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Abstract

Let ~r = (ri)
n
i=1 be a sequence of real numbers of length n with sum s. Let s0 = 0

and si = r1 + . . . + ri for every i ∈ {1, 2, . . . , n}. Fluctuation theory is the name
given to that part of probability theory which deals with the fluctuations of the
partial sums si. Define p(~r) to be the number of positive sum si among s1, . . . , sn

and m(~r) to be the smallest index i with si = max
06k6n

sk. An important problem in

fluctuation theory is that of showing that in a random path the number of steps on
the positive half-line has the same distribution as the index where the maximum is
attained for the first time. In this paper, let ~ri = (ri, . . . , rn, r1, . . . , ri−1) be the i-th
cyclic permutation of ~r. For s > 0, we give the necessary and sufficient conditions
for {m(~ri) | 1 6 i 6 n} = {1, 2, . . . , n} and {p(~ri) | 1 6 i 6 n} = {1, 2, . . . , n};
for s 6 0, we give the necessary and sufficient conditions for {m(~ri) | 1 6 i 6

n} = {0, 1, . . . , n − 1} and {p(~ri) | 1 6 i 6 n} = {0, 1, . . . , n − 1}. We also give an
analogous result for the class of all permutations of ~r.
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1 Introduction

Fluctuation theory is the name given to that part of probability theory which deals with
the fluctuations of the partial sums si = x1 + . . . + xi of a sequence of random variables
x1, . . . , xn. An important problem in fluctuation theory is that of showing that in a
random path the number of steps on the positive half-line has the same distribution as
the index where the maximum is attained for the first time. In particular, fix a sequence
of real numbers ~r = (ri)

n
i=1 = (r1, . . . , rn). Let

s0 = 0, s1 = r1, s2 = r1 + r2, . . . , sn = r1 + r2 + . . . + rn.

Define p(~r) to be the number of positive sums si among s1,. . .,sn, i.e., p(~r) = |{i | si > 0}|,
and m(~r) to be the smallest index i with si = max

06k6n
sk. Let [n] and [n]−1 denote the sets

{1, 2, . . . , n} and {0, 1, . . . , n− 1}, respectively. Let Sn be the set of all the permutations
on the set [n]. We write permutations of Sn in the form σ = (σ(1)σ(2) · · ·σ(n)). Let
~rσ = (rσ(1), . . . , rσ(n)) for any σ ∈ Sn. For any i ∈ [n + 1] − 1, Let N(~r; i) ( resp. Π(~r; i))
be the number of permutations σ in Sn such that p(~rσ) = i (resp. m(~rσ) = i). A basic
theorem in fluctuation theory states that N(~r; i) = Π(~r; i) for any i ∈ [n+1]−1. This result
first was proved by Andersen [2]. Feller [10] called this result the Equivalence Principle
and gave a simpler proof. This result is mentioned by Spitzer [23]. Baxter [3] obtained
this result by bijection method. In [4], Brandt generalized the Equivalence Principle.
Hobby and Pyke in [12] and Altschul in [1] gave bijection proofs for the generalization of
Brandt.

Given an index i ∈ [n], let ~ri = (ri, . . . , rn, r1, . . . , ri−1) . We call ~ri the i-th cyclic
permutation of ~r. Let

P(~r) = {p(~ri) | i ∈ [n]} and M(~r) = {m(~ri) | i ∈ [n]}.

Spitzer [23] showed implicitly the following specialization of the Equivalence Principle to
the case of cyclic permutations.

Lemma 1.1 (Spitzer combinatorial lemma, [23]) Let ~r be a sequence of real numbers of
length n with sum 0 and the partial sums s1, . . . , sn are all distinct. Then P(~r) = M(~r) =
[n] − 1.

A set is uniformly partitioned if all partition classes have the same cardinality. Many
uniform partitions of combinatorial structures are consequences of Lemma 1.1. A famous
example is the Chung-Feller theorem. Let D be the set of sequences of integers ~r = (ri)

2n
i=1

such that s2n = 0 and ri ∈ {1,−1} for all i ∈ [2n]. Clearly, |D | =
(

2n

n

)

. The Chung-Feller

theorem shows that n + 1 divides
(

2n

n

)

by uniformly partitioning the set D into n + 1
classes.

The Chung-Feller theorem was proved by many different methods. Chung and Feller
[7] obtained this result by analytic methods. Narayana [19] showed this theorem by
combinatorial methods. Narayana’s book [20] introduced a refinement of this theorem.
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Mohanty’s book [18] devotes an entire section to exploring this theorem. Callan in [5]
and Jewett and Ross in [14] gave bijection proofs of this theorem. Callan [6] reviewed
and compared combinatorial interpretations of three different expressions for the Catalan
number by cycle method.

