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Abstract

Given integers n and m = ⌊βn⌋ and a probability measure Q on {0, 1, . . . ,m},
consider the random intersection graph on the vertex set [n] = {1, 2, . . . , n} where
i, j ∈ [n] are declared adjacent whenever S(i)∩S(j) 6= ∅. Here S(1), . . . , S(n) denote

the iid random subsets of [m] with the distribution P(S(i) = A) =
( m
|A|

)−1
Q(|A|),

A ⊂ [m]. For sparse random intersection graphs, we establish a first-order asymp-
totic as n → ∞ for the order of the largest connected component N1 = n(1 −
Q(0))ρ + oP (n). Here ρ is the average of nonextinction probabilities of a related
multitype Poisson branching process.

1 Introduction

Let Q be a probability measure on {0, 1, . . . , m}, and let S1, . . . , Sn be random subsets of
a set W = {w1, . . . , wm} drawn independently from the probability distribution P(Si =

A) =
(

m
|A|

)−1
Q(|A|), A ⊂ W , for i = 1, . . . , n. A random intersection graph G(n, m, Q)

with vertex set V = {v1, . . . , vn} is defined as follows. Every vertex vi is prescribed the set
S(vi) = Si, and two vertices vi and vj are declared adjacent (denoted vi ∼ vj) whenever
S(vi)∩S(vj) 6= ∅. The elements of W are sometimes called attributes, and S(vi) is called
the set of attributes of vi.

Random intersection graphs G(n, m, Q) with the binomial distribution Q ∼ Bi(m, p)
were introduced in Singer-Cohen [15] and Karoński et al. [13], see also [10] and [16]. The
emergence of a giant connected component in a sparse binomial random intersection graph
was studied by Behrish [2] for m = ⌊nα⌋, α 6= 1, and by Lager̊as and Lindholm [14] for
m = ⌊βn⌋, where β > 0 is a constant. They have shown, in particular, that, for α > 1,
the largest connected component collects a fraction of all vertices whenever the average
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vertex degree, say d, is larger than 1+ ε. For d < 1−ε, the order of the largest connected
component is O(logn).

The graph G(n, m, Q) defined by an arbitrary probability measure Q (we call such
graphs inhomogeneous) was first considered in Godehardt and Jaworski [11], see also [12].
Deijfen and Kets [8] and Bloznelis [3] showed (in increasing generality) that the typical
vertex degree of G(n, m, Q) has the power law for a heavy-tailed distribution Q. Another
result by Deijfen and Kets [8] says that, for m ≈ βn, sparse intersection graphs G(n, m, Q)
possess the clustering property, that is, for any triple of vertices vi, vj , vk, the conditional
probability P(vi ∼ vj | vi ∼ vk, vj ∼ vk) is bounded away from zero as m, n → ∞.

The emergence of a giant connected component in a sparse inhomogeneous intersection
graph with n = o(m) (graph without clustering) was studied in [4]. The present paper
addresses inhomogeneous intersection graphs with clustering, i.e., the case where m ≈ βn.

2 Results

Given β > 0, let {G(n, mn, Qn)} be a sequence of random intersection graphs such that

lim
n

mnn−1 = β. (1)

We shall assume that the sequence of probability distributions {Qn} converges to some
probability distribution Q defined on {0, 1, 2, . . .},

lim
n

Qn(t) = Q(t) ∀ t = 0, 1, . . . , (2)

and, in addition, the sequence of the first moments converges,

lim
n

∑

t>1

tQn(t) =
∑

t>1

tQ(t) < ∞. (3)

2.1. Degree distribution. Let Vn = {v1, . . . , vn} denote the vertex set of Gn =
G(n, mn, Qn), and let dn(vi) denote the degree of vertex vi. Note that, by symmetry, the
random variables dn(v1), . . . , dn(vn) have the same probability distribution, denoted Dn.
In the following proposition we recall a known fact about the asymptotic distribution
of Dn.

Proposition 1. Assume that (1), (2), and (3) hold. Then we have, as n → ∞,

P(Dn = k) →
∑

t>0

(at)k

k!
e−atQ(t), k = 0, 1, . . . , (4)

where a = β−1
∑

t>0 tQ(t).

Roughly speaking, the limit distribution of Dn is the Poisson distribution P(λ) with
random parameter λ = aX, where X is a random variable with distribution Q. In partic-
ular, for a heavy-tailed distribution Q, we obtain the heavy-tailed asymptotic distribution
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for Dn. For Q ∼ Bi(m, p), (4) is shown in [16]. For arbitrary Q, (4) is shown (in increasing
generality) in [8] and [5].

2.2. The largest component. Let N1(G) denote the order of the largest connected
component of a graph G (i.e., N1(G) is the number of vertices of a connected component
which has the largest number of vertices). We are interested in a first-order asymptotic
of N1(G(n, mn, Qn)) as n → ∞.

The most commonly used approach in investigating the order of the largest component
of a random graph is based on tree counting, see [9], [7]. For inhomogeneous random
graphs, it is convenient to count trees with a help of branching processes, see [6]. Here
large trees correspond to surviving branching processes, and the order of the largest
connected component is described by means of the survival probabilities of a related
branching process. In the present paper we use the approach developed in [6].

