Cyclic permutations of sequences and uniform partitions

Po-Yi Huang*

Jun Ma[†]

Department of Mathematics National Cheng Kung University Tainan, Taiwan Department of Mathematics Shanghai Jiao Tong University Shanghai, China

pyhuang@mail.ncku.edu.tw

majun904@sjtu.edu.cn

Yeong-Nan Yeh[‡]

Institute of Mathematics Academia Sinica Taipei, Taiwan

mayeh@math.sinica.edu.tw

Submitted: Apr 25, 2010; Accepted: Jul 28, 2010; Published: Aug 24, 2010 Mathematics Subject Classification: 05A18

Abstract

Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of real numbers of length n with sum s. Let $s_0 = 0$ and $s_i = r_1 + \ldots + r_i$ for every $i \in \{1, 2, \ldots, n\}$. Fluctuation theory is the name given to that part of probability theory which deals with the fluctuations of the partial sums s_i . Define $p(\vec{r})$ to be the number of positive sum s_i among s_1, \ldots, s_n and $m(\vec{r})$ to be the smallest index i with $s_i = \max_{0 \leq k \leq n} s_k$. An important problem in fluctuation theory is that of showing that in a random path the number of steps on the positive half-line has the same distribution as the index where the maximum is attained for the first time. In this paper, let $\vec{r_i} = (r_i, \ldots, r_n, r_1, \ldots, r_{i-1})$ be the i-th cyclic permutation of \vec{r} . For s > 0, we give the necessary and sufficient conditions for $\{m(\vec{r_i}) \mid 1 \leq i \leq n\} = \{1, 2, \ldots, n\}$ and $\{p(\vec{r_i}) \mid 1 \leq i \leq n\} = \{1, 2, \ldots, n\}$; for $s \leq 0$, we give the necessary and sufficient conditions for $\{m(\vec{r_i}) \mid 1 \leq i \leq n\} = \{0, 1, \ldots, n-1\}$ and $\{p(\vec{r_i}) \mid 1 \leq i \leq n\} = \{0, 1, \ldots, n-1\}$. We also give an analogous result for the class of all permutations of \vec{r} .

Keywords: Cyclic permutation; Fluctuation theory; Uniform partition

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R117

^{*}Partially supported by NSC 96-2115-M-006-012

[†]Corresponding author

[‡]Partially supported by NSC 96-2115-M-001-005

1 Introduction

Fluctuation theory is the name given to that part of probability theory which deals with the fluctuations of the partial sums $s_i = x_1 + \ldots + x_i$ of a sequence of random variables x_1, \ldots, x_n . An important problem in fluctuation theory is that of showing that in a random path the number of steps on the positive half-line has the same distribution as the index where the maximum is attained for the first time. In particular, fix a sequence of real numbers $\vec{r} = (r_i)_{i=1}^n = (r_1, \ldots, r_n)$. Let

$$s_0 = 0, s_1 = r_1, s_2 = r_1 + r_2, \dots, s_n = r_1 + r_2 + \dots + r_n.$$

Define $p(\vec{r})$ to be the number of positive sums s_i among s_1, \ldots, s_n , i.e., $p(\vec{r}) = |\{i \mid s_i > 0\}|$, and $m(\vec{r})$ to be the smallest index i with $s_i = \max_{0 \le k \le n} s_k$. Let [n] and [n] - 1 denote the sets $\{1, 2, \ldots, n\}$ and $\{0, 1, \ldots, n-1\}$, respectively. Let \mathfrak{S}_n be the set of all the permutations on the set [n]. We write permutations of \mathfrak{S}_n in the form $\sigma = (\sigma(1)\sigma(2)\cdots\sigma(n))$. Let $\vec{r}_{\sigma} = (r_{\sigma(1)}, \ldots, r_{\sigma(n)})$ for any $\sigma \in \mathfrak{S}_n$. For any $i \in [n+1] - 1$, Let $N(\vec{r}; i)$ (resp. $\Pi(\vec{r}; i)$) be the number of permutations σ in \mathfrak{S}_n such that $p(\vec{r}_{\sigma}) = i$ (resp. $m(\vec{r}_{\sigma}) = i$). A basic theorem in fluctuation theory states that $N(\vec{r}; i) = \Pi(\vec{r}; i)$ for any $i \in [n+1]-1$. This result first was proved by Andersen [2]. Feller [10] called this result the Equivalence Principle and gave a simpler proof. This result is mentioned by Spitzer [23]. Baxter [3] obtained this result by bijection method. In [4], Brandt generalized the Equivalence Principle. Hobby and Pyke in [12] and Altschul in [1] gave bijection proofs for the generalization of Brandt.

Given an index $i \in [n]$, let $\vec{r_i} = (r_i, \ldots, r_n, r_1, \ldots, r_{i-1})$. We call $\vec{r_i}$ the *i*-th cyclic permutation of \vec{r} . Let

$$\mathcal{P}(\vec{r}) = \{ p(\vec{r}_i) \mid i \in [n] \} \text{ and } \mathcal{M}(\vec{r}) = \{ m(\vec{r}_i) \mid i \in [n] \}.$$

Spitzer [23] showed implicitly the following specialization of the Equivalence Principle to the case of cyclic permutations.

Lemma 1.1 (Spitzer combinatorial lemma, [23]) Let \vec{r} be a sequence of real numbers of length n with sum 0 and the partial sums s_1, \ldots, s_n are all distinct. Then $\mathcal{P}(\vec{r}) = \mathcal{M}(\vec{r}) = [n] - 1$.

A set is uniformly partitioned if all partition classes have the same cardinality. Many uniform partitions of combinatorial structures are consequences of Lemma 1.1. A famous example is the Chung-Feller theorem. Let \mathscr{D} be the set of sequences of integers $\vec{r} = (r_i)_{i=1}^{2n}$ such that $s_{2n} = 0$ and $r_i \in \{1, -1\}$ for all $i \in [2n]$. Clearly, $|\mathscr{D}| = \binom{2n}{n}$. The Chung-Feller theorem shows that n + 1 divides $\binom{2n}{n}$ by uniformly partitioning the set \mathscr{D} into n + 1classes.

The Chung-Feller theorem was proved by many different methods. Chung and Feller [7] obtained this result by analytic methods. Narayana [19] showed this theorem by combinatorial methods. Narayana's book [20] introduced a refinement of this theorem.

