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Péter Csorba∗

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O.Box 513, 5600 MB, Eindhoven, The Netherlands

pcsorba@win.tue.nl

Submitted: Dec 1, 2008; Accepted: Apr 24, 2009; Published: May 12, 2009
Mathematics Subject Classification: 55P10, 05C69, 05E25

Dedicated to Anders Björner on the occasion of his 60th birthday.

Abstract

We study how the homotopy type of the independence complex of a graph
changes if we subdivide edges. We show that the independence complex becomes
the Alexander dual if we place one new vertex on each edge of a graph. If we
place two new vertices on each edge then the independence complex is the wedge
of two spheres. Placing three new vertices on an edge yields the suspension of the
independence complex.

1 Introduction

Independence complexes of various graph classes: e.g. trees, cycles, 2D grids were
studied in numerous papers [2, 4, 5, 6, 9, 10, 11, 12]. We study how edge subdivision
(definition 1) changes the homotopy type of the independence complex. This is motivated
by the homology calculation [7] of Ind(G3). Schoutens [15] observed and proved that
H̃i(Ind(G), R) ∼= H̃n−i−2(Ind(G2), R) using the double complex and the tic-tac-toe lemma.
This explains that the reduced Euler characteristic sometimes changes the sign if we place
one new vertex on each edge of a graph: χ̃(Ind(G)) = (−1)|V (G)| · χ̃(Ind(G2)). Alexander
duality explains this on the homotopy level. Ind(G) is a subcomplex of a simplex with
n = |V (G)| vertices. If G is connected, then Ind(G) is a subcomplex of Sn−2, the boundary
of a simplex with n vertices. We can consider this Sn−2 as the equator of Sn−1. We will
show that the complement of Ind(G), Sn−1 \ Ind(G) is homotopy equivalent to Ind(G2).
In section 2 we review some definitions and collect the necessary tools for the proofs. In
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section 3 we will show that Ind(G2) is the suspension of the Alexander dual of Ind(G).
In section 4 we prove that Ind(G3) is a wedge of spheres unless G is a tree. We study
how the homotopy type changes if we remove a vertex from G3. In section 5 we deal with
Ind(Gn) and show that Ind(Gn+3) ≃ suspe(Ind(Gn)). From this we get recursively the
homotopy information of Ind(Gn).

2 Preliminaries

We assume that the reader is familiar with basic topological concepts and constructions
(homotopy, wedge, suspension, join), the definition of graphs, simplicial complexes and
their properties. Introductory chapters of books like [14, 3, 13] should provide a sufficient
background. Here we only review a few things to fix the notation.

We assume that graphs G = (V (G), E(G)) are simple, i.e., without loops and parallel
edges. A graph will be connected unless otherwise stated.

Definition 1 Let G be a graph. The graph Gn is obtained from G by replacing each edge

by a path of length n.

For example G1 = G. If P is just an edge, then Pn is the path with n edges. Let C be
the loop. Now Cn is the cycle with n vertices. Clearly (Cn)3 is C3n. We will consider
V (G2) = V (G) ∪ E(G) and V (G3) ⊃ V (G).
A subset of the vertex set of a graph is independent if no two vertices in it are adjacent.

Definition 2 Let G be a graph. The independence complex of G, denoted by Ind(G), is a

simplicial complex with vertex set V (G), and σ ∈ Ind(G) if σ is an independent set in G.

We will consider the independence complex of connected graphs. If G is the disjoint union
of H and J then Ind(G) is the join of Ind(H) and Ind(J). In a graph G, the neighborhood

of a vertex v, NG(v) is the set of vertices which are adjacent to v. If it is clear which G
is meant, we just write N(v). We will use the following lemma from [6].

Lemma 3 (fold lemma) Let G be a graph and v, w ∈ V (G). If N(v) ⊆ N(w) then

Ind(G) is homotopy equivalent to Ind(G \ {w}).

Let X be a topological space, and let X = ∪i∈IXi be a covering. The nerve of a covering
is a simplicial complex, denoted N (XI), whose set of vertices is given by I, and whose
set of simplices is described as follows: the finite subset S ⊆ I gives a simplex of N (XI)
if and only if the intersection ∩i∈SXi is non-empty. We will need the nerve lemma [3, 13].

Lemma 4 (nerve lemma) Let K be a simplicial complex, and let K = ∪n

i=1Ai be a

covering of K by its subcomplexes, such that every non-empty intersection of the covering

sets is contractible. Then K and N (AI) are homotopy equivalent.