Before formulating our main result, Theorem 1, we will introduce some notation. Let
X = XQ,β denote the multitype Galton–Watson branching process, where particles are
of types t ∈ T = {1, 2, . . .}, and where the number of children of type t of a particle of
type s has the Poisson distribution with mean (s − 1)tqtβ

−1. Here we write qt = Q(t),
t ∈ T. Let X (t) denote the process X starting at a particle of type t, and |X (t)| denote
the total progeny of X (t). Let ρQ,β(t) = P(|X (t)| = ∞) denote the survival probability

of the process X (t). Write ρ
(k)
Q,β(t) = P(|X (t)| > k),

ρ̃Q,β =
∑

t∈T

ρQ,β(t + 1)qt, ρ̃(k)(Q) =
∑

t∈T

ρ
(k)
Q,β(t + 1)qt.

Note that for every t ∈ T, we have ρ
(k)
Q,β(t) ↓ ρQ,β(t) as k ↑ ∞ (by the continuity property

of probabilities). Hence, ρ̃(k)(Q) ↓ ρ̃(Q) as k ↑ ∞.
Notation oP (n). We write ηn = oP (1) for a sequence of random variables {ηn} that

converges to 0 in probability. We write ηn = oP (n) if ηnn−1 = oP (1).

Theorem 1. Let β > 0. Let {mn} be a sequence of integers satisfying (1). Let Q,
Q1, Q2, . . . be probability measures defined on {0, 1, 2 . . .} such that

∑mn

t=0 Qn(t) = 1 for
n = 1, 2, . . . . Assume that (2) and (3) hold. Then we have, as n → ∞,

N1

(

G(n, mn, Qn)
)

= nρ + oP (n). (5)

Here ρ = ρ̃Q,β for Q(0) < 1 and ρ = 0 otherwise.

We briefly explain the result. Following [6], we discover vertices of the giant compo-
nent, by exploring the neighborhood of each vertex using the Breadth-First search (BFS):
vertices producing large BFS trees (such vertices are called large) are likely to belong to
the giant component. What we need is to evaluate the fraction of large vertices or, equiva-
lently, to calculate the probability that the BFS tree rooted at a given vertex, say v ∈ Vn,
is large. We denote this probability pn (it does not depend on v) and expand it, by the
total probability formula, pn =

∑

t>1 pn(t)Qn(t), where pn(t) = P(v is large
∣

∣ |S(v)| = t).
Replacing Qn(t) and pn(t) by their asymptotic values Q(t) and ρQ,β(t + 1), we obtain the
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asymptotic value ρ of pn given in (5). The approximation pn(t) ≈ ρQ,β(t+1) is obtained by
coupling the neighborhood exploration process with the branching process X (t + 1). We
explain this approximation in more detail. For notational convenience, we assign types to
vertices: a vertex u is assigned type tu = |S(u)|. We remark that, for large n, the number
of vertices of type t is approximately nqt, and the probability that vertices of types s and
t establish a link is approximately stm−1. In addition, with high probability, each pair of
adjacent vertices shares only one common attribute. Now, consider the BFS tree rooted
at v. In view of the remarks above, the number of children of type t of the root v is
approximately binomially distributed with mean tvtm

−1 ×nqt ≈ tvtqtβ
−1. We couple this

number with the Poisson variable of mean tvtqtβ
−1. Similarly, the number of children of

type t of another vertex, say u, of the tree is coupled with the Poisson variable of mean
(tu − 1)tm−1 × nqt ≈ (tu − 1)tqtβ

−1. Here we use the observation that the attribute con-
necting u to its closest predecessor (in the BFS tree) attracts children to the predecessor,
not to u, while u has remaining tu − 1 attributes to attract its own children. In this way
we couple the first o(n) steps of the neighborhood exploration process with the Poisson
branching process X . As a result, we obtain the approximation of the probability pn(t)
by the nonextinction probability ρQ,β(t + 1).

Remark 1. The correspondence ρ > 0 ⇔ EDn > c > 1 established for binomial
random intersection graphs in [2], [14] cannot be extended to general inhomogeneous
graphs G(n, mn, Qn). To see this, consider the graph obtained from a binomial random
intersection graph by replacing S(vi) by ∅ for a randomly chosen fraction of vertices. This
way we can make the expected degree arbitrarily small and still have the giant connected
component spanned by a fraction of unchanged vertices.

Remark 2. The kernel (s, t) → (s − 1)tβ−1 of the Poisson branching process which
determines the fraction ρ in the case mn ≈ βn differs from the kernel (s, t) → st which
appears in the case n = o(mn), see [4]. This difference is explained as follows. For n =
o(mn), the size of the attribute set of a typical vertex of a sparse random intersection graph
increases to infinity at the rate

√

mn/n as n → ∞, see [3]. Now the type tu of a vertex u

is set tu = |S(u)|
√

n/mn, and the fractions |S(u)| × |S(r)|/m and (|S(u)| − 1)×|S(r)|/m
(describing the link probability between vertices u and r, and the probability that r is
a child of u in a BFS tree) have the same asymptotic value tutr/n. Therefore, the link
probabilities and the growth of BFS trees are described by the same kernel (s, t) → st.

3 Proof

The section is organized as follows. First, we collect some notation and formulate auxiliary
results. We then prove Theorem 1. The proofs of auxiliary results are given at the end
of the section.