Mohanty's book [18] devotes an entire section to exploring this theorem. Callan in [5] and Jewett and Ross in [14] gave bijection proofs of this theorem. Callan [6] reviewed and compared combinatorial interpretations of three different expressions for the Catalan number by cycle method.

One also attempted to generalize the Chung-Feller theorem for finding uniformly partitions of other combinatorial structures. Huq [13] developed generalized versions of this theorem for lattice paths. Eu, Liu and Yeh [9] proved this Theorem by using the Taylor expansions of generating functions and gave a refinement of this theorem. In [8], Eu, Fu and Yeh gave a strengthening of this Theorem and a weighted version for Schröder paths.

Suppose f(x) is a generating function for some combinatorial sequences. Let $F(x, y) = \frac{yf(xy)-f(x)}{y-1}$. Liu, Wang and Yeh [15] call F(x, y) the function of Chung-Feller type for f(x). If we can give a combinatorial interpretation for the function F(x, y), then we may uniformly partition the set formed by this combinatorial structure. Ma and Yeh [16] attempted to find combinatorial interpretation of the function of Chung-Feller type for a generating function of three classes of different lattice paths.

Particularly, Narayana [19] showed the following property for cyclic permutations.

Lemma 1.2 (Narayana [19]) Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of integers with sum 1. Then $\mathcal{P}(\vec{r}) = [n]$.

In [19], Narayana gave a combinatorial proof of the Chung-Feller theorem by Lemma 1.2 and uniformly partition the set \mathscr{D} . Lemma 1.2 is derivable as a special case from the Spitzer combinatorial lemma. In [17], Ma and Yeh gave a generalizations of Lemma 1.2 by considering λ -cyclic permutations of a sequence of vectors and uniformly partition sets of many new combinatorial structures.

Based on the rightmost lowest point of a lattice path, Woan [24] presented another new uniform partition of the set \mathscr{D} . Let \mathscr{B} be the set of sequences of integers $\vec{r} = (r_i)_{i=1}^{n+1}$ such that $s_{n+1} = 1$ and $r_i \in \{1, 0, -1\}$ for all $i \in [n+1]$. In [9], Eu, Liu and Yeh proved that there is an uniform partition for the set \mathscr{B} , which was found by Shapiro [22]. In [17], Ma and Yeh also proved another interesting property of cyclic permutations as follows.

Lemma 1.3 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of integers with sum 1. Then $\mathcal{M}(\vec{r}) = [n]$.

Raney [21] discovered a fact: If $\vec{r} = (r_i)_{i=1}^n$ is any sequence of integers whose sum is 1, then exactly one of the cyclic permutations has all of its partial sums positive. Graham and Knuth's book [11] introduced a simple geometric argument of the results obtained by Raney. This geometric argument yields $\mathcal{P}(\vec{r}) = \mathcal{M}(\vec{r}) = [n]$ for integer sequences \vec{r} with sum 1.

Fix a sequence of real numbers $\vec{r} = (r_i)_{i=1}^n$ with sum s. For s = 0, Lemma 1.1 give a characterization for $\mathcal{P}(\vec{r}) = [n] - 1$; we note that the conditions in Lemma 1.1 are not necessary for $\mathcal{M}(\vec{r}) = [n] - 1$. For example, let $\vec{r} = (0, 1, -1)$. We have $\mathcal{M}(\vec{r}) = \{0, 1, 2\}$ and $\mathcal{P}(\vec{r}) = \{0, 1\}$. For s = 1, Lemmas 1.2 and 1.3 give some sufficient conditions for $\mathcal{P}(\vec{r}) = [n]$ and $\mathcal{M}(\vec{r}) = [n]$ respectively. Note that $\mathcal{M}(\vec{r}) \subseteq [n]$ and $\mathcal{P}(\vec{r}) \subseteq [n]$ if s > 0; $\mathcal{M}(\vec{r}) \subseteq [n] - 1$ and $\mathcal{P}(\vec{r}) \subseteq [n] - 1$ if $s \leq 0$. Two natural problems arise:

- (1) What are necessary and sufficient conditions for $\mathcal{M}(\vec{r}) = [n]$ and $\mathcal{P}(\vec{r}) = [n]$ if s > 0?
- (2) What are necessary and sufficient conditions for $\mathcal{M}(\vec{r}) = [n] 1$ and $\mathcal{P}(\vec{r}) = [n] 1$ if $s \leq 0$?

The aim of this paper is to solve these two problems. Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of real numbers with sum s and partial sums $(s_i)_{i=0}^n$. We state the main results of this paper as follows.

• Let s > 0. Then

(1) $\mathcal{M}(\vec{r}) = [n]$ if and only if $s_j - s_i \ge s$ for all $1 \le i \le j - 1$ with $j = m(\vec{r})$. (2) $\mathcal{P}(\vec{r}) = [n]$ if and only if $s_j - s_i \notin (0, s)$ for any $1 \le i < j \le n$, where the notation (0, s) denote the set of all real numbers x satisfying 0 < x < s.

• Let $s \leq 0$. Then

(1) $\mathcal{M}(\vec{r}) = [n] - 1$ if and only if $s_i - s_j < s$ for all $j + 1 \leq i \leq n - 1$ with $j = m(\vec{r})$. (2) $\mathcal{P}(\vec{r}) = [n] - 1$ if and only if $s_j - s_i \notin [s, 0]$ for all $1 \leq i < j \leq n$, where the notation [s, 0] denote the set of all real numbers x satisfying $s \leq x \leq 0$.

The properties of cyclic permutations of the sequence \vec{r} in the main results will be proved in Section 2. Lemmas 1.1, 1.2 and 1.3 are corollaries of the main results.

Recall that $N(\vec{r}; i)$ (resp. $\Pi(\vec{r}; i)$) denotes the number of permutations σ in \mathfrak{S}_n such that $p(\vec{r}_{\sigma}) = i$ (resp. $m(\vec{r}_{\sigma}) = i$). Using the main results, we derive the necessary and sufficient conditions of $N(\vec{r}; i) = \Pi(\vec{r}; i) = (n-1)!$ for all $i \in [n]$ (resp. $i \in [n] - 1$) when s > 0 (resp. $s \leq 0$).

