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Abstract

We study the list coloring number of k-uniform k-partite hypergraphs. An-
swering a question of Ramamurthi and West, we present a new upper bound which
generalizes Alon and Tarsi’s bound for bipartite graphs, the case k = 2. Our re-
sults hold even for paintability (on-line list colorability). To prove this additional
strengthening, we provide a new subject-specific version of the Combinatorial Null-

stellensatz.

1 Introduction

We examine list colorability (choosability) of hypergraphs H = (V, E). For a fixed tuple
L = (Lv)v∈V of color lists (sets), the hypergraph H is called L-colorable if there exist a
vertex coloring v 7−→ c(v) ∈ Lv without monochromatic edges e ∈ E , i.e. |c(e)| > 1. For
a fixed tuple ℓ = (ℓv)v∈V ∈ ZV

>0, the hypergraph H is called ℓ-list colorable (ℓ-choosable)
if it is L-colorable for any tuple L of color lists Lv with cardinalities |Lv| = ℓv. As
generalization of ordinary graph colorings, with just one common list of available colors
for all vertices, list colorings were introduced by Vizing [Viz] and independently by Erdős,
Rubin and Taylor [ERT]. They worked with usual graphs, i.e. 2-uniform hypergraphs
(|e| = 2 for all e ∈ E), and proved that Brooks’ Theorem about the maximal degree as
upper bound for the required number of colors holds in the more general setting of list
colorings. Other theorems about usual colorings could be generalized later as well, see
[Tu, Al, KTV]. One could think that if we can color a graph with k colors then it should
be k-list colorable, i.e (k, k, . . . , k)-list colorable; “making habitats less overlapping should
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help to avoid collisions”. However, this is not the case, surprisingly, it can be more difficult
to color a graph if the lists Lv are different. Erdős, Rubin and Taylor [ERT] showed in
[ERT] that even graphs that are colorable with just 2 colors (i.e. bipartite graphs) can
have arbitrarily big list chromatic numbers. Therefore, one had to ask how big the lists
have to be in order to guarantee the existence of colorings. The general upper bound
provided by Brooks’ Theorem turns out to be far from tight in many cases. In fact, Alon
and Tarsi could provide in [AlTa, Theorem3.2] a much better one. In particular, their
result implies that bipartite graphs with maximal degree 2k are (k+1)-list colorable. In
Section 2, we generalize Alon and Tarsi’s results about list colorability of bipartite graphs
(2-partite 2-uniform hypergraphs) to k-partite k-uniform hypergraphs. Ramamurthi and
West asked at the end of their paper [RaWe] for such a hypergraph analog of Alon and
Tarsi’s result.

In the course of the described development Alon and Tarsi found the so called Polyno-
mial Method and the Combinatorial Nullstellensatz [Al2, Scha1], which is of fundamental
importance inside and beyond combinatorics:

Theorem 1.1 (Combinatorial Nullstellensatz). If Xα1
1 Xα2

2 · · ·Xαn
n occurs as monomial

of maximal degree in a polynomial P (X1, X2, . . . , Xn), then this polynomial has a nonzero
in any domain L1 × L2 × · · · × Ln with |Lj | > αj for j = 1, 2, . . . , n.

A simple application of this theorem led to the so called Alon-Tarsi List Coloring
Theorem [AlTa, Theorem1.1], which was Alon and Tarsi’s main tool in the verification
of their upper bound for the list chromatic number of bipartite graphs. This theorem on
its own achieved some prominence in the theory of list colorings, and the upper bound
of the list chromatic number for bipartite graphs is just one of its many repercussions.
Accordingly, it seems natural to generalize the Alon-Tarsi Theorem to hypergraphs in
order to generalize its repercussions, and, in particular, the upper bound for bipartite
graphs. This is exactly what Ramamurthi and West tried in [RaWe]. They actually
found a hypergraph extension of the Alon-Tarsi Theorem, but this extension did not help
on with the upper bound. The generalized Alon-Tarsi Condition about certain general-
ized Eulerian subgraphs in their result is too hard to verify. Therefore, we replaced this
condition with the condition that a certain α-permanent perα(A) of a so called zero row-
sum incidence matrices A has to be different from zero (Theorem 2.1). In the setting of
k-uniform k-partite hypergraphs, such a zero row-sum incidence matrices matrix A can
be obtained from the usual 0-1 incidence matrix A′ by multiplying its columns with ap-
propriate scalars. Therefore, we are left with the study of perα(A′), which turns out to be
the number of α-orientations. Summarizing, we see that, for k-uniform k-partite hyper-
graphs, the mere existence of α-orientations assures proper list colorings (Theorem 2.2 ).
With this main result of Section 1, our verification of proper list colorings in Section 2 is
reduced to hunting down good orientations.