Let W ′ be a finite set of size |W ′| = k. Let B, H be subsets of W ′ of sizes |B| = b and
|H| = h such that B ∩ H = ∅. Let A be a random subset of W ′ uniformly distributed in
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the class of subsets of W ′ of size a. Introduce the probabilities

p(a, b, k) = P(A ∩ B 6= ∅),

p1(a, b, k) = P(|A ∩ B| = 1), p2(a, b, k) = P(|A ∩ B| > 2),

p(a, b, h, k) = P
(

|A ∩ B| = 1, A ∩ H = ∅
)

,

p1(a, b, h, k) = P
(

|A ∩ B| = 1, A ∩ H 6= ∅
)

.

Lemma 1. Let k > 4. Denote κ = ab/k and κ
′ = ab/(k − a). For a + b 6 k, we have

κ(1 − κ
′) 6 p1(a, b, k) 6 p(a, b, k) 6 κ, (6)

p2(a, b, k) 6 2−1
κ

2. (7)

Denote κ
′′ = (a − 1)h/(k − b). For a + b + h 6 k, we have

κ(1 − κ
′ − κ

′′) 6 p(a, b, h, k) 6 κ, (8)

p1(a, b, h, k) 6 κ
′′
κ. (9)

Given integers n, m and a vector s = (s1, . . . , sn) with coordinates from the set
{0, 1, . . . , m}, let S(v1), . . . , S(vn) be independent random subsets of Wm = {w1, . . . , wm}
such that, for every 1 6 i 6 n, the subset S(vi) is uniformly distributed in the class of
all subsets of Wm of size si. Let Gs(n, m) denote the random intersection graph on the
vertex set Vn = {v1, . . . , vn} defined by the random sets S(v1), . . . , S(vn). That is, we
have vi ∼ vj whenever S(vi) ∩ S(vj) 6= ∅.

Lemma 2. Let β > 0. Let M > 0 be an integer, and let Q be a probability measure defined
on [M ] = {1, . . . , M}. Let {mn} be a sequence of integers, and {sn = (sn1, . . . , snn)} be
a sequence of vectors with integer coordinates sni ∈ [M ], 1 6 i 6 n. Let nt denote the
number of coordinates of sn attaining the value t. Assume that, for some integer n′ and
a sequence {εn} ⊂ (0, 1) converging to zero, we have, for every n > n′,

max
16t6M

|(nt/n) − Q(t)| 6 εn, (10)

|mn(βn)−1 − 1| 6 εn. (11)

Then there exists a sequence {ε∗n}n>1 converging to zero such that, for n > n′, we have

P
(
∣

∣N1(Gsn(n, mn)) − nρ̃Q,β

∣

∣ > ε∗nn
)

< ε∗n. (12)

Several technical steps of the proof of Lemma 2 are collected in the separate Lemma 3.

Lemma 3. Assume that conditions of Lemma 2 are satisfied. For any function ω(·)
satisfying ω(n) → +∞ as n → ∞, bounds (24), (25), and (27) hold.

Proof of Theorem 1. Write, for short, Gn = G(n, mn, Qn) and N1 = N1(G(n, mn, Qn)).
Given t = 0, 1, . . . , let nt denote the number of vertices of Gn with the attribute sets
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of size t. Let Q∗ denote the probability measure on T = {1, 2, . . .} defined by Q∗(t) =
(

1 − Q(0)
)−1

Q(t), t > 1. Write qnt = Qn(t), qt = Q(t), and q∗t = Q∗(t).
Note that vertices with empty attribute sets are isolated in Gn. Hence, the connected

components of order at least 2 of Gn belong to the subgraph G[∞] ⊂ Gn induced by the
vertices with nonempty attribute sets.

In the case where q0 = 1, from (2) we obtain that the expected number of vertices in
G[∞] is E(n − n0) = n(1 − qn0) = o(n). This identity implies N1 = oP (n). We obtain (5)
for q0 = 1.

Let us prove (5) for q0 < 1. Let G[M ],n denote the subgraph of Gn induced by the
vertices with attribute sets of sizes from the set [M ] = {1, . . . , M}. In the proof we
approximate N1(Gn) by N1(G[M ],n) and use the result for N1(G[M ],n) shown in Lemma 2.

We need some notation related to G[M ],n. The inequality q0 < 1 implies that, for large
M , the sum q[M ] := q1 + · · · + qM ≈ 1 − q0 is positive. Given such M , let Q∗

M be the
probability measure on [M ] which assigns the mass q∗Mt = qt/q[M ] to t ∈ [M ]. Denote
ρ̃[M ] = ρ̃Q∗

M ,βM
, where βM = β/q[M ], and write β∗ = β(1 − q0)

−1. Clearly, βM converges
to β∗ as M → ∞, and we have

∀t > 1, lim
M

q∗Mt = q∗t and lim
M

∑

t>1

tq∗Mt =
∑

t>1

tq∗t < ∞. (13)

It follows from (13) that
lim
M

ρ̃[M ] = ρ̃Q∗,β∗ . (14)

For the proof of (14), we refer to Chapter 6 of [6].
We are now ready to prove (5). For this purpose, we combine the upper and lower

bounds

N1 > n(1 − q0)ρ̃Q∗,β∗ − oP (n) and N1 6 n(1 − q0)ρ̃Q∗,β∗ + oP (n),

and use the simple identity (1 − q0)ρ̃Q∗,β∗ = ρ̃Q,β. We give the proof of the lower bound
only. The proof of the upper bound is almost the same as that of the corresponding bound
in [4], see formula (56) in [4].