Let K be a simplicial complex with the ground set V . The star of a vertex v of
K is starK(v) = {σ ∈ K : σ ∪ {v} ∈ K}. We define the combinatorial Alexander dual

of K as a simplicial complex K∗ = {A ⊂ V : V \ A /∈ K}. If |V | = n we can consider
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K ⊂ Sn−2 unless K is the n−1-dimensional simplex. It is easy to see that K∗ is homotopy
equivalent to Sn−2 \K. The Alexander duality [1, 8] gives that the ith reduced homology
group is isomorphic to the n − i − 3rd reduced cohomology group of the complement:
H̃i(K) ∼= H̃n−i−3(Sn−2 \ K). In our combinatorial settings: H̃i(K) ∼= H̃n−i−3(K∗).

3 The independence complex of G2

Theorem 5 Let G be a graph with n vertices. The independence complex Ind(G2) is

homotopy equivalent to the Alexander dual of Ind(G). Here Ind(G) is considered as a

simplicial complex on n + 1 vertices such that actually no simplex contains the extra

(n + 1)st vertex.

Proof. For v ∈ V (G) let Kv = starInd(G2)(v). We define K∅ to be the induced subcomplex
by the vertex set V (G2)\V (G). This way we obtain a covering of Ind(G2). K∅ is a simplex,
Kv is a cone with apex v so they are contractible. The intersection Kv1

∩· · ·∩Kvk
is again a

cone with apex e.g. v1, since V (G) forms an independent set in G2. So Kv1
∩· · ·∩Kvk

is non-
empty and contractible. The intersection K∅∩Kv1

∩· · ·∩Kvk
is empty if V (G)\{v1, . . . , vk}

is an independent set. If V (G) \ {v1, . . . , vk} is not an independent set, then there are
edges e1, . . . , el ∈ E(G) spanned by V (G)\{v1, . . . , vk}. Now this intersection is a simplex
with vertex set e1, . . . , el ∈ V (G2).
We can apply the nerve lemma (lemma 4) and get that Ind(G2) is homotopy equivalent
to a simplicial complex on n + 1 vertices. The extra (n + 1)st vertex corresponds to K∅.
The non-empty intersections correspond to complements of non-independent sets, exactly
as in the Alexander duality, which completes the proof. �

Theorem 6 The independence complex Ind(G2) is homotopy equivalent to the suspension

of the Alexander dual of Ind(G). Ind(G2) ≃ susp ((Ind(G))∗).

Proof. By theorem 5 we know that Ind(G2) ≃ (Ind(G) ⊂ σn)∗. The later Alexander
dual is the cone over (Ind(G))∗ together with a simplex on V (G). If we contract this
simplex we get a homotopy equivalent CW complex. The suspension is the double cone
over (Ind(G))∗. A cone is contractible, so we might contract one to obtain a homotopy
equivalent CW complex. Since these CW complexes are the same we have finished the
proof. �

Remark. Let G be a graph with n vertices and e edges. Since G4 = (G2)2 by the Alexander
duality (theorem 5) we get that Ind(G2) ≃ Sn−1 \ Ind(G), Ind(G) ≃ Sn−1 \ Ind(G2) and
Ind(G4) ≃ Sn+e−1 \ Ind(G2) = Sn−1 ∗Se−1 \ Ind(G2) ≃ Ind(G) ∗Se−1. The join with Se−1

is the same as the suspension iterated e times, so Ind(G4) ≃ suspe(Ind(G)). A similar
formula can be obtained for G2k by repeating this.

4 The independence complex of G3

Lemma 7 Let T be a tree. Ind(T3) is contractible.
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Proof. We proceed by induction on the number of edges of T . If T has only one edge, then
T3 is a path of length 3 and it is easy to check that Ind(T3) is contractible. Lets assume
that T has e + 1 edges. Since T is a tree, there is a degree one vertex x ∈ V (T ). Let
y = NT (x) be its only neighbor. In T3 there are two new vertices u, v between x and y.
Since NT3

(x) = {u} ⊂ {u, y} = NT3
(v) we get from lemma 3 that Ind(T3) = Ind(T3 \{v}).

T3 \ {v} is a disjoint union of an edge and H3, where H is a tree with only e edges. So
Ind(T3) is the join of S0 and Ind(H3), which is contractible by the induction. �

Theorem 8 Let G be a graph but not a tree with n vertices and e edges. Ind(G3) is

homotopy equivalent to a wedge of spheres Se−1 ∨ Sn−1.

Before the proof we remark that it is easy to find one of the spheres. G3 \ V (G) is
the disjoint union of e edges, so Ind(G3) contains as a subcomplex the corresponding
cross-polytope boundary Se−1.