Moreover, we discovered in [Scha2] an additional further generalization of the concept
of list colorings. This generalization is based on a different point of view. Instead of
assigning color lists Lv of size ℓv to the vertices v of a (hyper)graph, we assign sets of
vertices V1, V2, . . . ⊆ V to colors (say c1, c2, . . . ) such that each vertex v is contained in
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exactly ℓv sets Vi. The ith set Vi describes the range of vertices that are allowed to re-
ceive the ith color ci. Both concepts of restricting the availability of colors are equivalent,
but the second one can be generalized as follows. When we have already used the first
i colors c1, c2, . . . , ci in a coloration process, then we allow to change the vertex sets Vj

with j > i, only the property that each vertex v is contained in exactly ℓv lists shall
remain. Such changes on the flight may be required in real-life applications. Actually,
we showed in [Scha3] that this concept has applications in time scheduling. We also saw
that ℓ-list colorable graphs not always are ℓ-paintable, as we say, i.e., there does not have
to be a winning coloration strategy if the vertex sets Vi are allowed to change (see also
[Zhu, Theorem14&15]). Therefore, it is quite surprising that almost all theorems about
list colorings still hold in the new framework of paintability (on-line list colorability), see
[Scha2, Scha3, HKS]. What is with the results of this paper? Well, all our results extend,
just replace every occurrence of “list color. . . ” with “paint. . . ” and everything is fine.
In order to achieve this additional strengthening we need a strengthened version of the
Combinatorial Nullstellensatz (Theorem 1.1), which we provide with Theorem 4.5 . As
we will see at the end of the paper, this is not possible without additional assumptions.
The additional assumption that we found is to only allow substitutions of algebraically
independent elements into the polynomial. This restriction is quite strong and will make
the theorem useless for most applications. However, when it comes to coloration problems
we may even use symbolic variables as colors, so that we get algebraic independence for
free. All this is worked out in a more game-theoretic setting in Section 4. The definitions
and proofing ideas in this section generalize the introduction of paintability of graphs in
[Scha2] and the purely combinatorial proof of the Alon-Tarsi List Coloring Theorem in
[Scha3]. We also point out that, beside our paintability strengthening of the Combina-
torial Nullstellensatz, other versions of this theorem may lead to other improvements of
list coloration theorems. The “Quantitative” Combinatorial Nullstellensatz [Scha1, The-
orem3.3(i)] is one such example, although the relatively technical “quantitative” results
only become handsome in special situations like those in [Scha1, Section 5].

2 Alon and Tarsi’s Theorem for Hypergraphs

In this section we provide our tool for detecting colorings of hypergraphs H = (V, E). We H = (V, E)

always work over integral domains R. A matrix A = (aev) ∈ RE×V with R, A

aev 6= 0 ⇐⇒ v ∈ e (1)

and with vanishing row-sums,
∑

v∈e

aev = 0 for all e ∈ E , (2)

is a zero row-sum incidence matrix of H. The homogenous polynomial PA

PA :=
∏

e∈E

∑

v∈V

aevXv (3)
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is the matrix polynomial of A over R. We examine its nonzeros and coefficents:

– The nonzeros x = (xv)v∈V of PA give rice to proper vertex colorings v 7→ xv of H.

Conversely, if the vertex colors xv of a coloring v 7→ xv of H lie in an extension ring R̂
of R, and are algebraically independent over R, then x = (xv)v∈V is a nonzero of PA.

Furthermore, if R̂ is an extension ring of R and Lv ⊆ R̂ for all v ∈ V, then the colors xv

of the vertices v ∈ V lies in the lists Lv if and only if the nonzero x of PA lies in the grid∏
v∈V Lv ⊆ R̂V. Therefore, any list coloring problem can be modelled by a polynomial

function on a grid. Finding a suitable ring extension R̂ as working environment is no
problem. Without loss of generality, we may view all the colors in all the given color lists
Lv as symbolic variables, and take R̂ as the polynomial ring in these variables over R.