In the proof we show that, for every ε ∈ (0, 1),

P(N1 > n(1 − q0)ρ̃Q∗,β∗ − 2εn) = 1 − o(1) as n → ∞. (15)

Fix ε ∈ (0, 1). In view of (14), we can choose M such that

ρ̃Q∗,β∗ − ε < ρ̃[M ] < ρ̃Q∗,β∗ + ε. (16)

We apply Lemma 2 to G[M ],n conditionally given the event

An = { max
16t6M

|nt − qtn| < nδn + n2/3}.
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Here δn = max16t6M |qnt − qt| satisfies δn = o(1), see (2). In addition, we have

1 − P(An) 6 P( max
16t6M

|nt − qntn| > n2/3)

6
∑

16t6M

P(|nt − qntn| > n2/3)

6 M n−1/3 = o(1).

In the last step we have invoked the bounds P(|nt−qntn| > n2/3) 6 n−1/3, which follow by
Chebyshev’s inequality applied to binomial random variables nt, t ∈ [M ]. Now, combining
the bound

P
(

|N1(G[M ],n) − nρ̃[M ]| > nε
∣

∣An) = o(1) (17)

(which follows from Lemma 2) with (16) and the bound P(An) = 1 − o(1), we obtain

P
(

|N1(G[M ],n) − nρ̃Q∗,β∗| > 2nε
)

= o(1).

Finally, (15) follows from the obvious inequality N1 > N1(G[M ],n).

Proof of Lemma 2. The proof consists of two steps. First, we show that the components
of order at least n2/3 contain nρ̃Q,β +oP (n) vertices in total. This implies the upper bound
for N1 = N1(Gsn(n, mn))

N1 6 nρ̃Q,β + oP (n). (18)

Secondly, we prove that with probability tending to one, such vertices belong to a common
connected component. This implies the lower bound

N1 > nρ̃Q,β − oP (n). (19)

Clearly, (18) and (19) yield (12). Before the proof of (18) and (19), we introduce some
notation.

Notation. Denote ρ̃ = ρ̃Q,β. In what follows, we drop the subscript n and write
m = mn, V = Vn, W = Wm, G = Gsn(n, m). We say that a vertex v ∈ V is of type t if
the size sv = |S(v)| of its attribute set S(v) is t. An edge u′ ∼ u′′ of G is called regular if
|S(u′)∩S(u′′)| = 1. In this case, u′ and u′′ are called regular neighbors. The edge u′ ∼ u′′

is called irregular otherwise. We say that vi is smaller than vj if i < j.
Given v ∈ V , let Cv denote the connected component of G containing vertex v. In

order to count vertices of Cv, we explore this component using the BFS procedure. This
procedure discovers vertices one by one and collects them in the list, denoted Lv. In what
follows, we say that u′ ∈ Lv is older than u′′ ∈ Lv if u′ has been added to the list before
u′′.

Component exploration. In the beginning all vertices are uncolored. Color v white
and add it to the list Lv (now Lv consists of a single white vertex v). Next, we proceed
recursively. We choose the oldest white vertex in the list, say u, scan the current set of
uncolored vertices (in increasing order) and look for neighbors of u. Each new discovered
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neighbor immediately receives white color and is added to the list. In particular, neighbors
with smaller indices are added to the list before ones with larger indices. Once all the
uncolored vertices are scanned, color u black. Neighbors of u discovered in this step are
called children of u. Exploration ends when there are no more white vertices in the list
available.

By L∗
v = {v = u1, u2, u3, . . .} we denote the final state of the list after the exploration

is complete. Here vertices are arranged according to the order of their inclusion in the
list (e.g., u2 was added to the list before u3). Clearly, L∗

v is the vertex set of Cv. Denote
Lv(k) = {ui ∈ L∗

v : i 6 k}. Note that |Lv(k)| = min{k, |L∗
v|}. By uj∗ we denote the

vertex which has discovered uj (uj is a child of uj∗). Introduce the sets

Dk = ∪16j6kS(uj), S ′(ui) = S(ui) \ Di−1, k > 1, i > 2, (20)

and put D0 = ∅, S ′(u1) = S(u1).
Regular exploration is performed similarly to the “ordinary” exploration, but now only

regular neighbors are added to the list. We call them regular children. A regular child
u′ of u is called simple if S(u′) \ S(u) does not intersect with S(e) for any vertex e that
has already been included in the list before u′. Otherwise, the regular child is called
complex. Simple exploration is performed similarly to the regular exploration, but now
simple children are added to the list only.

In the case of regular (respectively simple) exploration, we use the notation Lr
v, Lr∗

v ,
Lr

v(k), Dr
k, S ′r(ui) (respectively Ls

v, Ls∗
v , Ls

v(k), Ds
k, S ′s(ui)) which is defined in much the

same way as above. Similarly, i∗ denotes the number in the list (Lr
v or Ls

v depending on
the context) of the vertex that has discovered ui (ui is a child of ui∗). For an element
uj of the list Ls∗

v = {v = u1, u2, . . .}, we denote H(uj) = (∪j∗<r<jS(ur)) \ Ds
j∗ . Consider

the simple exploration at the moment where the current oldest white vertex, say ui of
evolving list Ls

v = {v = u1, u2, . . . } starts the search of its simple children. Let Ui =
{vj1, . . . , vjr , . . . vjk

} denote the current set of uncolored vertices (the set of potential
simple children). Here j1 < j2 < · · · < jk. First, allow ui to discover its simple children
among {vj1, . . . , vjr−1}. Define the set Hi(vjr) =

(

∪u∈LS(u)
)

\Ds
i , where L denotes the set

of current white elements of the list that are younger than ui. In particular, L includes the
simple children of ui discovered among vj1 , . . . , vjr−1. Observe that any u′ ∈ Ui becomes
a simple child of ui if it is a regular neighbor of ui and Hi(u

′) ∩ S(u′) = ∅, that is,

|S(u′) ∩ S(ui)| = 1 and S(u′) ∩ Hi(u
′) = ∅. (21)

Observe that for any element of the list uj ∈ Ls∗
v , we have H(uj) = Hj∗(uj).