One also attempted to generalize the Chung-Feller theorem for finding uniformly par-
titions of other combinatorial structures. Huq [13] developed generalized versions of this
theorem for lattice paths. Eu, Liu and Yeh [9] proved this Theorem by using the Taylor
expansions of generating functions and gave a refinement of this theorem. In [8], Eu, Fu
and Yeh gave a strengthening of this Theorem and a weighted version for Schröder paths.

Suppose f(x) is a generating function for some combinatorial sequences. Let F (x, y) =
yf(xy)−f(x)

y−1
. Liu, Wang and Yeh [15] call F (x, y) the function of Chung-Feller type for

f(x). If we can give a combinatorial interpretation for the function F (x, y), then we
may uniformly partition the set formed by this combinatorial structure. Ma and Yeh [16]
attempted to find combinatorial interpretation of the function of Chung-Feller type for a
generating function of three classes of different lattice paths.

Particularly, Narayana [19] showed the following property for cyclic permutations.

Lemma 1.2 (Narayana [19]) Let ~r = (ri)
n
i=1 be a sequence of integers with sum 1. Then

P(~r) = [n].

In [19], Narayana gave a combinatorial proof of the Chung-Feller theorem by Lemma 1.2
and uniformly partition the set D . Lemma 1.2 is derivable as a special case from the
Spitzer combinatorial lemma. In [17], Ma and Yeh gave a generalizations of Lemma 1.2
by considering λ-cyclic permutations of a sequence of vectors and uniformly partition sets
of many new combinatorial structures.

Based on the rightmost lowest point of a lattice path, Woan [24] presented another
new uniform partition of the set D . Let B be the set of sequences of integers ~r = (ri)

n+1
i=1

such that sn+1 = 1 and ri ∈ {1, 0,−1} for all i ∈ [n + 1]. In [9], Eu, Liu and Yeh proved
that there is an uniform partition for the set B, which was found by Shapiro [22]. In [17],
Ma and Yeh also proved another interesting property of cyclic permutations as follows.

Lemma 1.3 Let ~r = (ri)
n
i=1 be a sequence of integers with sum 1. Then M(~r) = [n].

Raney [21] discovered a fact: If ~r = (ri)
n
i=1 is any sequence of integers whose sum is 1,

then exactly one of the cyclic permutations has all of its partial sums positive. Graham
and Knuth’s book [11] introduced a simple geometric argument of the results obtained by
Raney. This geometric argument yields P(~r) = M(~r) = [n] for integer sequences ~r with
sum 1.

Fix a sequence of real numbers ~r = (ri)
n
i=1 with sum s. For s = 0, Lemma 1.1 give

a characterization for P(~r) = [n] − 1; we note that the conditions in Lemma 1.1 are not
necessary for M(~r) = [n] − 1. For example, let ~r = (0, 1,−1). We have M(~r) = {0, 1, 2}
and P(~r) = {0, 1}. For s = 1, Lemmas 1.2 and 1.3 give some sufficient conditions for
P(~r) = [n] and M(~r) = [n] respectively. Note that M(~r) ⊆ [n] and P(~r) ⊆ [n] if s > 0;
M(~r) ⊆ [n] − 1 and P(~r) ⊆ [n] − 1 if s 6 0. Two natural problems arise:
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(1) What are necessary and sufficient conditions for M(~r) = [n] and P(~r) = [n] if s > 0?

(2) What are necessary and sufficient conditions for M(~r) = [n] − 1 and P(~r) = [n] − 1
if s 6 0?

The aim of this paper is to solve these two problems. Let ~r = (ri)
n
i=1 be a sequence

of real numbers with sum s and partial sums (si)
n
i=0. We state the main results of this

paper as follows.

• Let s > 0. Then
(1) M(~r) = [n] if and only if sj − si > s for all 1 6 i 6 j − 1 with j = m(~r).
(2) P(~r) = [n] if and only if sj − si /∈ (0, s) for any 1 6 i < j 6 n, where the
notation (0, s) denote the set of all real numbers x satisfying 0 < x < s.

• Let s 6 0. Then
(1) M(~r) = [n]− 1 if and only if si − sj < s for all j + 1 6 i 6 n− 1 with j = m(~r).
(2) P(~r) = [n] − 1 if and only if sj − si /∈ [s, 0] for all 1 6 i < j 6 n, where the
notation [s, 0] denote the set of all real numbers x satisfying s 6 x 6 0.