– The coefficient (PA)α of Xα =
∏

v Xαv
v in PA is given by the α-permanent of A, perα

(PA)α = perα(A) :=
∑

σ : E→V
|σ−1(v)|=αv

∏

e∈E

ae,σ(e) . (4)

This kind of permanent has the property that

perα(A) = 0 if
∑

v∈V

αv 6= |E| , (5)

which is also reflected in the homogeneity of PA. It is related to the usual permanent
per := per

1
= per(1,1,...,1) by the equation per

1( ∏

v∈V

αv!
)

perα(A) = per(A〈|α〉) if
∑

v∈V

αv = |E| , (6)

where A〈|α〉 is a matrix that contains the column of A with index v exactly αv times (as A〈|α〉

in [AlTa2] or [Scha1, Definition 5.2]).

Summarizing and paraphrasing, nonzeros are colorings, and coefficients are perma-
nents. The gap between coefficients and nonzeros is being closed by the Combinatorial
Nullstellensatz (Theorem 1.1), as in homogenous polynomials all monomials have maxi-
mal degree. We obtain:

Theorem 2.1. Let A be a zero row-sum incidence matrix of a hypergraph H = (V, E).
Then, for α ∈ NV, holds

perα(A) 6= 0 =⇒ H is (α + 1)-list colorable.

Apparently, the α-permanent in this theorem is a sum running over all, so called,
α-orientations ϕ : E −→ V, e 7−→ eϕ ∈ e of H, i.e., those orientations with score sequence
d

ϕ

:= (d
ϕ

(v))v∈V equal to α, d
ϕ

d
ϕ

= α where d
ϕ

(v) := |ϕ−1(v)| . (7)

Using this terminology, we can prove the following theorem, which for k = 2 was first
proven in Alon and Tarsi’s paper [AlTa]:
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Theorem 2.2. Let H be a k-partite k-uniform hypergraph. If there exists an α-orientation
of H, then H is (α+1)-list colorable.

Proof. Let A′ = (a′
ev) ∈ {0, 1}E×V be the 0-1 incidence matrix of H over the integers, and

let ϕ : E −→ V be an α-orientation of H. Then

perα(A′) 6= 0 , (8)

as ∏

e∈E

a′e,ϕ(e) = 1 > 0 , (9)

and the other summands in the definition of perα are nonnegative. Now, let ε1, ε2, . . . , εk

be nonzero numbers with
ε1 + ε2 + · · · + εk = 0 ; (10)

one εi for each partition class Vi of H. Multiplying the columns a′
∗,v that correspond to

vertices v of the ith partition class Vi of H with εi (for i = 1, . . . , k), we obtain a matrix
A with the properties required in Theorem 2.1, so that H is (α + 1)-list colorable. This
is so since each edge e of H has exactly one vertex in each partition class Vi of H, so that
A has zero row-sums; and perα(A) 6= 0 since if a column a′

∗,v of a matrix A′ is multiplied
by εi, its α-permanent will multiply by εαv

i .

3 List Colorability of k-uniform k-partite Hypergraphs

In this section, we only consider nontrivial hypergraphs H, i.e., we always assume E(H) 6=
∅. We search for certain good orientations of hypergraphs. This will lead to good upper
bounds for the list chromatic number of k-uniform k-partite hypergraphs H, i.e., the
smallest m ∈ N for which H is m-list colorable, i.e. (m, m, . . . , m)-list colorable.

Our observations and results are based on the following definition, involving partial
hypergraphs H ≤ H, i.e. E(H) ⊆ E(H) and ∅ 6= V (H) ⊆ V (H): H ≤ H

L(H)

Ľ(H)
Definition 3.1.

L(H) := max
H≤H

|E(H)|
|V (H)|

and Ľ(H) := max
H≤H

|E(H)|−1
|V (H)|

.

