
The nonexistence of regular near octagons with
parameters (s, t, t2, t3) = (2, 24, 0, 8)

Bart De Bruyn
Department of Mathematics

Ghent University, Gent, Belgium

bdb@cage.ugent.be

Submitted: May 19, 2010; Accepted: Oct 25, 2010; Published: Nov 5, 2010

Mathematics Subject Classifications: 05B25, 05E30, 05B05

Abstract

Let S be a regular near octagon with s + 1 = 3 points per line, let t + 1 denote
the constant number of lines through a given point of S and for every two points x

and y at distance i ∈ {2, 3} from each other, let ti + 1 denote the constant number
of lines through y containing a (necessarily unique) point at distance i − 1 from x.
It is known, using algebraic combinatorial techniques, that (t2, t3, t) must be equal
to either (0, 0, 1), (0, 0, 4), (0, 3, 4), (0, 8, 24), (1, 2, 3), (2, 6, 14) or (4, 20, 84). For all
but one of these cases, there is a unique example of a regular near octagon known.
In this paper, we deal with the existence question for the remaining case. We prove
that no regular near octagons with parameters (s, t, t2, t3) = (2, 24, 0, 8) can exist.

1 Introduction

A partial linear space S = (P,L, I) with point set P, line set L and incidence relation
I ⊆ P × L is called a near polygon if for every point p ∈ P and every line L ∈ L there
exists a unique point on L nearest to p. Here, distances are measured in the collinearity
graph Γ of S. If d is the diameter of Γ, then the near polygon is called a near 2d-gon.
The near 0-gons are the points and the near 2-gons are the lines. Near quadrangles are
usually called generalized quadrangles. Near polygons were introduced 30 years ago by
Shult and Yanushka [19].

A near 2d-gon, d > 2, is called regular if there exist constants s, t, ti (i ∈ {0, 1, . . . , d})
such that every line is incident with precisely s + 1 points, every point is incident with
precisely t+1 lines and for every two points x and y at distance i from each other there are
precisely ti+1 lines through y containing a (necessarily unique) point at distance i−1 from
x. Clearly, we have t0 = −1, t1 = 0 and td = t. The numbers s, t, ti (i ∈ {2, . . . , d − 1})
are called the parameters of the regular near polygon. A near 2d-gon, d > 2, is regular
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if and only if its collinearity graph is a so-called distance-regular graph. In the book
Distance-regular graphs [2] by Brouwer, Cohen and Neumaier, (the collinearity graphs of)
regular near polygons are regarded as one of the main classes of distance-regular graphs.

The parameters of a regular near polygon must satisfy a number of restrictions, like
inequalities and certain numbers (that depend on those parameters) which need to be
integral. There are standard techniques for calculating the eigenvalues and corresponding
multiplicities of the collinearity graph of a regular near polygon, see e.g. [2]. The fact that
all these multiplicities are nonnegative integers, gives severe restrictions on the parameters.
Other restriction on the parameters are known, see e.g. Brouwer and Wilbrink [3], Hiraki
and Koolen [9, 10, 11], Neumaier [12] and Terwilliger and Weng [16]. There are a number
of theorems guaranteeing the existence of sub-near-polygons, see e.g. Shult and Yanushka
[19, Proposition 2.5], Brouwer and Wilbrink [3, Theorem 4] and Hiraki [8, Corollary 1.2].
The existence of these subgeometries can be used to derive additional restrictions on the
parameters.

In the present paper, we are interested in the case of regular near octagons with 3
points per line (d = 4, s = 2). The various parameter restrictions imply that there are
only a finite number of possibilities for (t2, t3, t). Indeed, we have t2 ∈ {0, 1, 2, 4} since
t2 > 1 implies that every two points at distance 2 are contained in a so-called quad (Shult
and Yanushka [19, Proposition 2.5]). The order (s, t2) of each such quad must be equal
to (2, 1), (2, 2) or (2, 4) by Payne and Thas [13, Section 6.1]. By Neumaier [12, Theorem

3.1], we have t3 + 1 6
(s3+1)(t2+1+s)

s+1
6 21 and by Brouwer and Wilbrink [3, p. 161], we

have t + 1 6 (s2 + 1)(t3 + 1) 6 105.
In the following table, we list all the possibilities for (t2, t3, t) which remain after verify-

ing the various parameter restrictions we have found in the literature. For each possibility
of (t2, t3, t), we give the number of regular near octagons having these parameters.