We also consider more general cases. Fix a real number θ . Define $p(\vec{r};\theta)$ to be the number of sum s_i among s_1, \ldots, s_n such that $s_i > \theta \cdot i$. Let $\mathcal{P}(\vec{r};\theta) = \{p(\vec{r}_i;\theta) \mid i \in [n]\}$. Define $m(\vec{r};\theta)$ to be the smallest index i with $s_i - \theta \cdot i = \max_{0 \leq k \leq n} (s_k - \theta \cdot k)$. Let $\mathcal{M}(\vec{r};\theta) = \{m(\vec{r}_i;\theta) \mid i \in [n]\}$. Suppose $s > n\theta$. We give the necessary and sufficient conditions for $\mathcal{M}(\vec{r};\theta) = [n]$ and $\mathcal{P}(\vec{r};\theta) = [n]$. Suppose $s \leq n\theta$. We give the necessary and sufficient conditions for conditions for $\mathcal{M}(\vec{r};\theta) = [n] - 1$ and $\mathcal{P}(\vec{r};\theta) = [n] - 1$.

We organize this paper as follows. In Section 2, we study properties of cyclic permutations of \vec{r} . In Section 3, we consider more general cases.

2 Properties of cyclic permutations of a sequence

In this section, we study properties of cyclic permutations of a sequence \vec{r} with sum s. For s > 0, we give the necessary and sufficient conditions for $\mathcal{M}(\vec{r}) = [n]$ and $\mathcal{P}(\vec{r}) = [n]$. For $s \leq 0$, we give the necessary and sufficient conditions for $\mathcal{M}(\vec{r}) = [n]-1$ and $\mathcal{P}(\vec{r}) = [n]-1$.

Lemma 2.1 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of real numbers with sum s > 0. Let $j = m(\vec{r})$. For any $i = j+1, \ldots, n$, let $\vec{r_i}$ be the *i*-th cyclic permutation of \vec{r} . Then $m(\vec{r_i}) = n+j+1-i$.

Proof. It is easy to see $r_i + \ldots + r_n + r_1 + \ldots + r_k < r_i + \ldots + r_n + r_1 + \ldots + r_j$ for any $k \in [j] - 1$ and $r_i + \ldots + r_n + r_1 + \ldots + r_k \leq r_i + \ldots + r_n + r_1 + \ldots + r_j$ for any $k \in \{j, j+1, \ldots, i-1\}$. Assume that there is an index $k \in \{i, i+1, \ldots, n-1\}$ such that $r_i + \ldots + r_k \ge r_i + \ldots + r_n + r_1 + \ldots + r_j$. Thus $r_{k+1} + \ldots + r_n + r_1 + \ldots + r_j \le 0$. $j = m(\vec{r})$ implies $r_1 + \ldots + r_j \ge r_1 + \ldots + r_k$. So $0 \ge (r_{k+1} + \ldots + r_n) + r_1 + \ldots + r_j \ge r_1 + \ldots + r_k + (r_{k+1} + \ldots + r_n) = s > 0$, a contradiction. We have $r_i + \ldots + r_k < r_i + \ldots + r_n + r_1 + \ldots + r_j$ for any $k \in \{i, i+1, \ldots, n-1\}$. Hence $m(\vec{r_i}) = n + j + 1 - i$.

Theorem 2.2 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of real numbers with sum s > 0 and partial sums $(s_i)_{i=0}^n$. Let $j = m(\vec{r})$. Then $\mathcal{M}(\vec{r}) = [n]$ if and only if $s_j - s_i \ge s$ for all $1 \le i \le j-1$.

Proof. For any $i \in [n]$, let $\vec{r_i}$ be the *i*-th cyclic permutation of \vec{r} . It is easy to see $m(\vec{r_i}) \neq 0$ since s > 0. Lemma 2.1 tells us $m(\vec{r_i}) = n + j + 1 - i$ for any $i \in \{j + 1, \ldots, n\}$.

Suppose $s_j - s_i \ge s$ for all $1 \le i \le j - 1$. Consider the sequence $\vec{r_i} = (r_i, \ldots, r_n, r_1, \ldots, r_{i-1})$ with $i \in [j]$. It is easy to see $r_i + \ldots + r_k < r_i + \ldots + r_j$ for any $k \in \{i, i+1, \ldots, j-1\}$ and $r_i + \ldots + r_k \le r_i + \ldots + r_j$ for any $k \in \{j, j+1, \ldots, n\}$. Assume that there is an index $k \in [i-1]$ such that $r_i + \ldots + r_j < r_i + \ldots + r_n + r_1 + \ldots + r_k$. Thus $s_j - s_k = r_{k+1} + \ldots + r_j < s$, a contradiction. Hence $m(\vec{r_i}) = j + 1 - i$.

Conversely, suppose $\mathcal{M}(\vec{r}) = [n]$. Let $A = \{i \mid s_j - s_i < s, 1 \leq i \leq j - 1\}$. Assume $A \neq \emptyset$ and let $i = \min A$. Clearly $i + 1 \leq j$. We consider the sequence $\vec{r}_{i+1} = (r_{i+1}, \ldots, r_n, r_1, \ldots, r_i)$. Since $i \in A$, we have $r_{i+1} + \ldots + r_j < s = r_{i+1} + \ldots + r_n + r_1 + \ldots + r_i$. It is easy to see $r_{i+1} + \ldots + r_k < r_{i+1} + \ldots + r_j$ for any $k \in \{i + 1, i + 2, \ldots, j - 1\}$ and $r_{i+1} + \ldots + r_k \leq r_{i+1} + \ldots + r_j$ for any $k \in \{j, j + 1, \ldots, n\}$. For every $k \in [i-1]$, we have $s_j - s_k = r_{k+1} + \ldots + r_j \geq s$ since $k \notin A$. So $r_{i+1} + \ldots + r_j \geq r_{i+1} + \ldots + r_n + r_1 + \ldots + r_k$. Hence $m(\vec{r}_{i+1}) = n = m(\vec{r}_{j+1})$. So $\mathcal{M}(\vec{r}) \neq [n]$, a contradiction.