Why are these two parameters of interest in our search for good orientations? Well,
actually we want to ascertain the existence of orientations ϕ : E −→ V of H with small
ϕ-scores d

ϕ

H(v), which is defined, a bit more general, for arbitrary partial hypergraphs d
ϕ

H(v)

H ≤ H, by
d

ϕ

H(v) :=
∣∣ϕ−1(v) ∩ E(H)

∣∣ =
∣∣(ϕ|E(H))

−1(v)
∣∣ . (11)

In particular, the maximal ϕ-score ∆(ϕ)

∆(ϕ) := max
v∈V

d
ϕ

H(v) (12)

should be as small as possible. Now, both L(H) and Ľ(H) + 1 describe this smallest
possible value. The optimum is given by rounding up to ⌈L(H)⌉, respectively down to ⌈...⌉

⌊...⌋
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⌊Ľ(H) + 1⌋. In fact, we easily see that L(H) is a lower bound. For all orientations
ϕ : E −→ V we have

∆(ϕ) = max
H≤H

max
v∈V (H)

d
ϕ

H(v) ≥ max
H≤H

average
v∈V (H)

d
ϕ

H(v) = L(H) , (13)

since
|E(H)| =

∑

v∈V (H)

d
ϕ

H(v) . (14)

More surprising is that the value ⌈L(H)⌉ actually can be achieved, and that this number
equals the value ⌊Ľ(H) + 1⌋:

Lemma 3.2. Each hypergraph H = (V, E) has an orientation ϕ : E −→ V with

∆(ϕ) = ⌈L(H)⌉ =
⌊
Ľ(H) + 1

⌋
.

Proof. We basically follow the proof of the graph-theoretic analog in [AlTa, Lemma3.1].
Let

m :=
⌊
Ľ(H) + 1

⌋
> Ľ(H) . (15)

We construct a bipartite graph Bm as follows. For each hyperedge e ∈ E, we introduce a
vertex ē, and corresponding to each vertex v ∈ V of H we introduce another m vertices
(v, 1), (v, 2), . . . , (v, m). Then, we connect a vertex ē in the first part Ē ⊆ V (Bm) with a
vertex (v, i) in the second part V (Bm) \ Ē if and only if e ∋ v in H. Now, it is sufficient
to find a matching of Ē in Bm. Such a matching ē 7−→ (vē, iē) would induce an orientation
ϕ : E −→ V of H via

e 7−→ ē 7−→ (vē, iē) 7−→ vē =: ϕ(e) , (16)

with maximal score at most m, so that

⌈L(H)⌉
(13)

≤ ∆(ϕ) ≤ m =
⌊
Ľ(H) + 1

⌋
≤ ⌈L(H)⌉ , (17)

and the lemma would follow. However, the existence of such a matching follows from
Hall’s Theorem. We only have to show that each nonempty subset Ē ⊆ Ē has more than
|Ē| − 1 neighbors in Bm. To this end, let E ⊆ E be the set of edges in H corresponding to
Ē ⊆ Ē . Let H[E] ≤ H be its induced partial hypergraph, and let

⋃
E = V (H[E]) ⊆ V

be the set of all end-vertices of edges in E. Then, indeed, the number of neighbors of Ē
in Bm is

m |
⋃

E| > Ľ(H) |
⋃

E| ≥
|E(H[E])| − 1

|V (H[E])|
|
⋃

E| = |Ē| − 1 . (18)

Note that it can be advantageous to use the second expression
⌊
Ľ(H) + 1

⌋
, instead

of ⌈L(H)⌉, when one wants to utilize an upper bound for L(H). We will see this at the
end of the section. Actually, it can be difficult to calculate L(H) or Ľ(H) so that upper
bounds have to be used. We will employ the following one:
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Lemma 3.3. Let H = (V1⊎V2⊎· · ·⊎Vk , E ) be a k-partite k-uniform hypergraph with parts
V1, V2, . . . , Vk. Let ∆(H) := max

v∈V
d(v) be the maximal degree of H, and let ∆i(H) := ∆(H)

∆i(H)max
v∈Vi

d(v) be the maximal degree inside Vi (i = 1, . . . , k). Then

L(H) ≤
1

1/∆1(H) + 1/∆2(H) + · · · + 1/∆k(H)
≤ 1

k
∆(H) .

Proof. Since E 6= ∅, we may allow in the definition of L(H), and in the minima in the
following part of this proof, only subgraphs H with E(H) 6= ∅, and can conclude as
follows:

1

L(H)
= min

H≤H

|V (H)|

|E(H)|

≥ min
H≤H

|V (H) ∩ V1|

|E(H)|
+ min

H≤H

|V (H) ∩ V2|

|E(H)|
+ · · · + min

H≤H

|V (H) ∩ Vk|

|E(H)|

=
1

∆1(H)
+

1

∆2(H)
+ · · · +

1

∆k(H)

≥
k

∆(H)
.