(t2, t3, t) Number

(0, 0, 1) 1
(0, 0, 4) > 1
(0, 3, 4) 1
(0, 8, 24) ?
(1, 2, 3) 1
(2, 6, 14) 1
(4, 20, 84) 1

These possibilities already occur in Shad [15, page 82, Theorem 1.5]. In fact, in [15]
one more possibility for (t2, t3, t) was mentioned, namely (t2, t3, t) = (1, 11, 39), but this
possibility has been ruled out by Brouwer and Wilbrink [3, page 165].

There is only one regular near octagon with parameters (s, t2, t3, t) = (2, 0, 0, 1). It is
a generalized octagon which is the point-line dual of the double of the unique generalized
quadrangle of order 2. The regular near octagons with parameters (s, t2, t3, t) = (2, 0, 0, 4)
are precisely the generalized octagons of order (2, 4). Up to now, there is only one such
generalized octagon known. It belongs to the family of the so-called Ree-Tits general-
ized octagons which were first constructed by Tits in [18] using a new family of simple
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groups discovered by Ree [14]. There exists a unique regular near octagon with param-
eters (s, t2, t3, t) = (2, 0, 3, 4). It is related to the Hall-Janko simple group. It was first
constructed in Cohen [5] and its uniqueness was proved in Cohen and Tits [6]. There
exists a unique regular near octagon with parameters (s, t2, t3, t) = (2, 1, 2, 3), namely the
Hamming near octagon with three points on each line. The unique regular near octagons
with parameters (s, t2, t3, t) = (2, 2, 6, 14) and (s, t2, t3, t) = (2, 4, 20, 84) are respectively
isomorphic to DW (7, 2) and DH(7, 4), see Cameron [4] and Brouwer & Wilbrink [3,
Lemma 26 and Section (i)]. The regular near octagons DW (7, 2) and DH(7, 4) are the
dual polar spaces (in the sense of Cameron [4]) respectively related to the symplectic polar
space W (7, 2) = W7(2) and the Hermitian polar space H(7, 4) (Thas [17, Section 9.1]).

There is one possibility, namely (s, t2, t3, t) = (2, 0, 8, 24), for which the existence of
the corresponding regular near octagons was not yet settled. In this paper, we deal with
this remaining case. The following is our main result.

Theorem 1.1 No regular near octagons exist whose parameters (s, t2, t3, t) are equal to

(2, 0, 8, 24).

Remarks. (1) If S is a regular near octagon with parameters (s, t2, t3, t) = (2, 0, 8, t),

then by Neumaier [12, Theorem 3.1], t + 1 >
(s4−1)(t3+1−s2)

s2−1
= 25. So, for the regular near

octagons under investigation in this paper, this inequality becomes an equality.
(2) As told before, there are some results guaranteeing the existence of sub-near-

polygons ([19, Proposition 2.5], [3, Theorem 4] and [8, Corollary 1.2]) and such sub-near-
polygons are often helpful for proving the nonexistence of certain near polygons. The
necessary conditions for applying these results are however not satisfied here.

(3) If a regular near octagon with parameters (s, t2, t3, t) = (2, 0, 8, 24) would have
existed, the eigenvalues of its collinearity graph would have been equal to λ0 = s(t+1) =
50, λ1 = 13, λ2 = 5, λ3 = −7 and λ4 = −(t + 1) = −25. The corresponding multiplicities
would have been equal to m0 = 1, m1 = 2700, m2 = 14060, m3 = 14800 and m4 = 74.