The properties of cyclic permutations of the sequence ~r in the main results will be proved
in Section 2. Lemmas 1.1, 1.2 and 1.3 are corollaries of the main results.

Recall that N(~r; i) ( resp. Π(~r; i)) denotes the number of permutations σ in Sn such
that p(~rσ) = i (resp. m(~rσ) = i). Using the main results, we derive the necessary and
sufficient conditions of N(~r; i) = Π(~r; i) = (n − 1)! for all i ∈ [n] (resp. i ∈ [n] − 1) when
s > 0 (resp. s 6 0).

We also consider more general cases. Fix a real number θ. Define p(~r; θ) to be the
number of sum si among s1, . . . , sn such that si > θ · i. Let P(~r; θ) = {p(~ri; θ) | i ∈ [n]}.
Define m(~r; θ) to be the smallest index i with si − θ · i = max

06k6n
(sk − θ · k). Let M(~r; θ) =

{m(~ri; θ) | i ∈ [n]}. Suppose s > nθ. We give the necessary and sufficient conditions for
M(~r; θ) = [n] and P(~r; θ) = [n]. Suppose s 6 nθ. We give the necessary and sufficient
conditions for M(~r; θ) = [n] − 1 and P(~r; θ) = [n] − 1.

We organize this paper as follows. In Section 2, we study properties of cyclic permu-
tations of ~r. In Section 3, we consider more general cases.

2 Properties of cyclic permutations of a sequence

In this section, we study properties of cyclic permutations of a sequence ~r with sum s. For
s > 0, we give the necessary and sufficient conditions for M(~r) = [n] and P(~r) = [n]. For
s 6 0, we give the necessary and sufficient conditions for M(~r) = [n]−1 and P(~r) = [n]−1.

Lemma 2.1 Let ~r = (ri)
n
i=1 be a sequence of real numbers with sum s > 0. Let j = m(~r).

For any i = j+1, . . . , n, let ~ri be the i-th cyclic permutation of ~r. Then m(~ri) = n+j+1−i.

Proof. It is easy to see ri+. . .+rn+r1+. . .+rk < ri+. . .+rn+r1+. . . rj for any k ∈ [j]−1
and ri+. . .+rn+r1+. . . rk 6 ri+. . .+rn+r1+. . . rj for any k ∈ {j, j+1, . . . , i−1}. Assume
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that there is an index k ∈ {i, i+1, . . . , n−1} such that ri+. . .+rk > ri+. . .+rn+r1+. . .+rj.
Thus rk+1 + . . . + rn + r1 + . . . + rj 6 0. j = m(~r) implies r1 + . . . + rj > r1 + . . . + rk. So
0 > (rk+1+. . .+rn)+r1+. . .+rj > r1+. . .+rk+(rk+1+. . .+rn) = s > 0, a contradiction.
We have ri + . . . + rk < ri + . . .+ rn + r1 + . . .+ rj for any k ∈ {i, i + 1, . . . , n− 1}. Hence
m(~ri) = n + j + 1 − i.

Theorem 2.2 Let ~r = (ri)
n
i=1 be a sequence of real numbers with sum s > 0 and partial

sums (si)
n
i=0. Let j = m(~r). Then M(~r) = [n] if and only if sj−si > s for all 1 6 i 6 j−1.

Proof. For any i ∈ [n], let ~ri be the i-th cyclic permutation of ~r. It is easy to see
m(~ri) 6= 0 since s > 0. Lemma 2.1 tells us m(~ri) = n+ j +1− i for any i ∈ {j +1, . . . , n}.

Suppose sj − si > s for all 1 6 i 6 j − 1. Consider the sequence ~ri = (ri, . . . , rn,
r1, . . . , ri−1) with i ∈ [j]. It is easy to see ri + . . . + rk < ri + . . . + rj for any k ∈
{i, i + 1, . . . , j − 1} and ri + . . . + rk 6 ri + . . . + rj for any k ∈ {j, j + 1, . . . , n}. Assume
that there is an index k ∈ [i − 1] such that ri + . . . + rj < ri + . . . + rn + r1 + . . . + rk.
Thus sj − sk = rk+1 + . . . + rj < s, a contradiction. Hence m(~ri) = j + 1 − i.