(19)

We want to go a little bit more into detail and examine the possible orientations more
exactly. With the “partite” maximal degrees ∆1(H), ∆2(H),. . . , ∆k(H) from Lemma 3.3
we obtain, similarly as in Lemma 3.2:

Lemma 3.4. Let H = (V, E) be a k-partite k-uniform hypergraph with parts V1, V2 , . . . , Vk.
For any v ∈ V = V1 ⊎ V2 ⊎ · · · ⊎ Vk, let i(v) denote the index with v ∈ Vi(v).

If L1

∆1(H)
+ L2

∆2(H)
+ · · ·+ Lk

∆k(H)
> 1− 1

|E|
, for some nonnegative integers L1, L2, . . . , Lk,

then there exists an orientation ϕ : E −→ V such that d
ϕ

(v) ≤ Li(v) for all v ∈ V.

Proof. The proof works exactly as that of Lemma 3.2. We just have to construct a graph
BL1,...,Lk with Li copies of the vertices in Vi (i = 1, . . . , k) instead of the graph Bm. Hall’s
theorem is applicable in the modified proof as each subset E ⊆ E of edges in H “meets”
at least |E|/∆i(H) vertices in Vi, and this means that each subset Ē ⊆ Ē of new vertices
has at least

L1 |Ē|

∆1(H)
+

L2 |Ē|

∆2(H)
· · · +

Lk |Ē|

∆k(H)
> (1−

1

|E|
)|Ē| ≥ |Ē| − 1 (20)

neighbors in BL1,...,Lk.

Now, it is easy to combine our results with Theorem 2.2. We obtain a series of upper
bounds for the list chromatic number of k-partite k-uniform hypergraphs. The first one
follows with the help of Lemma 3.2 and generalizes [AlTa, Theorem3.4]:
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Theorem 3.5. k-partite k-uniform hypergraphs H are r-list colorable for

r := ⌈L(H) + 1⌉ =
⌊
Ľ(H) + 2

⌋
.

With Lemma 3.3 we obtain the following corollary to Theorem 3.5:

Corollary 3.6. k-partite k-uniform hypergraphs H = (V1⊎V2⊎· · ·⊎Vk , E ) with “partite”

maximal degrees ∆1(H), ∆2(H), . . . , ∆k(H) are

⌊
1 − 1/|E|

∑k
i=1 1/∆i(H)

+ 2

⌋
-list colorable.

Proof. We combine the upper bound from Lemma 3.3 with

Ľ(H) ≤ (1− 1
|E(H)|)L(H) , (21)

which follows from the fact that for partial hypergraph H ≤ H

|E(H)|−1
|V (H)| = (1− 1

|E(H)|)
|E(H)|
|V (H)| ≤ (1− 1

|E(H)|)
|E(H)|
|V (H)| . (22)

If we apply this corollary to “K2,3 minus one edge”, as 2-partite 2-uniform hypergraph,
it tells us that this graph is 2-list colorable. This would not follow from the the weaker

upper bound
⌈ 1

∑k
i=1 1/∆i(H)

+ 1
⌉

based on the expression ⌈L(H) + 1⌉ in Theorem 3.5

alone. The small improvement Ľ(H) ≤ (1− 1
|E(H)|

)L(H) in the proof of the corollary

makes a difference, even though ⌈L(H)⌉ =
⌊
Ľ(H) + 1

⌋
.

Now we apply Lemma 3.4, and obtain (again based on Theorem 2.2):

Theorem 3.7. Let H = (V, E) be a k-partite k-uniform hypergraph with parts V1, V2 , . . . , Vk.
For any v ∈ V = V1 ⊎ V2 ⊎ · · · ⊎ Vk, let i(v) denote the index with v ∈ Vi(v).

If L1

∆1(H)
+ L2

∆2(H)
+ · · ·+ Lk

∆k(H)
> 1− 1

|E|
, for some nonnegative integers L1, L2, . . . , Lk,

then H is ℓ-list colorable for ℓ := (Li(v) + 1)v∈V .

If we apply this theorem to

L1 = L2 = . . . = Lk :=
⌊

1−1/|E|
1/∆1(H) +···+1/∆k(H)

+ 1
⌋

> 1−1/|E|
1/∆1(H) +···+ 1/∆k(H)

, (23)

it leads to the same upper bound as in Corollary 3.6.