2 Proof of Theorem 1.1

Let S be a regular near octagon with parameters (s, t2, t3, t) = (2, 0, 8, 24) and let Γ be its
collinearity graph. If x is a point of S, then |Γ0(x)| = 1, |Γ1(x)| = s(t+1) = 50, |Γ2(x)| =
s2(t+1)t

t2+1
= 2400, |Γ3(x)| = s3(t+1)t(t−t2)

(t2+1)(t3+1)
= 12800 and |Γ4(x)| = s4t(t−t2)(t−t3)

(t2+1)(t3+1)
= 16384. So,

the total number of vertices of S is equal to 31635.
Let x be a point of S. Then Lx denotes the set of lines through x and Γx denotes

the subgraph of Γ induced on the set Γ3(x). We denote by Cx the set of all connected
components of Γx. If y ∈ Γ3(x), then B(x, y) denotes the set of t3 + 1 = 9 lines through
x which contain a point at distance 2 from y. We define Bx := {B(x, y) | y ∈ Γ3(x)}. Let
Dx = (Lx,Bx, Ix) be the point-line geometry with point set Lx, line set Bx and natural
incidence relation Ix.
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Let x be a point of S. If y1 and y2 are two adjacent vertices of Γx, then since d(x, y1) =
d(x, y2) = 3, we have d(x, z) = 2 where z is the unique point of the line y1y2 distinct from
y1 and y2. Since t2 = 0, there exists a unique line L through x containing a point collinear
with z. We say that the vertices y1 and y2 of Γx are L-adjacent. Clearly, L is contained
in B(x, y1) and B(x, y2).

Lemma 2.1 For every point x of Γ, the graph Γx has valency 9. More precisely, for every

vertex y1 of Γx and every line L ∈ B(x, y1), there exists a unique vertex of Γx which is

L-adjacent with y1.

Proof. Let L be a line of B(x, y1), let u denote the unique point of L at distance 2 from
y1 and let K denote the unique line through y1 containing a point z at distance 1 from
u. Then the unique point y2 of K distinct from y1 and z is L-adjacent to y1. Conversely,
if y′

2 is a vertex of Γx which is L-adjacent to y1, then the line y1y
′
2 must contain a point

collinear with u and hence coincides with K. This implies that y′
2 = y2.

So, for each of the nine lines L of B(x, y1), there exists a unique vertex of Γx which is
L-adjacent to y1. Hence, the vertex y1 of Γx has degree 9. �

Lemma 2.2 Let x be a point of S and let y1, y2 ∈ Γ3(x). If y1 and y2 belong to the same

connected component of Γx, then B(x, y1) = B(x, y2).

Proof. It suffices to prove the lemma in the case that y1 and y2 are adjacent vertices of
Γx. By symmetry, it suffices to prove the inclusion B(x, y1) ⊆ B(x, y2).

Let L be an arbitrary element of B(x, y1) and let z denote the unique point on L at
distance 2 from y1. Since y1 and y2 are collinear, we have d(y2, z) 6 3. Since d(y2, x) = 3,
the unique point of L nearest to y2 lies at distance 2 from y2, proving that L ∈ B(x, y2).
Since L was an arbitrary line of B(x, y1), we have B(x, y1) ⊆ B(x, y2) as we needed to
prove. �

Let Σ := {+,−}. Let G be the graph whose vertices are those elements of the cartesian
power Σ9 which contain an odd number of +’s, with two vertices adjacent whenever
they agree in precisely one position. The graph G is easily seen to be isomorphic to the
folded 9-cube discussed in Section 9.2 of Brouwer, Cohen and Neumaier [2]. The following
properties of G are clear.

• G has 256 vertices and is a regular graph of diameter 4 and valency 9.
• Two vertices of G agree in an odd number of positions.
• If m0 := 9, m1 := 1, m2 := 7, m3 := 3 and m4 := 5, then two vertices of G lie

at distance i ∈ {0, 1, 2, 3, 4} from each other if and only if they agree in precisely mi

positions.