Proof. For x ∈ V (G) let Kx = starInd(G3)(x). We define K∅ to be the induced subcomplex
by the vertex set V (G3)\V (G). This way we obtain a covering of Ind(G3). As we observed
before K∅ is a cross-polytope boundary so it is Se−1. Kx is a cone with apex x so it is
contractible. The intersection Kx1

∩ · · · ∩ Kxk
is again a cone with apex e.g. x1, since

V (G) is an independent set in G3, so Kx1
∩ · · · ∩Kxk

is non-empty and contractible. The
intersection K∅∩Kx1

∩· · ·∩Kxk
is empty if V (G) = {x1, . . . , xk}. If V (G) 6= {x1, . . . , xk}

let y ∈ V (G) \ {x1, . . . , xk} such that y has a neighbor xi in G. y exists since G is
connected. In G3 there are two new vertices u, v between xi and y, let v ∈ NG3

(y). It
is easy to see that the intersection K∅ ∩ Kx1

∩ · · · ∩ Kxk
is a cone with apex v, so it is

contractible. We are ready to understand the nerve of this covering. We covered Ind(G3)
with n+1 sets, and only the intersection of all sets was empty, so the nerve is the boundary
of a simplex which is Sn−1.
Observe that K∅ is the only non-contractible subcomplex so we can not apply the nerve
lemma (lemma 4) yet. We show that there is a maximal simplex of σ ∈ K∅(= Se−1) such
that the interior of σ does not intersect any other Kx. We choose a spanning tree T in
G. Since G was not a tree, there is an edge vw ∈ E(G), vw 6∈ E(T ). We assign to each
vertex of x ∈ G an edge ex such that the edge contains the vertex, and different vertices
have different assigned edges. If we pick a vertex x ∈ G, then there is a unique path in
T which starts in x and ends in v. We assign the first edge of this path to x. To finish
this we assign vw to v. Now in G3 we choose vx ∈ NG3

(x) such that vx is a vertex of the
path of length 3 introduced instead of ex during the construction of G3. Because of the
construction, these chosen vertices vx form a maximal simplex σ in Ind(G3) and K∅ as
well.
Now in the interior of σ we choose an (e− 1)-dimensional simplex τ . τ does not intersect
Kx (x ∈ V (G)), because of the construction of σ. We modify K∅ by removing the interior
of τ . Since K∅ was the boundary of the cross-polytope, after the modification it will be
contractible, it is homeomorphic to the disc. To obtain a covering of Ind(G3) we cover τ
by e (e − 1)-dimensional simplices corresponding to the cone over the boundary of τ .
The nerve of this new covering will be the previously described Sn−1; and the covering
of τ together with the modified K∅ provides the boundary of a simplex with e vertices.
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Sn−1 and this new simplex boundary have only the vertex corresponding to the modified
K∅ in common, which completes the proof. �

Remark. Let G be a graph with n vertices and e edges. Since G6 = (G2)3, from theorem
8 and lemma 7 we get that Ind(G6) is homotopy equivalent to S2e−1 ∨ Se+n−1 unless G
is a tree, when it is contractible. Similarly Ind(G3k) is homotopy equivalent to Sk·e−1 ∨
S(k−1)·e+n−1 or contractible.

In physics independent sets correspond to configurations of electrons. It is interesting to
know what happens if a cosmic ray hits one possible place of the electron. This corresponds
to deleting a vertex in the graph.

Lemma 9 Let G be a graph with e edges and x ∈ V (G) a vertex. Ind(G3 \ {x}) is

homotopy equivalent to Se−1.

Proof. Let y be the neighbor of x in G. In G3 there are two new vertices u, v between x and
y. Since x was deleted NG3

(u) = {v} ⊆ NG3
(y), so Ind(G3 \ {x}) is homotopy equivalent

to Ind(G3 \ {x, y}). By continuing along the edges of G we get that Ind(G3 \ {x}) is
homotopy equivalent to Ind(G3 \ {V (G)}) (G was connected). G3 \ {V (G)} is a graph
containing e disjoint edges, so Ind(G3 \ {x}) is homotopy equivalent to the join of edge
many S0, which is Se−1; the boundary of the cross-polytope. �

Lemma 10 Let G be a graph with n vertices and e edges. Let u ∈ V (G3), u 6∈ V (G) be a

vertex. Ind(G3 \ {u}) is homotopy equivalent to Sn−1 or Sm−1 ∨Sn−1 or it is contractible,

where n ≤ m ≤ e.

Proof. Let x and y be neighbors in G such that u, v ∈ V (G3) are between them.