4 A Paintability Combinatorial Nullstellensatz

We introduced paintability based on our game of Mr. Paint and Mrs. Correct already
in [Scha2] for graphs. It is obvious how to generalize this game to hypergraphs, but it
can even be generalized to polynomials 0 6= P ∈ R[XV ] := R[ Xv � v ∈ V ] in finitely R[XV ]

many variables over integral domains R. The variables Xv play the role of the vertices,
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and the initial stacks Sv of ℓv − 1 erasers are assigned to them. The idea is that Mr. Sv

Paint substitutes in the ith round a new symbolic variable Ti for some of the variables Ti

Xv, instead of coloring some vertices v with the ith color. Mrs. Correct has then to use
up some of the erasers in order to keep the polynomial different from zero, by partially
undoing the substitution. We say the polynomial is ℓ-paintable (ℓ = (ℓv)v∈V ) if she always ℓ

can achieve this, i.e., no matter how Mr. Paint plays, she can use the erasers in such a
way that after finitely many rounds all Xv are replaced without making the polynomial
zero. To make this more precise we will need the following definitions:

Definition 4.1 (Cut Off Operator). Assume U ⊆ V , P ∈ R[XV ], and let T /∈ R[XV ] be T

a symbolic variable. We write P \ U

P \ U = P \
T

U := P |
|
Xv = T

v∈U

∈ R′[XV \U ] := (R[T ])[XV \U ] (24)

for the polynomial over R′ := R[T ] that we obtain from P by substituting the “color” T
for all variables Xv with v ∈ U . Which symbolic variable T we choose does not play a
role, but it has to be new, chosen outside the current polynomial ring. For example,

(P \ U1) \ U2 has to be read as (P \
T1

U1) \T2
U2 (25)

with T1 /∈ R[XV ] and T2 /∈ R′[XV \U1
] := (R[T1])[XV \U1

].

Definition 4.2 (Mounted Polynomial). A mounted polynomial P ℓ is a pair (P, ℓ) of a P ℓ

polynomial P ∈ R[XV ] and a tuple ℓ ∈ ZV. Usually ℓ ≥ 1, and we suggest to imagine
a stack Sv of ℓv − 1 ≥ 0 “erasers” at each index v ∈ V. We treat P ℓ as any usual Sv

polynomial; just, when we change the polynomial, we adapt the stacks of erasers in the
natural way. For example, if U ⊆ V , then

P ℓ \ U := (P \ U)ℓ|V \U . (26)

We also introduce a new operator ⇂ (down) which acts only on the stacks of erasers.

Definition 4.3 (Down Operator). For arbitrary sets U, we set P ℓ ⇂ U

1(...)

P ℓ ⇂ U := P ℓ−1(U∩V ) , with 1(U∩V )(v) :=

{
1 if v ∈ U ∩ V ,

0 if v ∈ V \ U ,
(27)

and abbreviate
P ℓ ⇂ U1 \ U2 := (P ℓ ⇂ U1) \ U2 . (28)

Now, paintability can be defined recursively as follows:

Definition 4.4 (Paintability). Let ℓ ∈ ZV and P ∈ R[XV ]. P is said to be ℓ-paintable if
the mounted polynomial P ℓ is paintable in the following recursively defined sense:

(i) If V = ∅ then P ℓ is paintable if and only if P 6= 0 (where ℓ is the empty tuple).
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(ii) If V 6= ∅ then P ℓ is paintable if ℓ ≥ 1 and if each nonempty subset VP ⊆ V of indices VP

contains a good subset VC ⊆ VP , i.e., a subset VC ⊆ VP such that P ℓ ⇂ VP \ VC is VC

paintable.

(Mr. Paint “paints” all variables Xv with indices v in VP , so that one eraser from
each stack Sv with v ∈ VP \ VC has to be used up by Mrs. Correct, in order to undo
the suggested coloring (substitution) of the corresponding variables Xv.)