Now, for every two points x and y of S at distance 3 from each other, a graph Gx,y

can be defined which is isomorphic to G. Put Γ1(x) ∩ Γ2(y) = {x+
1 , x+

2 , . . . , x+
9 } and

for every i ∈ {1, 2, . . . , 9}, let x−
i denote the unique point of the line xx+

i distinct
from x and x+

i . The vertices of Gx,y are the sets of the form {xǫ1
1 , xǫ2

2 , . . . , xǫ9
9 } with

ǫ1, ǫ2, . . . , ǫ9 ∈ {+,−} and ǫ1 · ǫ2 · . . . · ǫ9 = +, with two distinct vertices {xǫ1
1 , xǫ2

2 , . . . , xǫ9
9 }
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and {x
ǫ′
1

1 , x
ǫ′
2

2 , . . . , x
ǫ′
9

9 } adjacent whenever they have precisely one element in common, or
equivalently, if (ǫ1, ǫ2, . . . , ǫ9) and (ǫ′1, ǫ

′
2, . . . , ǫ

′
9) agree in precisely one position. If two

adjacent vertices of Gx,y have the element z in common, then we call these vertices L-

adjacent where L is the unique line through x and z.

Let G1 and G2 be two graphs with respective vertex sets V1 6= ∅ and V2 6= ∅. For every
vertex v of Gi, i ∈ {1, 2}, let v⊥i be the set of vertices of Gi adjacent to v. A surjective
map f : V1 → V2 is called a covering map if for every v ∈ V1, the restriction of f to v⊥1

is a bijection between v⊥1 and f(v)⊥2. If there exists such a covering map, then G1 is
called a cover of G2. If G2 is connected and f is a covering map, then there exists an
m ∈ N \ {0} such that |f−1(v)| = m for every v ∈ V2. In this case, G1 is called an m-fold

cover of G2.

Lemma 2.3 Let x, y1 and y2 be three points of S such that y1, y2 ∈ Γ3(x) belong to

the same connected component C of Γx. Then Gx,y1
= Gx,y2

. For every y ∈ C, the set

θx,C(y) := Γ2(y) ∩ Γ1(x) is a vertex of Gx,y1
= Gx,y2

. If L ∈ B(x, y1) = B(x, y2) and if z1

and z2 are two L-adjacent vertices of C, then θx,C(z1) and θx,C(z2) are L-adjacent vertices

of Gx,y1
= Gx,y2

. As a consequence, θx,C is a covering map.

Proof. Suppose z1 and z2 are two adjacent vertices of C. Put Γ2(z1) ∩ Γ1(x) =
{x+

1 , x+
2 , . . . , x+

9 } and for every i ∈ {1, 2, . . . , 9}, let x−
i denote the unique point of the

line Li := xx+
i distinct from x and x+

i . By Lemma 2.2, Γ2(z2)∩Γ1(x) = {xǫ1
1 , xǫ2

2 , . . . , xǫ9
9 }

for some ǫ1, ǫ2, . . . , ǫ9 ∈ {+,−}. Now, let z denote the unique point of z1z2 distinct from
z1 and z2. Since d(x, z1) = d(x, z2) = 3, we have d(x, z) = 2 and so x and z have a unique
common neighbor. Clearly, Γ1(x) ∩ Γ1(z) = {x+

j } for some j ∈ {1, 2, . . . , 9}. We have
x+

j ∈ Γ2(z2) and hence ǫj = +. Conversely, suppose that ǫi = + for some i ∈ {1, 2, . . . , 9}.
Then since d(x+

i , z1) = d(x+
i , z2) = 2, we have d(x+

i , z) = 1. So, x+
i is a common neighbor

of x and z and hence i = j. So, ǫi = − for every i ∈ {1, 2, . . . , 9} \ {j}. Notice that the
vertices z1 and z2 are Lj-adjacent vertices of C and that θx,C(z1) = Γ2(z1) ∩ Γ1(x) and
θx,C(z2) = Γ2(z2) ∩ Γ1(x) are Lj-adjacent vertices of Gx,z1

.