Conversely, suppose M(~r) = [n]. Let A = {i | sj − si < s, 1 6 i 6 j − 1}.
Assume A 6= ∅ and let i = min A. Clearly i + 1 6 j. We consider the sequence ~ri+1 =
(ri+1, . . . , rn, r1, . . . , ri). Since i ∈ A, we have ri+1+. . .+rj < s = ri+1+. . .+rn+r1+. . .+ri.
It is easy to see ri+1 + . . . + rk < ri+1 + . . . + rj for any k ∈ {i + 1, i + 2, . . . , j − 1} and
ri+1 + . . .+ rk 6 ri+1 + . . .+ rj for any k ∈ {j, j +1, . . . , n}. For every k ∈ [i−1], we have
sj − sk = rk+1 + . . . + rj > s since k /∈ A. So ri+1 + . . . + rj > ri+1 + . . . + rn + r1 + . . . rk.
Hence m(~ri+1) = n = m(~rj+1). So M(~r) 6= [n], a contradiction.

Lemma 2.3 Let ~r = (ri)
n
i=1 be a sequence of real numbers with sum s 6 0. Let j = m(~r).

Suppose j > 1. For any i ∈ [j], let ~ri be the i-th cyclic permutation of ~r. Then m(~ri) =
j + 1 − i.

Proof. It is easy to see ri + . . . + rk < ri + . . . + rj for any k ∈ {i, i + 1, . . . , j − 1} and
ri + . . . + rk 6 ri + . . . + rj for any k ∈ {j, j + 1, . . . , n}. For any k ∈ [i − 1], we have
rk+1 + . . . + rj > 0 > s since j = m(~r). This implies 0 > rj+1 + . . . + rn + r1 + . . . rk and
ri + . . .+ rj > ri + . . .+ rn + r1 + . . . rk. Note that ri + . . .+ rj > 0 since j = m(~r). Hence
m(~ri) = j + 1 − i.

Theorem 2.4 Let ~r = (ri)
n
i=1 be a sequence of real numbers with sum s 6 0 and partial

sums (si)
n
i=0. Suppose m(~r) = j. Then M(~r) = [n] − 1 if and only if si − sj < s for all

j + 1 6 i 6 n − 1.

Proof. For any i ∈ [n], let ~ri be the i-th cyclic permutation of ~r. It is easy to see
m(~ri) 6= n since s 6 0.

Suppose si − sj < s for all j + 1 6 i 6 n− 1. Given an index i ∈ {j + 1, j + 2, . . . , n},
we consider the sequence ~ri = (ri, . . . , rn, r1, . . . , ri−1). It is easy to see ri + . . .+ rn + r1 +
. . . + rk < ri + . . . + rn + r1 + . . . + rj for any k ∈ [j]− 1 and ri + . . . + rn + r1 + . . .+ rk 6

ri + . . .+rn +r1 + . . .+rj for any k ∈ {j, j +1, . . . , i−1}. For any k ∈ {i, i+1, . . . , n−1},
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since sk − sj = rj+1 + . . . + rk < s, we have rk+1 + . . . + rn + r1 + . . . + rj > 0 and
ri + . . . + rk < ri + . . . + rn + r1 + . . . + rj.

For i > j + 2, note that ri + . . . + rn + r1 + . . . + rj > 0 since j = m(~r). Clearly,
rj+1 + . . . + rn + r1 + . . . + rj = s. Hence m(~ri) = n + j + 1 − i for i = j + 2, . . . , n and
m(~rj+1) = 0. When j > 1, Lemma 2.3 tells us m(~ri) = j + 1 − i for any i ∈ [j]. Thus we
have M(~r) = [n] − 1.

Conversely, suppose M(~r) = [n] − 1. Let A = {i | si − sj > s, j + 1 6 i 6 n}. Note
that n /∈ A if j > 1; otherwise n ∈ A. So, assume A \ {n} 6= ∅ and let i = maxA \ {n}.
Clearly j + 1 6 i 6 n − 1. We consider the sequence ~ri+1 = (ri+1, . . . , rn, r1, . . . , ri). It
is easy to see ri+1 + . . . + rn + r1 + . . . + rk < ri+1 + . . . + rn + r1 + . . . + rj for any
k ∈ [j] − 1 and ri+1 + . . . + rn + r1 + . . . + rk 6 ri+1 + . . . + rn + r1 + . . . + rj for any
k ∈ {j, j+1, . . . , i}. For any k ∈ {i+1, i+2, . . . , n−1}, we have sk−sj = rj+1+. . .+rk < s
since k /∈ A and ri+1 + . . . + rk < ri+1 + . . . + rn + r1 + . . . + rj . Since i ∈ A, we have
ri+1 + . . . + rn + r1 + . . . + rj 6 0. Hence m(~ri+1) = 0 = m(~rj+1) and M(~r) 6= [n] − 1, a
contradiction.