Lemma 2.3 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of real numbers with sum $s \leq 0$. Let $j = m(\vec{r})$. Suppose $j \geq 1$. For any $i \in [j]$, let $\vec{r_i}$ be the *i*-th cyclic permutation of \vec{r} . Then $m(\vec{r_i}) = j + 1 - i$.

Proof. It is easy to see $r_i + \ldots + r_k < r_i + \ldots + r_j$ for any $k \in \{i, i+1, \ldots, j-1\}$ and $r_i + \ldots + r_k \leq r_i + \ldots + r_j$ for any $k \in \{j, j+1, \ldots, n\}$. For any $k \in [i-1]$, we have $r_{k+1} + \ldots + r_j > 0 \geq s$ since $j = m(\vec{r})$. This implies $0 > r_{j+1} + \ldots + r_n + r_1 + \ldots + r_k$ and $r_i + \ldots + r_j > r_i + \ldots + r_n + r_1 + \ldots + r_k$. Note that $r_i + \ldots + r_j > 0$ since $j = m(\vec{r})$. Hence $m(\vec{r_i}) = j + 1 - i$.

Theorem 2.4 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of real numbers with sum $s \leq 0$ and partial sums $(s_i)_{i=0}^n$. Suppose $m(\vec{r}) = j$. Then $\mathcal{M}(\vec{r}) = [n] - 1$ if and only if $s_i - s_j < s$ for all $j+1 \leq i \leq n-1$.

Proof. For any $i \in [n]$, let $\vec{r_i}$ be the *i*-th cyclic permutation of \vec{r} . It is easy to see $m(\vec{r_i}) \neq n$ since $s \leq 0$.

Suppose $s_i - s_j < s$ for all $j + 1 \le i \le n - 1$. Given an index $i \in \{j + 1, j + 2, ..., n\}$, we consider the sequence $\vec{r_i} = (r_i, ..., r_n, r_1, ..., r_{i-1})$. It is easy to see $r_i + ... + r_n + r_1 + ... + r_k < r_i + ... + r_n + r_1 + ... + r_j$ for any $k \in [j] - 1$ and $r_i + ... + r_n + r_1 + ... + r_k \le r_i + ... + r_n + r_1 + ... + r_j$ for any $k \in \{j, j + 1, ..., i - 1\}$. For any $k \in \{i, i + 1, ..., n - 1\}$, since $s_k - s_j = r_{j+1} + \ldots + r_k < s$, we have $r_{k+1} + \ldots + r_n + r_1 + \ldots + r_j > 0$ and $r_i + \ldots + r_k < r_i + \ldots + r_n + r_1 + \ldots + r_j$.

For $i \ge j+2$, note that $r_i + \ldots + r_n + r_1 + \ldots + r_j > 0$ since $j = m(\vec{r})$. Clearly, $r_{j+1} + \ldots + r_n + r_1 + \ldots + r_j = s$. Hence $m(\vec{r}_i) = n + j + 1 - i$ for $i = j + 2, \ldots, n$ and $m(\vec{r}_{j+1}) = 0$. When $j \ge 1$, Lemma 2.3 tells us $m(\vec{r}_i) = j + 1 - i$ for any $i \in [j]$. Thus we have $\mathcal{M}(\vec{r}) = [n] - 1$.

Conversely, suppose $\mathcal{M}(\vec{r}) = [n] - 1$. Let $A = \{i \mid s_i - s_j \ge s, j+1 \le i \le n\}$. Note that $n \notin A$ if $j \ge 1$; otherwise $n \in A$. So, assume $A \setminus \{n\} \ne \emptyset$ and let $i = \max A \setminus \{n\}$. Clearly $j+1 \le i \le n-1$. We consider the sequence $\vec{r}_{i+1} = (r_{i+1}, \ldots, r_n, r_1, \ldots, r_i)$. It is easy to see $r_{i+1} + \ldots + r_n + r_1 + \ldots + r_k < r_{i+1} + \ldots + r_n + r_1 + \ldots + r_j$ for any $k \in [j] - 1$ and $r_{i+1} + \ldots + r_n + r_1 + \ldots + r_k \le r_{i+1} + \ldots + r_n + r_1 + \ldots + r_j$ for any $k \in \{j, j+1, \ldots, i\}$. For any $k \in \{i+1, i+2, \ldots, n-1\}$, we have $s_k - s_j = r_{j+1} + \ldots + r_k < s$ since $k \notin A$ and $r_{i+1} + \ldots + r_k < r_{i+1} + \ldots + r_n + r_1 + \ldots + r_j$. Since $i \in A$, we have $r_{i+1} + \ldots + r_n + r_1 + \ldots + r_j \le 0$. Hence $m(\vec{r}_{i+1}) = 0 = m(\vec{r}_{j+1})$ and $\mathcal{M}(\vec{r}) \ne [n] - 1$, a contradiction.

For any sequence of real numbers $\vec{r} = (r_i)_{i=1}^n$ with partial sums $(s_i)_{i=1}^n$, we define a linear order $\prec_{\vec{r}}$ on the set [n] by the following rules:

for any $i, j \in [n]$, $i \prec_{\vec{r}} j$ if either (1) $s_i < s_j$ or (2) $s_i = s_j$ and i > j.

The sequence formed by writing elements in the set [n] in the increasing order with respect to $\prec_{\vec{r}}$ is denoted by $\pi(\vec{r}) = (\pi_1, \pi_2, \ldots, \pi_n)$. Note that $\pi(\vec{r})$ also can be viewed as a bijection from the set [n] to itself.

Lemma 2.5 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of real numbers with sum s > 0. Let $\pi(\vec{r})$ be the linear order on the set [n] with respect to $\prec_{\vec{r}}$. Given an index $j \in [n]$, let $\vec{r}_{j+1} = (r_{j+1}, \ldots, r_n, r_1, \ldots, r_j)$. Then

(1) for any $j \prec_{\vec{r}} i$ we have $r_{j+1} + \ldots + r_n + r_1 + \ldots + r_i > 0$ if $i < j; r_{j+1} + \ldots + r_i > 0$ if i > j.

(2) Suppose $\pi(k) = j$ for some $k \in [n]$. We have $p(\vec{r}_{j+1}) \ge n - k + 1$.

Proof. (1) $j \prec_{\vec{r}} i$ implies either (I) $s_j < s_i$ or (II) $s_j = s_i$ and j > i. Hence, we consider two cases as follows.