Case 1. Assume that G3\{u} is connected. We define a new graph G̃ from G by removing
the edge between x and y, and adding a new vertex x̃ connected to y. G̃ is connected
since G3 \ {u} was connected. We choose a spanning tree T in G̃. Since x̃ has degree
1 the edge between x̃ and y is in T . Let z 6= x be another neighbor (in G) of y such
that the edge zy is in T . In G3 there are two vertices u1, v1 between y and z. Now
NG3\{u}(v) = {y} ⊂ {v1, y} = NG3\{u}(u1), so from lemma 3 we get that Ind(G3 \ {u}) is
homotopy equivalent to Ind(G3 \ {u, u1}). We can recursively repeat this procedure on
the edges of T . In each step we choose the closest edge to x̃ where we have not performed
this step yet. The procedure allows us to delete one vertex from the corresponding path
in G3, without changing the homotopy type of the independence complex. Let H be the
graph obtained this way from G3 \ {u}. Let ab be an edge in G but not an edge of T .
In H there are two vertices c, d between a and b. In T there is a unique path from a
to x̃. Following this path in H ⊂ G3 we denote the neighbor of a by va. We define vb

similarly. NH(va) = {a} ⊂ {a, d} = NH(c) so by lemma 3 Ind(H) is homotopy equivalent
to Ind(H \ {c}). Now NH\{c}(vb) = {b} = NH\{c}(d) so by lemma 3 Ind(H \ {c}) is
homotopy equivalent to Ind(H \ {c, d}). Repeatedly we can remove the middle vertices
of each edge corresponding to edge of E(G) \E(T ). At the end we get a graph consisting
of n disjoint edges resulting in Sn−1 for the independence complex.
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Case 2. Now G3\{u} is not connected, it has then two components. One of the component
is H3 for an appropriate graph H . If H is a tree then Ind(H3) is contractible by lemma
7, Ind(G3 \ {u}) is contractible as well. If H is not a tree with nH vertices and eH

edges, then by theorem 8 Ind(H3) is homotopy equivalent to SeH−1 ∨ SnH−1. Now the
other connected component can be considered as F3 with an extra vertex and edge for
some graph F . Similar to Case 1 we get that Ind(F3) is homotopy equivalent to SnF−1,
where F has nF vertices. Ind(G3 \ {u}) is the join of the independence complexes of its
two components, so it is homotopy equivalent to (SeH−1 ∨ SnH−1) ∗ SnF−1 ∼= SeH+nF−1 ∨
SnH+nF−1 = Sm−1 ∨ Sn−1. It is easy to see that eH + nF − 1 ≤ eH + eF < e and
eH + nF − 1 ≥ nH + nF − 1 = n − 1, since a tree has vertex−1 edges. �

5 The independence complex of Gn

The following theorem will explain the homotopy type of the independence complex
of Gn (for n ≥ 4). In [12] this was proved for the special case when G is a path or a cycle.

Theorem 11 Let G be a graph and uv ∈ E(G) an edge. Let G̃ be a graph obtained from

G by replacing the edge uv by a path of length 4. Now Ind(G̃) is homotopy equivalent to

the suspension of Ind(G). Ind(G̃) ≃ susp(Ind(G)).

Proof. Let V (G̃) = V (G) ∪ {1, 2, 3}, 2 is the middle vertex of this edge subdivision. Let
A = starInd(G̃)(2) and B = starInd(G̃)(1) ∪ starInd(G̃)(3). A is a cone with apex 2, so it is
contractible. Since there is no edge between 1 and 3 we get that starInd(G̃)(1)∩starInd(G̃)(3)
is a cone with apex 1. By lemma 4 we get that B is contractible. It is easy to see that
B ∩ A = Ind(G), so by [3, Lemma 10.4(ii)], Ind(G̃) ≃ susp(Ind(G)). �

Let G be a graph with n vertices and e edges. By theorem 11 we get that Ind(Gn+3) ≃
suspe(Ind(Gn)). This gives that Ind(G3k+1) ≃ suspe·k(Ind(G)). Using theorem 6 we
have that Ind(G3k+2) ≃ suspe·k(Ind(G2)) ≃ suspe·k+1(Ind(G)∗). In other words Se·k+n−1 \
Ind(G) is homotopy equivalent to Ind(G3k+2). From theorem 8 and lemma 7 we obtain
that Ind(G3k+3) ≃ suspe·k(Ind(G3)) ≃ suspe·k(Se−1 ∨ Sn−1) ≃ S(k+1)·e−1 ∨ Sk·e+n−1 unless
G is a tree, when it is contractible.
In Gn we subdivide each edge of G into n pieces. It is not necessary to subdivide each
edge into the same number of pieces. As long as the number of pieces mod 3 is the same
for each edge, we can keep track the homotopy changes using theorem 11 and the previous
sections.
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