For any sequence of real numbers ~r = (ri)
n
i=1 with partial sums (si)

n
i=1, we define a

linear order ≺~r on the set [n] by the following rules:
for any i, j ∈ [n], i ≺~r j if either (1) si < sj or (2) si = sj and i > j.

The sequence formed by writing elements in the set [n] in the increasing order with
respect to ≺~r is denoted by π(~r) = (π1, π2, . . . , πn). Note that π(~r) also can be viewed as
a bijection from the set [n] to itself.

Lemma 2.5 Let ~r = (ri)
n
i=1 be a sequence of real numbers with sum s > 0. Let π(~r)

be the linear order on the set [n] with respect to ≺~r. Given an index j ∈ [n], let ~rj+1 =
(rj+1, . . . , rn, r1, . . . , rj). Then

(1) for any j ≺~r i we have rj+1 + . . . + rn + r1 + . . . + ri > 0 if i < j; rj+1 + . . . + ri > 0
if i > j.

(2) Suppose π(k) = j for some k ∈ [n]. We have p(~rj+1) > n − k + 1.

Proof. (1) j ≺~r i implies either (I) sj < si or (II) sj = si and j > i. Hence, we consider
two cases as follows.

Case I. sj < si. For i > j, it is easy to see rj+1 + . . . + ri > 0. For i < j, we have
ri+1 + . . . + rj < 0. Hence rj+1 + . . . + rn + r1 + . . . ri = s − ri+1 − . . . − rj > s > 0.

Case II. sj = si and j > i. We have ri+1+. . .+rj = 0 and rj+1+. . .+rn+r1+. . .+ri =
s > 0.

(2) Note that rj+1 + . . . + rn + r1 . . . + rj = s > 0. Hence p(~rj+1) > n − k + 1.

Lemma 2.6 Let ~r = (ri)
n
i=1 be a sequence of real numbers with sum s > 0 and partial

sums (si)
n
i=1. Let π(~r) be the linear order on the set [n] with respect to ≺~r. Let j ∈ [n] and

~rj+1 be the (j +1)-th cyclic permutation of ~r. Suppose sj − si /∈ (0, s) for all 1 6 i 6 j−1
and π(k) = j for some k ∈ [n]. Then p(~rj+1) = n − k + 1.
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Proof. For any i ≺~r j, we discuss the following two case.
Case 1. si < sj . For i > j, it is easy to see rj+1 + . . . + ri < 0. For i < j,

we have sj − si = ri+1 + . . . + rj > s since sj − si > 0 and sj − si /∈ (0, s). Hence
rj+1 + . . . + rn + r1 + . . . ri = s − ri+1 − . . . − rj 6 0.

Case 2. si = sj and i > j. Clearly, we have rj+1 + . . . + ri = 0.
By Lemma 2.5, we have p(~rj+1) = n + 1 − k since π(k) = j.

Theorem 2.7 Let ~r = (ri)
n
i=1 be a sequence of real numbers with sum s > 0 and partial

sums (si)
n
i=1. Then P(~r) = [n] if and only if sj − si /∈ (0, s) for any 1 6 i < j 6 n.

Proof. Let π(~r) be the linear order on the set [n] with respect to ≺~r. Suppose sj − si /∈
(0, s) for any 1 6 i < j 6 n. Lemma 2.6 implies p(~rπ(k)+1) = n + 1 − k for all k ∈ [n].
Hence P(~r) = [n].

Conversely, suppose P(~r) = [n]. Lemma 2.5 tells us p(~rπ(k)+1) > n − k + 1 for all
k ∈ [n]. Let Ak = {i | 0 < sπ(k) − si < s, 1 6 i < π(k)} for any k ∈ [n]. Assume
that Ak 6= ∅ for some k ∈ [n]. Let k̄ = min{k | Ak 6= ∅}. By Lemma 2.6, we have
p(~rπ(k)+1) = n − k + 1 for any k < k̄. Suppose π(k̄) = j. We consider the sequence
~rj+1 = (rj+1, . . . , rn, r1, . . . , rj). Let i ∈ Ak̄. Since sj − si > 0, we have sj > si. Thus
i ≺~r j and rj+1 + . . . + rn + r1 + . . . + ri = s − ri+1 − . . . − rj > 0 since sj − si < s. By
Lemma 2.5, we get p(~rπ(k̄)+1) > n − k̄ + 2. Hence n − k̄ + 1 /∈ P(~r), a contradiction.