Now, the vertex set of Gx,z1
consists of all sets of the form {x

ǫ′
1

1 , x
ǫ′
2

2 , . . . , x
ǫ′
9

9 } with
ǫ′1, ǫ

′
2, . . . , ǫ

′
9 ∈ {+,−} such that ǫ′1 · ǫ

′
2 · . . . · ǫ

′
9 = +. The vertex set of Gx,z2

on the other

hand consists of all sets of the form {x
ǫ′
1

1 , x
ǫ′
2

2 , . . . , x
ǫ′
9

9 } with ǫ′1, ǫ
′
2, . . . , ǫ

′
9 ∈ {+,−} such

that (ǫ′1ǫ1) · (ǫ
′
2ǫ2) · . . . · (ǫ

′
9ǫ9) = +. Since ǫ1 · ǫ2 · . . . · ǫ9 = +, the vertex sets of Gx,z1

and
Gx,z2

coincide. Hence, also the graphs Gx,z1
and Gx,z2

coincide.
The lemma now follows from the above discussion and the connectedness of C. �

For every point x of S and every C ∈ Cx, let Ax,C ∈ N \ {0} such that C is an Ax,C-fold
cover of Gx,y with associated covering map θx,C . Here, y is an arbitrary element of C.
Clearly, |C| = 256 · Ax,C .

Lemma 2.4 For every vertex x of S and every connected component C of Γx, we have

Ax,C > 2.
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Proof. Let y1 be an arbitrary point of C and let L1 and L2 be two distinct lines of
B(x, y1). Let y2 be the unique vertex of C which is L1-adjacent to y1, let y3 be the
unique vertex of C which is L2-adjacent to y2, let y4 be the unique vertex of C which is
L1-adjacent to y3 and let y5 be the unique vertex of C which is L2-adjacent to y4. By
Lemma 2.3, θx,C(y1) = θx,C(y5). Since t2 = 0, there are no quadrangles in C. Hence,
y1 6= y5 and Ax,C > 2. �

Lemma 2.5 For every point x of S, we have |Cx| 6 25 and
∑

C∈Cx
Ax,C = 50. Moreover,

if |Cx| = 25, then Ax,C = 2 and |C| = 512 for every C ∈ Cx.

Proof. We have 12800 = |Γ3(x)| =
∑

C∈Cx
|C| =

∑
C∈Cx

256 ·Ax,C. Hence,
∑

C∈Cx
Ax,C =

50. Since Ax,C > 2 for every C ∈ Cx, we have |Cx| 6 25. Clearly, if |Cx| = 25, then
Ax,C = 2 and |C| = 256 · Ax,C = 512 for every C ∈ Cx. �

Lemma 2.6 Let x be a point of S and let (y1, y2, . . . , y50) be a 50-tuple1 of points of Γ3(x)
satisfying the following property: for every C ∈ Cx, there are precisely Ax,C elements

i ∈ {1, 2, . . . , 50} for which yi ∈ C. Put Bi := B(x, yi) for every i ∈ {1, 2, . . . , 50}. Then

the following holds.

(1) For every line L ∈ Lx, there are precisely 18 elements i ∈ {1, 2, . . . , 50} for which

L ∈ Bi.

(2) For every two distinct lines L1, L2 ∈ Lx, there are precisely 6 elements i ∈
{1, 2, . . . , 50} for which L1, L2 ∈ Bi.

Proof. (1) Let F denote the set of all points y of Γ3(x) for which L ∈ B(x, y). By
Lemma 2.2, F must be the union of some elements of Cx, i.e. F =

⋃
C∈C C where C is

some suitable subset of Cx. The number of i ∈ {1, 2, . . . , 50} for which L ∈ Bi is equal

to
∑

C∈C Ax,C =
∑

C∈C
|C|
256

= |F |
256

. So, it suffices to compute |F |. Put L = {x, u1, u2} and
let Fi, i ∈ {1, 2}, denote the set of all points y ∈ F for which {ui} = L ∩ Γ2(y). Then

F = F1 ∪ F2. A straightforward calculation shows that |F1| = |F2| = st·s(t−t2)
t2+1

= 2304.
Hence, |F | = 4608 and

∑
C∈C Ax,C = 18.