Note that irregular neighbors discovered during regular exploration receive white color
but are not added to the list Lr

v. Similarly, irregular neighbors and complex children
discovered during simple exploration receive white color but are not added to the list Ls

v.
Note also that Ls∗

v does not need to be a subset of Lr∗
v .

Let ω(n) be an integer function such that ω(n) → +∞ and ω(n) = o(n) as n →
∞. A vertex v ∈ V is called big (respectively, br-vertex and bs-vertex) if |L∗

v| > ω(n)
(respectively, |Lr∗

v | > ω(n) and |Ls∗
v | > ω(n)). Let B, Br, and Bs denote the collections of

the electronic journal of combinatorics 17 (2010), #R110 8



big vertices, br-vertices, and bs-vertices, respectively. Clearly, we have Bs, Br ⊂ B. Note
that in order to decide whether a vertex v is big, we do not need to explore the component
Cv completely. Indeed, we may stop the exploration after the number of colored vertices
reaches ω(n). In what follows, we assume that the exploration was stopped after the
number of colored vertices had reached ω(n) (in this case v ∈ B) or ended even earlier
because the last white vertex of the list failed to find an uncolored neighbor (in this case
v /∈ B).

The upper bound. Fix ω(·). We show that

|B| − nρ̃ = oP (n). (22)

Note that (22), combined with the simple inequality N1 6 max{ω(n), |B|}, implies (18).
We obtain (22) from the bounds

|B| − |Bs| = oP (n), (23)

|Bs| − nρ̃ = oP (n). (24)

(24) is shown in Lemma 3. (23) follows from the bound E(|B| − |Bs|) = o(n). In order
to prove this bound, we show that

E|Bs| − nρ̃ = o(n), (25)

E|B| 6 nρ̃ + o(n). (26)

(25) is shown in Lemma 3. (26) follows from the bounds

E|Br| 6 nρ̃ + o(n), (27)

E|B \ Br| = o(n). (28)

(27) is shown in Lemma 3. In order to show (28), we write E|B \ Br| =
∑

v∈V P(v ∈
B \ Br) and invoke the bounds that hold uniformly in v ∈ V ,

P(v ∈ B \ Br) = O(ω(n)n−2). (29)

In the proof of (29) we inspect the list Lv(ω(n)) and look for an irregular child. The
probability that given ui ∈ Lv(ω(n)) is an irregular child is O(n−2), see (7). Now (29)
follows from the fact that Lv(ω(n)) has at most ω(n) = o(n) elements. The proof of (23)
is complete.

The lower bound. We start with a simple observation that, with high probability, each
attribute w ∈ W is shared by at most O(lnn) vertices. Denote f(w) =

∑

v∈V I{w∈S(v)},
w ∈ W . We show that the inequality

max
w∈W

f(w) 6 2M ln n (30)
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holds with probability 1 − o(1). Since f(w) is a sum of independent Bernoulli random
variables with success probabilities at most M/m, Chernoff’s inequality implies P(f(w) >
2M ln n) 6 cM,βn−2. Hence, the complementary event to (30) has the probability

P(max
w∈W

f(w) > 2M ln n) 6
∑

w∈W

P(f(w) > 2M ln n) = o(1).

Let us prove (19). Fix ε ∈ (0, 1). For each t ∈ [M ], choose ⌈ntε⌉ vertices of type t and
color them red. Let G′ denote the subgraph of G induced by uncoloured vertices, and
let C1, C2, . . . denote the (vertex sets of) connected components of G′ of order at least
n2/3. Observe that the number, say k, of such components is at most (1 − ε)n1/3. We
apply (22) to the intersection graph G′ and function ω(n) = ⌈n2/3⌉ and obtain |∪i>1 Ci| =
(1− ε)nρ̃Q,β′ + oP (n), where β ′ = β(1− ε)−1. We show below that, with high probability,
all vertices of ∪i>1Ci belong to a single connected component of the graph G. Hence,
N1 > (1− ε)ρ̃Q,β′ + oP (n). Letting ε → 0, we then immediately obtain lower bound (19).

We assume that G is obtained in two steps. First, the uncolored vertices generate
G′, and, secondly, the red vertices add the remaining part of G. Let us consider the
second step where the red vertices add their contribution. Write Iij = 1 if Ci and Cj are
not connected by a path in G and Iij = 0 otherwise. Let N =

∑

16i<j6k Iij denote the
number of disconnected pairs. Clearly, the event N = 0 implies that all vertices from
∪i>1Ci belong to the same connected component of G. Therefore, it suffices to show
that P(N = 0) = 1 − o(1). For this purpose, we prove the bound P(N > 1|G′) = o(1)
uniformly in G′ satisfying (30), see (32) below.