Case I. $s_j < s_i$. For i > j, it is easy to see $r_{j+1} + \ldots + r_i > 0$. For i < j, we have $r_{i+1} + \ldots + r_j < 0$. Hence $r_{j+1} + \ldots + r_n + r_1 + \ldots + r_i = s - r_{i+1} - \ldots - r_j > s > 0$.

Case II. $s_j = s_i$ and j > i. We have $r_{i+1} + \ldots + r_j = 0$ and $r_{j+1} + \ldots + r_n + r_1 + \ldots + r_i = s > 0$.

(2) Note that $r_{j+1} + \ldots + r_n + r_1 \ldots + r_j = s > 0$. Hence $p(\vec{r}_{j+1}) \ge n - k + 1$.

Lemma 2.6 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of real numbers with sum s > 0 and partial sums $(s_i)_{i=1}^n$. Let $\pi(\vec{r})$ be the linear order on the set [n] with respect to $\prec_{\vec{r}}$. Let $j \in [n]$ and \vec{r}_{j+1} be the (j+1)-th cyclic permutation of \vec{r} . Suppose $s_j - s_i \notin (0, s)$ for all $1 \leq i \leq j-1$ and $\pi(k) = j$ for some $k \in [n]$. Then $p(\vec{r}_{j+1}) = n - k + 1$.

Proof. For any $i \prec_{\vec{r}} j$, we discuss the following two case.

Case 1. $s_i < s_j$. For i > j, it is easy to see $r_{j+1} + \ldots + r_i < 0$. For i < j, we have $s_j - s_i = r_{i+1} + \ldots + r_j \ge s$ since $s_j - s_i \ge 0$ and $s_j - s_i \notin (0, s)$. Hence $r_{j+1} + \ldots + r_n + r_1 + \ldots + r_i = s - r_{i+1} - \ldots - r_j \le 0$.

Case 2. $s_i = s_j$ and i > j. Clearly, we have $r_{j+1} + \ldots + r_i = 0$.

By Lemma 2.5, we have $p(\vec{r}_{j+1}) = n + 1 - k$ since $\pi(k) = j$.

Theorem 2.7 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of real numbers with sum s > 0 and partial sums $(s_i)_{i=1}^n$. Then $\mathcal{P}(\vec{r}) = [n]$ if and only if $s_j - s_i \notin (0, s)$ for any $1 \leq i < j \leq n$.

Proof. Let $\pi(\vec{r})$ be the linear order on the set [n] with respect to $\prec_{\vec{r}}$. Suppose $s_j - s_i \notin (0, s)$ for any $1 \leq i < j \leq n$. Lemma 2.6 implies $p(\vec{r}_{\pi(k)+1}) = n + 1 - k$ for all $k \in [n]$. Hence $\mathcal{P}(\vec{r}) = [n]$.

Conversely, suppose $\mathcal{P}(\vec{r}) = [n]$. Lemma 2.5 tells us $p(\vec{r}_{\pi(k)+1}) \ge n-k+1$ for all $k \in [n]$. Let $A_k = \{i \mid 0 < s_{\pi(k)} - s_i < s, 1 \le i < \pi(k)\}$ for any $k \in [n]$. Assume that $A_k \neq \emptyset$ for some $k \in [n]$. Let $\bar{k} = \min\{k \mid A_k \neq \emptyset\}$. By Lemma 2.6, we have $p(\vec{r}_{\pi(k)+1}) = n-k+1$ for any $k < \bar{k}$. Suppose $\pi(\bar{k}) = j$. We consider the sequence $\vec{r}_{j+1} = (r_{j+1}, \ldots, r_n, r_1, \ldots, r_j)$. Let $i \in A_{\bar{k}}$. Since $s_j - s_i > 0$, we have $s_j > s_i$. Thus $i \prec_{\vec{r}} j$ and $r_{j+1} + \ldots + r_n + r_1 + \ldots + r_i = s - r_{i+1} - \ldots - r_j > 0$ since $s_j - s_i < s$. By Lemma 2.5, we get $p(\vec{r}_{\pi(\bar{k})+1}) \ge n - \bar{k} + 2$. Hence $n - \bar{k} + 1 \notin \mathcal{P}(\vec{r})$, a contradiction.

Lemma 2.8 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of real numbers with sum $s \leq 0$ and partial sums $(s_i)_{i=1}^n$. Let $\pi(\vec{r})$ be the linear order on the set [n] with respect to $\prec_{\vec{r}}$. Given an index $j \in [n]$, let $\vec{r}_{j+1} = (r_{j+1}, \ldots, r_n, r_1, \ldots, r_j)$. Then

(1) for any $i \prec_{\vec{r}} j$, we have $r_{j+1} + \ldots + r_n + r_1 + \ldots + r_i \leq 0$ if i < j; $r_{j+1} + \ldots + r_i \leq 0$ if i > j.

(2) Suppose $\pi(k) = j$ for some $k \in [n]$. We have $p(\vec{r}_{j+1}) \leq n-k$.

Proof. (1) $i \prec_{\vec{r}} j$ implies either (I) $s_i < s_j$ or (II) $s_i = s_j$ and i > j. Hence, we consider two cases as follows.

Case I. $s_i < s_j$. For i > j, it is easy to see $r_{j+1} + \ldots + r_i < 0$. For i < j, we have $r_{i+1} + \ldots + r_j > 0$. Hence $r_{j+1} + \ldots + r_n + r_1 + \ldots + r_i = s - r_{i+1} - \ldots - r_j < 0$.

Case II. $s_i = s_j$ and i > j. We have $r_{j+1} + \ldots + r_i = 0$.

(2) Note that $r_{j+1} + \ldots + r_n + r_1 + \ldots + r_j = s \leq 0$. Hence $p(\vec{r}_{j+1}) \leq n - k$.

Lemma 2.9 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of real numbers with sum $s \leq 0$ and partial sums $(s_i)_{i=1}^n$. Let $\pi(\vec{r})$ be the linear order on the set [n] with respect to $\prec_{\vec{r}}$. Let $j \in [n]$ and \vec{r}_{j+1} be the (j+1)-th cyclic permutation of \vec{r} . Suppose $s_j - s_i \notin [s,0]$ for all $1 \leq i \leq j-1$ and $\pi(k) = j$ for some $k \in [n]$. Then $p(\vec{r}_{j+1}) = n - k$.