Lemma 2.8 Let ~r = (ri)
n
i=1 be a sequence of real numbers with sum s 6 0 and partial

sums (si)
n
i=1. Let π(~r) be the linear order on the set [n] with respect to ≺~r. Given an

index j ∈ [n], let ~rj+1 = (rj+1, . . . , rn, r1, . . . , rj). Then

(1) for any i ≺~r j, we have rj+1 + . . . + rn + r1 + . . . + ri 6 0 if i < j; rj+1 + . . . + ri 6 0
if i > j.

(2) Suppose π(k) = j for some k ∈ [n]. We have p(~rj+1) 6 n − k.

Proof. (1) i ≺~r j implies either (I) si < sj or (II) si = sj and i > j. Hence, we consider
two cases as follows.

Case I. si < sj. For i > j, it is easy to see rj+1 + . . . + ri < 0. For i < j, we have
ri+1 + . . . + rj > 0. Hence rj+1 + . . . + rn + r1 + . . . ri = s − ri+1 − . . . − rj < 0.

Case II. si = sj and i > j. We have rj+1 + . . . + ri = 0.
(2) Note that rj+1 + . . . + rn + r1 + . . . + rj = s 6 0. Hence p(~rj+1) 6 n − k.

Lemma 2.9 Let ~r = (ri)
n
i=1 be a sequence of real numbers with sum s 6 0 and partial

sums (si)
n
i=1. Let π(~r) be the linear order on the set [n] with respect to ≺~r. Let j ∈ [n] and

~rj+1 be the (j + 1)-th cyclic permutation of ~r. Suppose sj − si /∈ [s, 0] for all 1 6 i 6 j − 1
and π(k) = j for some k ∈ [n]. Then p(~rj+1) = n − k.

Proof. Clearly, rj+1 + . . . + rn + r1 + . . . + rj = s 6 0. For any j ≺~r i, we claim si > sj .
Otherwise si = sj, then i < j and sj − si = 0, a contradiction.

For i > j, it is easy to see rj+1 + . . . + ri > 0. For i < j, we have sj − si < s since
sj − si < 0 and sj − si /∈ [s, 0]. So rj+1 + . . . + rn + r1 + . . . ri = s − ri+1 − . . . − rj > 0.
By Lemma 2.5, we have p(~rj+1) = n − k.
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Theorem 2.10 Let ~r = (ri)
n
i=1 be a sequence of real numbers with sum s 6 0 and partial

sums (si)
n
i=1. Then P(~r) = [n] − 1 if and only if sj − si /∈ [s, 0] for all 1 6 i < j 6 n.

Proof. Let π(~r) be the linear order on the set [n] with respect to ≺~r. Suppose sj − si /∈
[s, 0] for all 1 6 i < j 6 n. Lemma 2.9 implies p(~rπ(k)+1) = n − k for all k ∈ [n]. Hence
P(~r) = [n] − 1.

Conversely, suppose P(~r) = [n]. Lemma 2.8 tells us p(~rπ(k)+1) 6 n − k for all k ∈ [n].
Let Ak = {i | s 6 sπ(k) − si 6 0, 1 6 i 6 π(k) − 1} for any k ∈ [n]. Assume that Ak 6= ∅
for some k ∈ [n]. Let k̄ = max{k | Ak 6= ∅}. By Lemma 2.9, we have p(~rπ(k)+1) = n−k for
any k > k̄. Suppose π(k̄) = j. We consider the sequence ~rj+1 = (rj+1, . . . , rn, r1, . . . , rj).
Let i ∈ Ak̄. Since sj−si 6 0, we have sj 6 si. Thus j ≺~r i and rj+1+. . .+rn+r1+. . .+ri =
s− ri+1 − . . .− rj 6 0 since sj −si > s. By Lemma 2.8, we get p(~rj+1) 6 n− k̄−1. Hence
n − k̄ /∈ P(~r), a contradiction.

Now, we consider integer sequences. Taking s = 1 in Theorems 2.2 and 2.7, we
immediately obtain the following results.

Corollary 2.11 Let ~r = (ri)
n
i=1 be a sequence of integers with sum 1. Then M(~r) =

P(~r) = [n].

Taking s = 0 in Theorems 2.4 and 2.10, we have the following corollary.