In what follows, we assume that (30) holds. Let f̂(Ci) = ∪v∈Ci
S(v) denote the set of

attributes occupied by vertices from Ci. Here f̂(Ci) ∩ f̂(Cj) = ∅ for i 6= j. Note that
if a red vertex finds neighbors in Ci and Cj simultaneously, then it builds a path in G
that connects components Ci and Cj. Clearly, only vertices with attribute sets of size at
least 2 (i.e., vertices of types 2, 3, . . . ) can build such a path. The probability of building
such a path is minimized by vertices of type 2. This minimal probability is

pij = 2
|f̂(Ci)| × |f̂(Cj)|

m(m − 1)
.

Note that (30), combined with |Ci| > ⌈n2/3⌉, implies that |f̂(Ci)| > n2/3(2M lnn)−1.
Hence,

pij >
1

2M2

n4/3

(m ln n)2
=: p∗.

Let r := ⌊n2ε⌋+ · · ·+ ⌊nMε⌋ denote the number of red vertices of types 2, 3, . . . . Observe
that, for large n, (10) implies r ≈ εq′n. Here q′ = q2 + · · · + qM . In particular, we have

P(Iij = 1|G′) 6 (1 − pij)
r
6 (1 − p∗)

r
6 e−p∗r. (31)

Here p∗r > c′n7/3(ln n)−2, and the constant c′ depends on β, M , and q′. Next, we apply
Markov’s inequality to the conditional probability

P(N > 1|G′) 6 E(N |G′) =
∑

16i<j6k

P(Iij = 1|G′).
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Invoking (31) and the inequality k 6 (1 − ε)n1/3, we obtain

P(N > 1|G′) 6 k2e−p∗r
6 n2/3e−c′n1/3 ln−2 n. (32)

Proof of Lemma 3. Throughout the proof, we use the notation of Lemma 2.
Fix ω(·). Given 0 < ε < 1, let Y+ε and Y−ε be multitype Galton–Watson processes

with type space [M ] where the numbers of children Y +ε
st and Y −ε

st of type t of a particle of
type s have binomial distributions Bi

(

⌊qtn(1+ε)⌋, pst(1+ε)
)

and Bi
(

⌊qtn(1−ε)⌋, pst(1−
ε)

)

, respectively. Here pst := (s − 1)t(βn)−1.
Let X+ε (and X−ε) be a multitype Galton–Watson process with type space [M ] where

the number of children X+ε
st (and X−ε

st ) of type t of a particle of type s has the Poisson
distribution with mean λst(1 + ε) (and λst(1 − ε)). Here λst := (s − 1)tqtβ

−1.
Given a multitype G–W process Z with type space [M ], by Z(t) we denote the process

starting at a particle of type t; |Z(t)| denotes the total progeny of Z(t), ρ(Z, t) :=
P(|Z(t)| = ∞), and ρ(k)(Z, t) := P(|Z(t)| > k).

It is known, see, e.g., inequality (1.23) in [1], that the total-variation distance between
the binomial distribution Bi(r, p) and the Poisson distribution with the same mean is
at most p. Therefore, by a coupling of the offspring numbers of binomial and Poisson
branching processes we obtain

ρ(ω(n))(Y+ε, t) = ρ(ω(n))(X+ε′, t) + o(ω(n)/n), (33)

ρ(ω(n))(Y−ε, t) = ρ(ω(n))(X−ε′′, t) + o(ω(n)/n). (34)

Here ε′ = (1 + ε)2 − 1 and ε′′ = 1 − (1 − ε)2. Letting n → ∞, we obtain

ρ(ω(n))(X+ε′, t) → ρ(X+ε′, t), ρ(ω(n))(X−ε′′, t) → ρ(X−ε′′, t). (35)

Furthermore, letting ε ↓ 0, we obtain

ρ(X+ε′, t) → ρQ,β(t), ρ(X−ε′′, t) → ρQ,β(t). (36)

Proof of (27). We shall show that

P(v ∈ Br) 6 ρQ,β(sv + 1) + o(1) (37)

uniformly in v ∈ V . Collecting these bounds in the identity E|Br| =
∑

v∈V P(v ∈ Br)
and using (10), we then obtain (27). Therefore, it suffices to prove (37). In the proof,
we couple regular exploration starting at v with the process Y+ε(sv + 1). Let Y r

it denote
the number of regular children of type t discovered by ui ∈ Lr

v = {v = u1, u2, . . . }.
Let nit denote the number of uncolored vertices of type t at the moment when ui starts
exploration of its neighborhood. Then Y r

it has the binomial distribution Bi(nit, p
′
it) with

success probability p′it = p1(t, |S
′r(ui)|, |W \ Di−1|). Note that for large n, we have

nit 6 ⌊qtn(1 + ε)⌋, p′it 6 |S ′r(ui)| t(βn)−1(1 + ε). (38)
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The first inequality follows from (10). The second inequality follows from (6) combined
with the inequalities

m > |W \ Dr
i−1| = m − |Dr

i−1| > m − Mω(n) = m − o(m). (39)

In addition, in view of (11), we can replace m by βn in (38). (38) shows that the param-
eters of the binomial distribution of Y r

it are smaller than the corresponding parameters
of the offspring distribution of the branching process Y+ε(sv + 1). Therefore, particles of
the branching process produce at least as many children of each type as the vertices ui,
i < ω(n). Note that v = u1 corresponds to a particle of type |S ′r(v)| = sv + 1 of the
branching process, while the remaining vertices ui, i > 2, correspond to particles of types
sui

= |S(ui)|, respectively. Hence, we have

P(v ∈ Br) 6 P
(

|Y+ε(sv + 1)| > ω(n)
)

. (40)