(2) Let F denote the set of all points y of Γ3(x) for which L1, L2 ∈ B(x, y). By
Lemma 2.2, F must be the union of some elements of Cx, i.e. F =

⋃
C∈C C where C is

some suitable subset of Cx. The number of i ∈ {1, 2, . . . , 50} for which L1, L2 ∈ Bi is equal

to
∑

C∈C Ax,C =
∑

C∈C
|C|
256

= |F |
256

. So, it suffices to compute |F |. Put L1 = {x, u1, u2} and
let Fi, i ∈ {1, 2}, denote the set of all y ∈ F for which {ui} = L1 ∩ Γ2(y). We compute
|Fi|. Let v be one of the two points of L2 \ {x}.

Suppose y ∈ Fi. Then y and ui have a unique common neighbor z. The point z is one
of the st = 48 points collinear with ui not contained on the line L1 and the line zy is one
of the t3 = 8 lines through z distinct from zui containing a point at distance 2 from v.

Conversely, if z is one of the 48 points collinear with ui not contained on the line L1

and the line M is one of the 8 lines through z distinct from zui which contain a point at
distance 2 from v, then each of the two points of M \ {z} belongs to Fi.

It follows that |Fi| = 48 · 8 · 2 = 768, |F | = |F1| + |F2| = 1536 and
∑

C∈C Ax,C = 6. �

1Such a tuple exists by Lemma 2.5.
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Lemma 2.7 Let x be a point of S. Then:

(1) |Cx| = 25;
(2) every C ∈ Cx contains precisely 512 vertices;

(3) Ax,C = 2 for every C ∈ Cx;

(4) if y, y′ ∈ Γ3(x) belong to distinct connected components of Γx, then B(x, y) 6=
B(x, y′).

Proof. Let (y1, y2, . . . , y50) and (B1, B2, . . . , B50) be as in Lemma 2.6. Let M be the
25 × 50-matrix over R whose rows are indexed by the 25 lines of Lx and whose columns
are indexed by the blocks B1, B2, . . . , B50 of Bx. The entry of M corresponding to the
line L ∈ Lx and the block Bi, i ∈ {1, 2, . . . , 50}, of Bx is equal to 1 if L ∈ Bi and equal to
0 otherwise. Notice that if yi1 and yi2 (i1, i2 ∈ {1, 2, . . . , 50}) are contained in the same
connected component of Γx, then by Lemma 2.2 the columns of M corresponding to Bi1

and Bi2 are equal. Hence, rank(M) 6 |Cx|. In fact, we can say more. If rank(M) = |Cx|
and i1, i2 ∈ {1, 2, . . . , 50} such that yi1 and yi2 belong to distinct connected components
of Γx, then Bi1 6= Bi2 .

By Lemma 2.6, MMT = 12 · I + 6 · J , where I is the 25 × 25-identity matrix and J

is the 25 × 25 matrix with all entries equal to 1. The matrix 12 · I + 6 · J is easily seen
to be nonsingular. (E.g., by subtracting the first row from all the remaining rows and
subsequently adding to the first column the sum of all the other columns, we obtain a
nonsingular upper triangular matrix.)

So, we have rank(M) = rank(MMT ) = 25. Hence, 25 = rank(M) 6 |Cx|. Together
with Lemma 2.5, this implies that the conditions (1), (2) and (3) of the lemma hold.
Also (4) holds by Lemma 2.2 and the discussion above. Indeed, we have already said
that if rank(M) = |Cx| and i1, i2 ∈ {1, 2, . . . , 50} such that yi1 and yi2 belong to distinct
connected components of Γx, then B(x, yi1) = Bi1 6= Bi2 = B(x, yi2). �

A 2-design is called symmetric if it has as many points as blocks. The point-line dual of
symmetric 2-design is again a 2-design with the same parameters, see e.g. Beth, Jungnickel
and Lenz [1, p. 78, Corollary 3.3]. This fact will be crucial for the remainder of the proof.