Proof. Clearly, $r_{j+1} + \ldots + r_n + r_1 + \ldots + r_j = s \leq 0$. For any $j \prec_{\vec{r}} i$, we claim $s_i > s_j$. Otherwise $s_i = s_j$, then i < j and $s_j - s_i = 0$, a contradiction.

For i > j, it is easy to see $r_{j+1} + \ldots + r_i > 0$. For i < j, we have $s_j - s_i < s$ since $s_j - s_i < 0$ and $s_j - s_i \notin [s, 0]$. So $r_{j+1} + \ldots + r_n + r_1 + \ldots + r_i = s - r_{i+1} - \ldots - r_j > 0$. By Lemma 2.5, we have $p(\vec{r}_{j+1}) = n - k$.

Theorem 2.10 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of real numbers with sum $s \leq 0$ and partial sums $(s_i)_{i=1}^n$. Then $\mathcal{P}(\vec{r}) = [n] - 1$ if and only if $s_j - s_i \notin [s, 0]$ for all $1 \leq i < j \leq n$.

Proof. Let $\pi(\vec{r})$ be the linear order on the set [n] with respect to $\prec_{\vec{r}}$. Suppose $s_j - s_i \notin [s,0]$ for all $1 \leq i < j \leq n$. Lemma 2.9 implies $p(\vec{r}_{\pi(k)+1}) = n - k$ for all $k \in [n]$. Hence $\mathcal{P}(\vec{r}) = [n] - 1$.

Conversely, suppose $\mathcal{P}(\vec{r}) = [n]$. Lemma 2.8 tells us $p(\vec{r}_{\pi(k)+1}) \leq n-k$ for all $k \in [n]$. Let $A_k = \{i \mid s \leq s_{\pi(k)} - s_i \leq 0, 1 \leq i \leq \pi(k) - 1\}$ for any $k \in [n]$. Assume that $A_k \neq \emptyset$ for some $k \in [n]$. Let $\bar{k} = \max\{k \mid A_k \neq \emptyset\}$. By Lemma 2.9, we have $p(\vec{r}_{\pi(k)+1}) = n-k$ for any $k > \bar{k}$. Suppose $\pi(\bar{k}) = j$. We consider the sequence $\vec{r}_{j+1} = (r_{j+1}, \ldots, r_n, r_1, \ldots, r_j)$. Let $i \in A_{\bar{k}}$. Since $s_j - s_i \leq 0$, we have $s_j \leq s_i$. Thus $j \prec_{\vec{r}} i$ and $r_{j+1} + \ldots + r_n + r_1 + \ldots + r_i = s - r_{i+1} - \ldots - r_j \leq 0$ since $s_j - s_i \geq s$. By Lemma 2.8, we get $p(\vec{r}_{j+1}) \leq n - \bar{k} - 1$. Hence $n - \bar{k} \notin \mathcal{P}(\vec{r})$, a contradiction.

Now, we consider integer sequences. Taking s = 1 in Theorems 2.2 and 2.7, we immediately obtain the following results.

Corollary 2.11 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of integers with sum 1. Then $\mathcal{M}(\vec{r}) = \mathcal{P}(\vec{r}) = [n]$.

Taking s = 0 in Theorems 2.4 and 2.10, we have the following corollary.

Corollary 2.12 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of integers with sum 0 and the partial sums are all distinct. Then $\mathcal{M}(\vec{r}) = \mathcal{P}(\vec{r}) = [n] - 1$.

Given a sequence $\vec{r} = (r_1, \ldots, r_n)$, recall that $\vec{r}_{\sigma} = (r_{\sigma(1)}, \ldots, r_{\sigma(n)})$ for any $\sigma \in \mathfrak{S}_n$. For any $i \in [n+1] - 1$, $N(\vec{r}; i)$ (resp. $\Pi(\vec{r}; i)$) denotes the number of permutations σ in \mathfrak{S}_n such that $p(\vec{r}_{\sigma}) = i$ (resp. $m(\vec{r}_{\sigma}) = i$).

Corollary 2.13 Let $\vec{r} = (r_i)_{i=1}^n$ be a sequence of real numbers with sum s.

- (1) Suppose s > 0. Then $\Pi(\vec{r}; i) = N(\vec{r}; i) = (n-1)!$ for all $i \in [n]$, if and only if $\sum_{k \in I} r_k \notin (0, s)$ for all $\emptyset \neq I \subseteq [n]$.
- (2) Suppose $s \leq 0$. Then $\Pi(\vec{r}; i) = N(\vec{r}; i) = (n-1)!$ for all $i \in [n] 1$ if and only if $\sum_{k \in I} r_k \notin [s, 0]$ for all $\emptyset \neq I \subset [n]$.

Proof. (1) Let σ and τ be two permutations in \mathfrak{S}_n . We say σ and τ are cyclicly equivalent, denoted by $\sigma \sim \tau$, if there is an index $i \in [n]$ such that $\tau = (\sigma(i), \ldots, \sigma(n), \sigma(1), \ldots, \sigma(i-1))$. Hence, given a permutation $\sigma \in \mathfrak{S}_n$, we define a set $EQ(\sigma)$ as $EQ(\sigma) = \{\tau \in \mathfrak{S}_n \mid \tau \sim \sigma\}$. We say the set $EQ(\sigma)$ is an equivalence class of the set \mathfrak{S}_n . Clearly $|EQ(\sigma)| = n$ for any $\sigma \in \mathfrak{S}_n$.