Inequality (40), in combination with (33), (35), and (36), implies (37).
Proof of (25). Given v ∈ V , we start simple exploration at v. Let Kt (It) denote the

number of complex (irregular) children of type t discovered by the exploration until the
list Ls

v(ω(n)) was completed. We put a label on v whenever maxt{Kt, It} > ω(n).
Let A denote the set of labeled vertices, and p′v := P(v ∈ Bs| v /∈ A) be the probability

that the simple exploration of unlabeled vertex v discovers at least ω(n) vertices. We show
below that

P(v ∈ A) = O(n−1), (41)

p′v = ρQ,β(sv + 1) − o(1). (42)

It follows from (41) and (42) that

P(v ∈ Bs) = p′v + O(n−1) = ρQ,β(sv + 1) + o(1). (43)

Invoking the latter identity in the expression E|Bs| =
∑

v∈V P(v ∈ Bs), we obtain (25).

Proof of (42). Given ε > 0, we show that for large n,

P
(

|Y+ε(sv + 1)| > ω(n)
)

> p′v > P
(

|Y−ε(sv + 1)| > ω(n)
)

. (44)

These inequalities, in combination with (33–36), imply (42).
In order to generate events of probability p′v, we use rejection sampling. In the course

of exploration, we keep track of the number of colored vertices and interrupt the explo-
ration at the moment when this number exceeds 3ω(n). Exploration is rejected if it is
interrupted before the list Ls

v(ω(n)) is completed. Otherwise, it is accepted. Clearly, p′v
is the probability that the list Ls

v(ω(n)) of an accepted exploration has collected all ω(n)
elements.

In the proof of (44), we couple the simple exploration process with branching processes
Y−ε(sv + 1) and Y+ε(sv + 1) so that the number of simple children of type t of the vertex
v is at least (most) as large as the number of particles of type t in the first generation of
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Y−ε(sv + 1) (Y+ε(sv + 1)), t ∈ [M ]. In the further steps of exploration, the number Yt(u)
of simple children of type t discovered by a particle u ∈ Ls

v(ω(n)) \ {v} is at least (most)
as large as the number of children of type t produced by the corresponding particle of
type su of the process Y−ε (Y+ε).

To make sure that such a coupling is possible, we fix u = ui ∈ Ls
v(ω(n)) and count its

simple children. Recall that ui selects simple children from the current set of uncolored
vertices. These are checked one after another in increasing order, and each newly dis-
covered simple child is added to the list Ls

v before the next uncolored vertex is checked.
At the moment when a vertex g is checked, its probability to be a simple child of u
is pi(g) = p(|S(g)|, |S ′s(u)|, |Hi(g)|, |W \ Di−1|). It is a conditional probability given
{S(u′), u′ ∈ Ls

v}. Here Ls
v is the set of vertices that have been added to the list before g was

checked. Note that, as far as the probability of the event {v ∈ Bs} ≡ {Ls
v(ω(n)) = ω(n)}

is considered, we may safely assume that |Di−1|, |Hi(g)| 6 M(ω(n) − 1). It follows from
these inequalities and (8) that for large n, we have

|S ′s(u)|sg

m
(1 − ε) 6 pi(g) 6

|S ′s(u)|sg

m
(1 + ε). (45)

In addition, in view of (11), we can replace m by βn in the denominator. Let n∗
it denote

the number of uncolored vertices of type t at the moment when u = ui starts searching
its simple children. Until the exploration is not interrupted, we have n∗

it > nt − 3ω(n).
For large n, this inequality implies n∗

it > (1 − ε/2)nt. Invoking (10), we obtain

qtn(1 − ε) 6 n∗
it 6 qtn(1 + ε) t ∈ [M ]. (46)

It follows from (45)–(46) that we can couple Yt(u) with binomial random variables

Y ±
t (u) ∼ Bi

(

⌊qtn(1 ± ε)⌋,
|S ′s(u)|sg

βn
(1 ± ε)

)

,

so that almost surely we have Y −
t (u) 6 Yt(u) 6 Y +

t (u). These inequalities imply (44).
Proof of (41). We write P(v ∈ A) 6

∑

t∈[M ](P(Kt > ω(n)) + P(It > ω(n)) and show
that

P(Kt > ω(n)) = o(n−1), P(It > ω(n)) = o(n−1). (47)

We prove the first bound only. The proof of the second bound is much the same. Given
i 6 ω(n), the number of complex children of type t discovered by ui ∈ Ls

v is the sum of at
most nt independent Bernoulli random variables, each with success probability at most

p∗ = p1

(

M, M, Mω(n), m − Mω(n)
)

6 cM4m−2,

see (9). Therefore, Kt is at most the sum of ntω(n) independent Bernoulli random vari-
ables with success probability p∗. In particular, we have

P(Kt > ω(n)) 6 P(ξ > ω(n)), (48)
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where ξ ∼ Bi(ntω(n), p∗). By Chebychev’s inequality,

P(ξ > ω(n)) 6 (ω(n) − Eξ)−2Varξ = O(n−1). (49)

In the last step, we invoke the simple bounds

Varξ 6 Eξ = ntω(n)p∗t = O(ω2(n)n−1) = o(ω(n)).