Corollary 2.12 Let ~r = (ri)
n
i=1 be a sequence of integers with sum 0 and the partial sums

are all distinct. Then M(~r) = P(~r) = [n] − 1.

Given a sequence ~r = (r1, . . . , rn), recall that ~rσ = (rσ(1), . . . , rσ(n)) for any σ ∈ Sn.
For any i ∈ [n + 1] − 1, N(~r; i) ( resp. Π(~r; i)) denotes the number of permutations σ in
Sn such that p(~rσ) = i (resp. m(~rσ) = i).

Corollary 2.13 Let ~r = (ri)
n
i=1 be a sequence of real numbers with sum s.

(1) Suppose s > 0. Then Π(~r; i) = N(~r; i) = (n − 1)! for all i ∈ [n], if and only if
∑

k∈I

rk /∈ (0, s) for all ∅ 6= I ⊆ [n].

(2) Suppose s 6 0. Then Π(~r; i) = N(~r; i) = (n − 1)! for all i ∈ [n] − 1 if and only if
∑

k∈I

rk /∈ [s, 0] for all ∅ 6= I ⊂ [n].

Proof. (1) Let σ and τ be two permutations in Sn. We say σ and τ are cyclicly equivalent,
denoted by σ ∼ τ , if there is an index i ∈ [n] such that τ = (σ(i), . . . , σ(n), σ(1), . . . , σ(i−
1)). Hence, given a permutation σ ∈ Sn, we define a set EQ(σ) as EQ(σ) = {τ ∈ Sn |
τ ∼ σ}. We say the set EQ(σ) is an equivalence class of the set Sn. Clearly |EQ(σ)| = n
for any σ ∈ Sn.

Suppose
∑

k∈I

rk /∈ (0, s) for all ∅ 6= I ⊆ [n]. For any 1 6 i 6 n, by Theorems 2.2(

resp. Theorem 2.7), every equivalence class contains exactly one permutation σ such that
m(~rσ) = i (resp. p(~rσ) = i). Hence, Π(~r; i) = N(~r; i) = n!

n
= (n − 1)!.
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Fix a permutation σ ∈ Sn. Let s̄0 = 0, s̄1 = rσ(1), s̄2 = rσ(1) + rσ(2), . . . , s̄n = rσ(1) +
rσ(2) + . . . + rσ(n). Let j to be the largest index i with s̄i = min

06k6n
s̄k. Consider the

permutation τ = (σ(j + 1), . . . , σ(n), σ(1), . . . , σ(j)). Then τ ∈ EQ(σ) and p(~rτ ) = n.
Thus there is at least one element τ ∈ EQ(σ) such that p(~rτ ) = n and N(~r; n) > (n−1)!.
Let j′ to be the smallest index i with s̄i = max

06k6n
s̄k. Consider the permutation τ ′ =

(σ(j′ + 1), . . . , σ(n), σ(1), . . . , σ(j′)). Then τ ′ ∈ EQ(σ) and m(~rτ ′) = n. Thus there is at
least one element τ ′ ∈ EQ(σ) such that m(~rτ ′) = n and Π(~r; n) > (n − 1)!.

Suppose Π(~r; i) = N(~r; i) = (n− 1)! for any i ∈ [n]. Particularly, Π(~r; n) = N(~r; n) =
(n − 1)!. Assume that there exists a proper subset I of [n] such that 0 <

∑

k∈I

rk < s. Let

A = {k ∈ I | rk 6 0}, a = |A| and j = |I|. Suppose I = {i1, . . . , ia, ia+1 . . . , ij}, where
ik ∈ A for every k ∈ [1, a]. Let J = [n]\I, B = {k ∈ J | rk 6 0} and b = |B|. Suppose J =
{ij+1, . . . , ij+b, ij+b+1, . . . , in}, where ij+k ∈ B for every k ∈ [1, b]. Let σ be a permutation

in Sn such that σ(k) = ik for any k ∈ [n]. Note that 0 <
j

∑

k=1

rσ(k) =
∑

k∈I

rk < s. Thus we

have m(~rσ) = n. Consider another permutation τ = (σ(j + 1), . . . , σ(n), σ(1), . . . , σ(j)).
It is easy to see σ ∼ τ and m(~rτ ) = n. Hence Π(~r; n) > (n − 1)!, a contradiction. Let
σ′ = (σ(n), σ(n − 1), . . . , σ(1)) and τ ′ = (τ(n), τ(n − 1), . . . , τ(1)). Then σ′ ∼ τ ′ and
p(~rσ′) = p(~rτ ′) = n. Hence N(~r; n) > (n − 1)!, a contradiction.