Suppose $\sum_{k \in I} r_k \notin (0, s)$ for all $\emptyset \neq I \subseteq [n]$. For any $1 \leq i \leq n$, by Theorems 2.2(resp. Theorem 2.7), every equivalence class contains exactly one permutation σ such that $m(\vec{r}_{\sigma}) = i$ (resp. $p(\vec{r}_{\sigma}) = i$). Hence, $\Pi(\vec{r}; i) = N(\vec{r}; i) = \frac{n!}{n} = (n-1)!$. Fix a permutation $\sigma \in \mathfrak{S}_n$. Let $\bar{s}_0 = 0, \bar{s}_1 = r_{\sigma(1)}, \bar{s}_2 = r_{\sigma(1)} + r_{\sigma(2)}, \ldots, \bar{s}_n = r_{\sigma(1)} + r_{\sigma(2)} + \ldots + r_{\sigma(n)}$. Let j to be the largest index i with $\bar{s}_i = \min_{\substack{0 \leq k \leq n \\ 0 \leq k \leq n}} \bar{s}_k$. Consider the permutation $\tau = (\sigma(j+1), \ldots, \sigma(n), \sigma(1), \ldots, \sigma(j))$. Then $\tau \in EQ(\sigma)$ and $p(\vec{r}_{\tau}) = n$. Thus there is at least one element $\tau \in EQ(\sigma)$ such that $p(\vec{r}_{\tau}) = n$ and $N(\vec{r}; n) \geq (n-1)!$. Let j' to be the smallest index i with $\bar{s}_i = \max_{\substack{0 \leq k \leq n \\ 0 \leq k \leq n}} \bar{s}_k$. Consider the permutation $\tau' = (\sigma(j'+1), \ldots, \sigma(n), \sigma(1), \ldots, \sigma(j'))$. Then $\tau' \in EQ(\sigma)$ and $m(\vec{r}_{\tau'}) = n$. Thus there is at least one element $\tau' \in EQ(\sigma)$ such that $m(\vec{r}_{\tau'}) = n$ and $\Pi(\vec{r}; n) \geq (n-1)!$.

Suppose $\Pi(\vec{r}; i) = N(\vec{r}; i) = (n-1)!$ for any $i \in [n]$. Particularly, $\Pi(\vec{r}; n) = N(\vec{r}; n) = (n-1)!$. Assume that there exists a proper subset I of [n] such that $0 < \sum_{k \in I} r_k < s$. Let $A = \{k \in I \mid r_k \leq 0\}, a = |A|$ and j = |I|. Suppose $I = \{i_1, \ldots, i_a, i_{a+1}, \ldots, i_j\}$, where $i_k \in A$ for every $k \in [1, a]$. Let $J = [n] \setminus I$, $B = \{k \in J \mid r_k \leq 0\}$ and b = |B|. Suppose $J = \{i_{j+1}, \ldots, i_{j+b}, i_{j+b+1}, \ldots, i_n\}$, where $i_{j+k} \in B$ for every $k \in [1, b]$. Let σ be a permutation in \mathfrak{S}_n such that $\sigma(k) = i_k$ for any $k \in [n]$. Note that $0 < \sum_{k=1}^j r_{\sigma(k)} = \sum_{k \in I} r_k < s$. Thus we have $m(\vec{r}_{\sigma}) = n$. Consider another permutation $\tau = (\sigma(j+1), \ldots, \sigma(n), \sigma(1), \ldots, \sigma(j))$. It is easy to see $\sigma \sim \tau$ and $m(\vec{r}_{\tau}) = n$. Hence $\Pi(\vec{r}; n) > (n-1)!$, a contradiction. Let $\sigma' = (\sigma(n), \sigma(n-1), \ldots, \sigma(1))$ and $\tau' = (\tau(n), \tau(n-1), \ldots, \tau(1))$. Then $\sigma' \sim \tau'$ and $p(\vec{r}_{\sigma'}) = p(\vec{r}_{\tau'}) = n$. Hence $N(\vec{r}; n) > (n-1)!$, a contradiction.

(2) Suppose $\sum_{k \in I} r_k \notin [s, 0]$ for all $\emptyset \neq I \subset [n]$. Similar to the proof of Corollary 2.13 (1), we can obtain the results as desired.

Fix a permutation $\sigma \in \mathfrak{S}_n$. Let $\bar{s}_0 = 0, \bar{s}_1 = r_{\sigma(1)}, \bar{s}_2 = r_{\sigma(1)} + r_{\sigma(2)}, \ldots, \bar{s}_n = r_{\sigma(1)} + r_{\sigma(2)} + \ldots + r_{\sigma(n)}$. Let j to be the largest index i with $\bar{s}_i = \max_{0 \leq k \leq n} \bar{s}_k$. Consider the permutation $\tau = (\sigma(j+1), \ldots, \sigma(n), \sigma(1), \ldots, \sigma(j))$. Clearly, $\tau \in EQ(\sigma)$ and $m(\vec{r}_{\tau}) = p(\vec{r}_{\tau}) = 0$. So there is at least one element $\tau \in EQ(\sigma)$ such that $m(\vec{r}_{\tau}) = p(\vec{r}_{\tau}) = 0$. Thus $N(\vec{r}; 0) \geq (n-1)!$ and $\Pi(\vec{r}; 0) \geq (n-1)!$.

Suppose $\Pi(\vec{r}; i) = N(\vec{r}; i) = (n-1)!$ for any $i \in [n] - 1$. Particularly, $\Pi(\vec{r}; 0) = N(\vec{r}; 0) = (n-1)!$. Assume that there exists a proper subset I of [n] such that $s \leq \sum_{k \in I} r_k \leq 0$. Let $A = \{k \in I \mid r_k \leq 0\}$, a = |A| and j = |I|. Suppose $I = \{i_1, \ldots, i_a, i_{a+1}, \ldots, i_j\}$, where $i_k \in A$ for every $k \in [1, a]$. Let $J = [n] \setminus I$, $B = \{k \in J \mid r_k \leq 0\}$ and b = |B|. Suppose $J = \{i_{j+1}, \ldots, i_{j+b}, i_{j+b+1}, \ldots, i_n\}$, where $i_{j+k} \in B$ for every $k \in [1, b]$. Let σ be a permutation in \mathfrak{S}_n such that $\sigma(k) = i_k$ for any $k \in [n]$. Note that $\sum_{k=1}^j r_{\sigma(k)} = \sum_{k \in I} r_k \leq 0$. Thus we have $m(\vec{r}_{\sigma}) = 0$. Consider another permutation $\tau = (\sigma(j+1), \ldots, \sigma(n), \sigma(1), \ldots, \sigma(j))$. Then $\sum_{k=1}^{n-j} r_{\tau(k)} = s - \sum_{k \in I} r_k \leq 0$ since $\sum_{k \in I} r_k \geq s$. So $m(\vec{r}_{\tau}) = 0$. Note that $\sigma \sim \tau$. Hence $\Pi(\vec{r}; 0) > (n-1)!$, a contradiction. It is easy to see $p(\vec{r}_{\sigma}) = p(\vec{r}_{\tau}) = 0$. Hence $N(\vec{r}; 0) > (n-1)!$, a contradiction.