(48) and (49) imply the first bound of (47).
Proof of (24). It suffices to establish (24) for one particular function ω, because for

any other B̃s defined by another such function ω̃, we have

|Bs| − |B̃s| = oP (n). (50)

To see this, write |Bs| − |B̃s| 6 |Bs ∪ B̃s| − |Bs ∩ B̃s| and observe that Bs ∪ B̃s and
Bs ∩ B̃s represent the sets of bs-vertices defined by the functions ω1 = min{ω, ω̃} and
ω2 = max{ω, ω̃}, respectively. An application of (25) to ω1 and ω2 yields the bound
E(|Bs| − |B̃s|) = o(n). This bound implies (50).

We show (24) for ω(n) = ⌊ln n⌋. For this purpose, we prove the bound for the variance

E|Bs|2 − (E|Bs|)2 = o(n2), (51)

which tells us that |Bs| − E|Bs| = oP (n). In particular, (51), combined with (25),
shows (24).

In the proof of (51), we use the observation that the first ω(n) steps of any two
explorations starting at distinct vertices are almost independent. More precisely, we show
below that, uniformly in {u, v} ⊂ V ,

P(u, v ∈ Bs) = ρQ,β(su + 1)ρQ,β(sv + 1) + o(1). (52)

It follows from (52) that

2
∑

{u,v}⊂V

P(u, v ∈ Bs) =
∑

u,v∈V

ρQ,β(su + 1)ρQ,β(sv + 1) + o(n2). (53)

= n2ρ̃2 + o(n2).

In the last step, we use (10). Observe, that the left-hand sum of (53) is the expected
value of 2

∑

{u,v}⊂V I{u,v∈Bs} = |Bs|2 − |Bs|. Therefore, from (53) we obtain

E|Bs|2 = n2ρ̃2 + E|Bs| + o(n2).

This identity, combined with (25), implies (51).

Let us prove (52). We first explore u and then v. In each case, we stop simple
exploration after the number of vertices in the corresponding list reaches ω(n). Note that,
with high probability, these two explorations do not meet. Indeed, let Tu (Tv) denote the
set of vertices colored by the first (second) exploration, and let H denote the event that
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the second exploration does not encounter any vertex from Tu, i.e., H = {Du ∩ S(v′) = ∅
for each v′ ∈ Tv}. Here we denote Du = ∪u′∈TuS(u′) and Dv = ∪v′∈TvS(v′). Now assume
that u, v are unlabeled vertices, i.e., u, v /∈ A. Then

|Tu|, |Tv| 6 (2M + 1)ω(n) =: T̂ ,

and |Du|, |Dv| < MT̂ 6 M(2M + 1)ω(n) =: D̂. In this case, for each v′ ∈ Tv, the

probability that S(v′) does not hit Du is at least
(

m−2D̂
m

)M
. Here we use the fact that

S(v′) has at most |S(v′)| 6 M elements (trials) to hit the set Du which occupies |Du| 6 D̂
attributes among those (at least m−D̂) that have not been used by the current collection
of vertices of evolving list Ls

v. Since there are at most T̂ vertices in Tv, we obtain

P(H|u, v /∈ A) >
(m − 2D̂

m

)MT̂
= 1 − O

(

ω2(n)n−1
)

.

For arbitrary u, v, from (41) we obtain

P(H) > P(H ∩ {u, v /∈ A}) = P(H|u, v /∈ A)P(u, v /∈ A) = 1 − o(1). (54)

Now assume that ρQ,β(su + 1) > 0 (otherwise, (52) trivially follows from (43)) and write

P(u, v ∈ Bs) = P(v ∈ Bs|u ∈ Bs)P(u ∈ Bs). (55)

We can replace P(v ∈ Bs|u ∈ Bs) by pv,u := P
(

v ∈ Bs
∣

∣{u ∈ Bs} ∩ {u, v ∈ A} ∩ H
)

and
P(u ∈ Bs) by ρQ,β(su + 1). It follows from (41), (54), and (43) that the error due to such
replacement is of order o(1). From (55) we obtain

P(u, v ∈ Bs) = pv,uρQ,β(su + 1) + o(1). (56)

Finally, (52) follows from (56) and the identity pv,u = ρQ,β(sv + 1) + o(1), which is shown
in much the same way as (42) above.

Proof of Lemma 1. Let (x1, . . . , xk) be a random permutation of elements of the set W ′.
For A = {x1, . . . , xa}, we have, by symmetry,

p(a, b, k) 6
∑

16i6a

P(xi ∈ B) = aP(x1 ∈ B), (57)

p1(a, b, k) =
∑

16i6a

P(A ∩ B = xi) = aP(A ∩ B = x1), (58)

p2(a, b, k) 6
∑

16i<j6a

P(xi, xj ∈ B) = 2−1a(a − 1)P(x1, x2 ∈ B), (59)

p(a, b, h, k) =
∑

16i6a

P(A ∩ B = xi)P(H ∩ A = ∅|A ∩ B = xi) (60)

= p1(a, b, k)
(

1 − p(a − 1, h, k − b)
)

.
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The right-hand side inequality of (6) follows from (57) and the identity P(x1 ∈ B) = b/k.
The left-hand side inequality follows from (58) combined with the identity P(A ∩ B =

x1) = b(k−b)a−1

(k)a
and inequalities

1 >
(k − b)a−1

(k − 1)a−1
>

(k − a − b

k − a

)a−1
> 1 −

ab

k − a
.

(7) follows from (59) and the identity P(x1, x2 ∈ B) = (b)2
(k)2

. (8) follows from (60) combined

with (6). (9) follows from the inequality p1(a, b, h, k) = p1(a, b, k)p(a − 1, h, k − b), which
is shown in the same way as (60).
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