(P (H3, λ) − P (H4, λ) + P (H5, λ) + P (H6, λ))

=
P (H1, λ)

P (K3, λ)
(P (H2 − h − i + j, λ) − P (H4, λ) + P (H5, λ) + P (H6, λ))

= . . .

=
P (H1, λ)P (H2, λ)

P (K3, λ)

Certificate I.
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P (G, λ) =P (G \ e, λ) − P (G/e, λ)

=P (G \ e \ f, λ) − P (G \ e/f, λ) − P (G/e, λ)

=P (G \ e \ f + g, λ) + P (G \ e \ f/g, λ) − P (G \ e/f, λ) − P (G/e, λ)

But G \ e \ f + g ∼= G′and the factorisation of P (G′, λ) is known

=P (G′, λ) + P (G \ e \ f/g, λ) − P (G \ e/f, λ) − P (G/e, λ)

=
P (H1, λ)P (H2 \ h \ i + j, λ)

P (K4, λ)

+ P (G \ e \ f/g, λ) − P (G \ e/f, λ) − P (G/e, λ)

= . . .

=
P (H1, λ)P (H2, λ)

P (K4, λ)

Certificate J.

P (G, λ) =P (G \ e, λ) − P (G/e, λ)

=
P (K5, λ)P (H3, λ)

P (K4, λ)
−

P (K4, λ)P (K5, λ)P (H ′

4, λ)

P (K4, λ)P (K3, λ)

=
P (K5, λ)

P (K4, λ)

(

P (H3, λ) −
P (K4, λ)P (H ′

4, λ)

P (K3, λ)

)

=
P (K5, λ)

P (K4, λ)
(P (H3, λ) − P (H4, λ)) (32)

=
P (K5, λ)

P (K4, λ)
(P (H2 − e − f + g, λ) − P (H4, λ))

= . . .

=
P (K5, λ)P (H2, λ)

P (K4, λ)
.

Certificate K.
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