Lemma 2.8 The point-line geometry Dx is a symmetric 2-(25, 9, 3)-design for every point

x of S. As a consequence, if B1 and B2 are two distinct blocks of Dx, then |B1 ∩B2| = 3.

Proof. We need to prove that Dx has precisely 25 points, precisely 9 points in each block
and precisely 3 blocks through every two distinct points. The first two claims are trivially
fulfilled. The last claim follows from Lemmas 2.2, 2.6(2) and 2.7.

Since Dx has as many points as blocks, namely 25, it is a symmetric 2-(25, 9, 3)-design.
This implies that also the point-line dual of Dx is a 2-(25, 9, 3)-design. Hence, every two
distinct blocks of Dx must intersect in precisely 3 points. �

Symmetric 2-(25, 9, 3)-designs do exist. Denniston [7] classified them and found that there
are up to isomorphism 78 of them. We shall not need this classification here.
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Lemma 2.9 Let x be a point of S, let C ∈ Cx and let y ∈ Γ4(x). Then there are at most

two lines through y meeting C. Moreover, if y1 and y2 are two points of C collinear with

y, then θx,C(y1) = θx,C(y2).

Proof. Suppose L1, L2 and L3 are three not necessarily distinct lines through y meeting
C. Put {yi} = Li∩C, i ∈ {1, 2, 3}. Since yi is contained on a shortest path between x and
y, we have θx,C(yi) = Γ1(x)∩Γ2(yi) =

⋃
L∈B(x,yi)

(L∩Γ2(yi)) =
⋃

L∈B(x,yi)
(L∩Γ3(y)). Since

B(x, y1) = B(x, y2) = B(x, y3), we have θx,C(y1) = θx,C(y2) = θx,C(y3). Since Ax,C = 2,
at least two of the points y1, y2, y3 must coincide. Hence, also at least two of the lines
L1, L2, L3 must coincide. This proves the lemma. �

Lemma 2.10 Let x be a point of S, let y ∈ Γ4(x) and let y1, y2 be two distinct points of

Γ1(y) ∩ Γ3(x). Then |B(x, y1) ∩ B(x, y2)| = 3.

Proof. Suppose |B(x, y1) ∩ B(x, y2)| 6= 3. Then B(x, y1) = B(x, y2) by Lemma 2.8. By
Lemma 2.7(4), y1 and y2 belong to the same connected component C of Γx. By Lemma
2.9, θx,C(y1) = θx,C(y2). Put {u1, u2, . . . , u9} = θx,C(y1) = θx,C(y2). By Lemmas 2.7(4)
and 2.9, the set {B(y, u1), B(y, u2), . . . , B(y, u9)} ⊆ By has size at least 5. But each of
these blocks of By contains the lines yy1 and yy2. This is impossible since there are only
three blocks of By through yy1 and yy2. �

Lemma 2.11 Let x be a point of S, let y ∈ Γ4(x) and let C ∈ Cx. Then precisely one

line through y meets C.

Proof. Put Γ3(x) ∩ Γ1(y) = {y1, y2, . . . , y25}. By Lemma 2.10, the blocks B(x, y1),
B(x, y2), . . ., B(x, y25) of Dx are mutually distinct. Since there are only 25 blocks in Dx,
these are all the blocks of Dx. Let y′ ∈ C and let i be the unique element of {1, 2, . . . , 25}
such that B(x, y′) = B(x, yi). By Lemmas 2.2 and 2.7(4), yi is the unique element of
{y1, y2, . . . , y25} contained in C. Hence, the line yyi is the unique line through y meeting
C. �

We are now ready to derive a contradiction. This contradiction implies that there are no
regular near octagons with parameters (s, t2, t3, t) = (2, 0, 8, 24).