(2) Suppose
∑

k∈I

rk /∈ [s, 0] for all ∅ 6= I ⊂ [n]. Similar to the proof of Corollary 2.13

(1), we can obtain the results as desired.
Fix a permutation σ ∈ Sn. Let s̄0 = 0, s̄1 = rσ(1), s̄2 = rσ(1) + rσ(2), . . . , s̄n = rσ(1) +

rσ(2) + . . . + rσ(n). Let j to be the largest index i with s̄i = max
06k6n

s̄k. Consider the

permutation τ = (σ(j + 1), . . . , σ(n), σ(1), . . . , σ(j)). Clearly, τ ∈ EQ(σ) and m(~rτ ) =
p(~rτ ) = 0. So there is at least one element τ ∈ EQ(σ) such that m(~rτ ) = p(~rτ ) = 0. Thus
N(~r; 0) > (n − 1)! and Π(~r; 0) > (n − 1)!.

Suppose Π(~r; i) = N(~r; i) = (n − 1)! for any i ∈ [n] − 1. Particularly, Π(~r; 0) =
N(~r; 0) = (n−1)!. Assume that there exists a proper subset I of [n] such that s 6

∑

k∈I

rk 6

0. Let A = {k ∈ I | rk 6 0}, a = |A| and j = |I|. Suppose I = {i1, . . . , ia, ia+1 . . . , ij},
where ik ∈ A for every k ∈ [1, a]. Let J = [n] \ I, B = {k ∈ J | rk 6 0} and
b = |B|. Suppose J = {ij+1, . . . , ij+b, ij+b+1, . . . , in}, where ij+k ∈ B for every k ∈
[1, b]. Let σ be a permutation in Sn such that σ(k) = ik for any k ∈ [n]. Note that

j
∑

k=1

rσ(k) =
∑

k∈I

rk 6 0. Thus we have m(~rσ) = 0. Consider another permutation τ =

(σ(j + 1), . . . , σ(n), σ(1), . . . , σ(j)). Then
n−j
∑

k=1

rτ(k) = s −
∑

k∈I

rk 6 0 since
∑

k∈I

rk > s. So

m(~rτ ) = 0. Note that σ ∼ τ . Hence Π(~r; 0) > (n − 1)!, a contradiction. It is easy to see
p(~rσ) = p(~rτ ) = 0. Hence N(~r; 0) > (n − 1)!, a contradiction.
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3 More general cases

In this section, we consider more general cases and study furthermore generalizations for
properties of cyclic permutations of a sequence ~r = (ri)

n
i=1.

Theorem 3.1 Let θ be a real number and ~r = (ri)
n
i=1 a sequence of real numbers with

sum s > nθ and partial sums (si)
n
i=0. Then

(1) M(~r; θ) = [n] if and only if sj − si > s − (n − j + i)θ for all 1 6 i 6 j − 1, where
j = m(~r; θ);

(2) P(~r; θ) = [n] if and only if sj − si /∈ ((j − i)θ, s − (n + i− j)θ) for all 1 6 i < j 6 n,
where the notation ((j − i)θ, s − (n + i − j)θ) denote the set of all real numbers x
satisfying (j − i)θ < x < s − (n + i − j)θ.

Proof. (1) Consider the sequence ~v = (r1−θ, . . . , rn−θ). It is easy to see that (I)
n
∑

i=1

~vi =

s−nθ > 0; (II) j = m(~r; θ) if and only if j = m(~v); (III) (sj − jθ)− (si − iθ) > s−nθ > 0
for all 1 6 i 6 j − 1. By Theorem 2.2, we obtain the results as desired.

(2) Similar to the proof of Theorem 3.1(1), we can obtain the results in Theorem
3.1(2).

Similarly, considering s 6 nθ, we can obtain the following results.

Theorem 3.2 Let θ be a real number and ~r = (ri)
n
i=1 a sequence of real numbers with

sum s 6 nθ and partial sums (si)
n
i=0. Then

(1) M(~r; θ) = [n] − 1 if and only if si − sj < s − (n + j − i)θ for all j + 1 6 i 6 n − 1,
where j = m(~r; θ);

(2) P(~r; θ) = [n]−1 if and only if sj−si /∈ [s−(n+i−j)θ, (j−i)θ] for any 1 6 i < j 6 n,
where the notation [s − (n + i − j)θ, (j − i)θ] denote the set of all real numbers x
satisfying s − (n + i − j)θ 6 x 6 (j − i)θ.
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