3 More general cases

In this section, we consider more general cases and study furthermore generalizations for properties of cyclic permutations of a sequence $\vec{r} = (r_i)_{i=1}^n$.

Theorem 3.1 Let θ be a real number and $\vec{r} = (r_i)_{i=1}^n$ a sequence of real numbers with sum $s > n\theta$ and partial sums $(s_i)_{i=0}^n$. Then

- (1) $\mathcal{M}(\vec{r};\theta) = [n]$ if and only if $s_j s_i \ge s (n-j+i)\theta$ for all $1 \le i \le j-1$, where $j = m(\vec{r};\theta)$;
- (2) $\mathcal{P}(\vec{r};\theta) = [n]$ if and only if $s_j s_i \notin ((j-i)\theta, s (n+i-j)\theta)$ for all $1 \leq i < j \leq n$, where the notation $((j-i)\theta, s - (n+i-j)\theta)$ denote the set of all real numbers xsatisfying $(j-i)\theta < x < s - (n+i-j)\theta$.

Proof. (1) Consider the sequence $\vec{v} = (r_1 - \theta, \dots, r_n - \theta)$. It is easy to see that (I) $\sum_{i=1}^n \vec{v_i} = s - n\theta > 0$; (II) $j = m(\vec{r}; \theta)$ if and only if $j = m(\vec{v})$; (III) $(s_j - j\theta) - (s_i - i\theta) \ge s - n\theta > 0$ for all $1 \le i \le j - 1$. By Theorem 2.2, we obtain the results as desired.

(2) Similar to the proof of Theorem 3.1(1), we can obtain the results in Theorem 3.1(2).

Similarly, considering $s \leq n\theta$, we can obtain the following results.

Theorem 3.2 Let θ be a real number and $\vec{r} = (r_i)_{i=1}^n$ a sequence of real numbers with sum $s \leq n\theta$ and partial sums $(s_i)_{i=0}^n$. Then

- (1) $\mathcal{M}(\vec{r};\theta) = [n] 1$ if and only if $s_i s_j < s (n+j-i)\theta$ for all $j+1 \leq i \leq n-1$, where $j = m(\vec{r};\theta)$;
- (2) $\mathcal{P}(\vec{r};\theta) = [n]-1$ if and only if $s_j s_i \notin [s (n+i-j)\theta, (j-i)\theta]$ for any $1 \leqslant i < j \leqslant n$, where the notation $[s - (n+i-j)\theta, (j-i)\theta]$ denote the set of all real numbers xsatisfying $s - (n+i-j)\theta \leqslant x \leqslant (j-i)\theta$.

Acknowledgements

The authors are thankful to the referees for their helpful comments to improve the paper.

References

- R. Altschul, Another proof for a combinatorial lemma in fluctuation theory, Math. Scand. 31 (1972), 123-126.
- [2] E.S. Andersen, On sums of symmetrically dependent random variables, Skand. Aktuarietidskr. (1953) 123-138.
- [3] G. Baxter, Notes for a seminar in stochastic processes, 1957.

- [4] A. Brandt, A generalization of a combinatorial theorem of Sparre Andersen about sums of random variables, Math. Scand. 9 (1961), 352-358.
- [5] D. Callan, Pair them up! A visual approach to the Chung-Feller theorem, Coll. Math. J. 26(1995)196-198.
- [6] D. Callan, Why are these equal? http://www.stat.wisc.edu/ callan/notes/
- [7] K.L. Chung, W. Feller, On fluctuations in-coin tossing, Proc. Natl. Acad. Sci. USA 35 (1949) 605-608.
- [8] S.P. Eu, T.S. Fu, Y.N. Yeh, Refined Chung-Feller theorems for lattice paths, J. Combin. Theory Ser. A 112 (2005) 143-162.
- [9] S.P. Eu, S.C. Liu, Y.N. Yeh, Taylor expansions for Catalan and Motzkin numbers, Adv. Appl. Math. 29 (2002) 345-357.
- [10] W. Feller, On combinatorial methods in fluctuation theory, The Harald Cramer Volume, Ed. Ulf Grenander, New York, 1959, 75-91. 143-162.
- [11] R.L. Graham, D.E. Knuth, Oren Patashnik, Concrete Mathematics(2nd edition), Addison-Wesley, 1994.
- [12] Ch. Hobby, R. Pyke, Remarks on the equivalence principle in fluctuation theory, Math. Scand. 12 (1963), 19-24.
- [13] A. Huq, Generalized Chung-Feller Theorems for Lattice Paths (Thesis), http://arxiv.org/abs/0907.3254
- [14] R.I. Jewett, K. A. Ross, Random walk on Z, Coll. Math. J. 26(1995)196-198.
- [15] S.C. Liu, Y. Wang, Y.N. Yeh, Chung-Feller property in view of generating functions, submitted
- [16] J. Ma, Y.N. Yeh, Generalizations of The Chung-Feller Theorem I, Bull. Inst. Math. Acad. Sin. (N. S.) 4 (2009) 299-332.
- [17] J. Ma, Y.N. Yeh, Generalizations of The Chung-Feller Theorem II, submitted.
- [18] S.G. Mohanty, Lattice path counting and applications, New York : Academic Press, 1979.
- [19] T.V. Narayana, Cyclic permutation of lattice paths and the Chung-Feller theorem, Skand. Aktuarietidskr. (1967) 23-30.
- [20] T.V. Narayana, Lattice path combinatorics, with statistical applications, Toronto; Buffalo: University of Toronto Press, c1979.

- [21] G.N. Raney, Functional composition patterns and power series reversion, Trans. Amer. Math. Soc., 94(1960) 441-451.
- [22] L. Shapiro, Some open questions about random walks, involutions, limiting distributions, and generating functions, Adv. in Appl. Math. 27 (2001) 585-596.
- [23] F. Spitzer, A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc., 82(1956) 323-339.
- [24] W.J. Woan, Uniform partitions of lattice paths and Chung-Feller Generalizations, Amer. Math. Monthly 108 (2001) 556-559.