Let x be a point of S and let B1 and B2 be two distinct blocks of Bx. Then |B1∩B2| = 3
by Lemma 2.8. Put B1 ∩B2 = {L1, L2, L3} and B1 = {L1, L2, . . . , L9}. Let Ci, i ∈ {1, 2},
be the element of Cx such that Bi = B(x, wi) for every wi ∈ Ci. Let y1 be an arbitrary
point of C1, let x+

i , i ∈ {1, 2, . . . , 9}, denote the unique point of Li at distance 2 from
y1 and let x−

i denote the unique point of Li distinct from x and x+
i . Now, θx,C1

(y1) =
{x+

1 , x+
2 , . . . , x+

9 } is a vertex of Gx,y1
and hence also {x+

1 , x+
2 , x+

3 , x−
4 , x−

5 , · · · , x−
9 } is a vertex

of Gx,y1
. Since Ax,C1

= 2, there are precisely two points y2, y
′
2 ∈ C1 such that θx,C1

(y2) =
θx,C1

(y′
2) = {x+

1 , x+
2 , x+

3 , x−
4 , x−

5 , . . . , x−
9 }.

We prove that the points y2 and y′
2 lie at distance 3 from y1. Let u denote the unique

point of C1 which is L1-adjacent to y1, let v1 denote the unique point of C1 which is
L2-adjacent to u, let v2 denote the unique point of C1 which is L3-adjacent to v1, let v′

1
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denote the unique point of C1 which is L3-adjacent to u and let v′
2 denote the unique

point of C1 which is L2-adjacent to v′
1. By construction (and the fact that t2 = 0), v2 and

v′
2 lie at distance 3 from y1. If v2 = v′

2, then u, v1, v2 = v′
2, v

′
1, u would define a quadrangle

in C1 which is impossible since t2 = 0. Hence, v2 6= v′
2. One can readily verify that

θx,C1
(v2) = θx,C1

(v′
2) = {x+

1 , x+
2 , x+

3 , x−
4 , x−

5 , . . . , x−
9 } = θx,C1

(y2) = θx,C1
(y′

2). This implies
that {v2, v

′
2} = {y2, y

′
2}. Hence, each of y2, y

′
2 lies at distance 3 from y1. (A reasoning

along the above lines can be given to show that each of y2, y
′
2 is connected with y1 by

precisely three paths of length 3 which are completely contained in C1.)
Since each of y2, y

′
2 lies at distance 3 from x, there are precisely 2(t3 + 1)(t2 + 1) = 18

paths of length 3 which join y1 with one of y2, y
′
2. We will now construct 32 paths2 which

join y1 with one of y2, y
′
2 leading to our desired contradiction. In fact, we show that for

each of the s(t − t3) = 32 points z ∈ Γ4(x) ∩ Γ1(y1), there exists a path (y1, z, z
′, z′′) of

length 3 with z′′ ∈ {y2, y
′
2}.

Let M1 denote the unique line through z meeting C2 in a point w and let z′ denote
the unique point of M1 not contained in C2 ∪{z}. Let M2 denote the unique line through
z′ meeting C1 in a point z′′.

Let i ∈ {1, 2, 3}. Since Li ∈ B(x, y1) ∩ B(x, z′′) ∩ B(x, w), we have Γ2(y1) ∩ Li =
Γ3(z) ∩ Li = Γ2(w) ∩ Li = Γ3(z

′) ∩ Li = Γ2(z
′′) ∩ Li.

Let i ∈ {4, 5, . . . , 9}. If Γ3(z) ∩ Li = Γ3(z
′) ∩ Li = {v}, then since d(v, z) = d(v, z′) =

3, we would have d(v, w) = 2 and hence Li ∈ B(x, w) = B2, a contradiction. So,
Γ2(y1) ∩ Li = Γ3(z) ∩ Li 6= Γ3(z

′) ∩ Li = Γ2(z
′′) ∩ Li.

The two previous paragraphs imply that θx,C1
(z′′) = θx,C1

(y2) = θx,C1
(y′

2). Since
Ax,C1

= 2, we have z′′ ∈ {y2, y
′
2}.

So, we have constructed 32 = |Γ1(y1)∩Γ4(x)| paths of length 3 which connect y1 with
one of y2, y

′
2. As said before, this is impossible. So, there exists no regular near octagon

with parameters (s, t2, t3, t) = (2, 0, 8, 24).
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