It is not hard to see that this generalizes paintability of hypergraphs H. A partial
coloring of a hypergraph H with symbolic variables is correct if and only if the corre-
sponding partial substitution in the matrix polynomial PA does not annihilate PA (where
A is a zero row-sum incidence matrix of H, and PA is defined in Equation (3)). Hence,

H is ℓ-paintable ⇐⇒ PA is ℓ-paintable . (29)

That paintability generalizes list colorability was already described in the introduction.
However, it can also be understood out of the more game-theoretic definitions in this
section. Imagine that, during the game, Mr. Paint writes down the “colors” he suggests
for the variable Xv in a list Lv. Then, at the end of the game, the list Lv has at most ℓv

entries, since ℓv − 1 is the maximal number of rejections at Xv (there are ℓv − 1 erasers
at Xv), and Xv is just “colored” with the last one in it. Hence, paintability may be seen
as a dynamic version of list colorability, where the lists Lv of symbolic variables are not
completely fixed before the coloration process starts. If lists Lv are fixed at the beginning
and |Lv| ≥ ℓv, for all v ∈ V, then

P is ℓ-paintable =⇒ P (x) 6= 0 for an x ∈
∏

v Lv . (30)

The graph-theoretic examples [Scha2, Example 1.5] and [Zhu, Section 4] show that the con-
verse is wrong. Therefore, if we only study lists Lv ⊆ {T1, T2, . . .} of symbolic variables,
the following theorem is stronger than the Combinatorial Nullstellensatz 1.1, and can be
used in place of it in the proof of Theorem 2.1. It does not contain degree restrictions
either (because of Implication (35)).

Writing Pδ for the coefficient of Xδ :=
∏

v∈V Xδv
v in P ∈ R[XV ], we provide: Pδ, Xδ

Theorem 4.5. Let P =
∑

δ∈NV PδX
δ ∈ R[XV ] and α ∈ NV, then

Pα 6= 0 =⇒ P is (α + 1)-paintable.

In order to prove this, we will need the following generalization of [Scha3, Lemma2.2] .
With α + NU := {α′ ≥ α � α′

v = αv for all v /∈ U } and 1u := 1{u} = (δu,v)v∈V it holds: α + N
U

1u

Lemma 4.6. Let P =
∑

δ∈NV PδX
δ ∈ R[XV ] be a polynomial and α ∈ NV. Let VP ⊆ V

be nonempty and u ∈ VP . Then:

(i) (α − 1u) + NVP = α + NVP ⊎ (α − 1u) + NVP \u .
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(ii)
∑

δ ∈ (α−1u)+N
VP

Pδ =
∑

δ∈α+N
VP

Pδ +
∑

δ ∈ (α−1u)+N
VP \u

Pδ .

(iii)
∑

δ ∈α+N
VP

Pδ 6= 0 =⇒
∑

δ ∈ (α−1u)+N
VP

Pδ 6= 0 ∨
∑

δ∈ (α−1u)+N
VP \u

Pδ 6= 0 .

(iv)
∑

δ ∈α+N
VP

Pδ 6= 0 =⇒

{
There is an α′ ≤ α and a VC ⊆ VP such that: α′|VC

≡ 0 ,

α′
v < αv for all v ∈ VP \ VC, and

∑

δ∈α′+N
VC

Pδ 6= 0 .

Proof. The elements σ of the set (α − 1u) + NVP on the left side of Equation (i) fulfill
σu ≥ αu−1. On the right side, we simply distinguish between elements with σu > αu−1
and elements with σu = αu − 1.

Furthermore, Equation (i) implies Equation (ii), which entails Implication (iii).

In order to prove Implication (iv), we may iteratively use Implication (iii) to produce
sequences

α =: α0  α1  · · ·  αt ≥ 0 and VP =: V 0
C ⊇ V 1

C ⊇ · · · ⊇ V t
C (31)

with the property ∑

δ∈αi+N
V

i
C

Pδ 6= 0 for i = 0, 1, . . . , t. (32)

Note that
αt|V t

C
≡ 0 (33)

if and only if the sequence of componentwise nonnegative αi in (31) can no longer be ex-
tended through application of Implication (iii); hence, in this case Implication (iv) holds,
if we set

α′ := αt and VC := V t
C . (34)

With this, the proof of Theorem 4.5 is based on the same idea as our purely combi-
natorial proof of Alon and Tarsi’s Theorem [Scha3, Theorem2.1]. However, we also need
that we may focus on one homogeneous component H of P ∈ R[XV ] when we substitute
symbolic variables T1, T2, T3, . . . . If x = (xv)v∈V ∈ {Tj, Xv � j ∈ N, v ∈ V }V, then

H(x) 6= 0 =⇒ P (x) 6= 0 , (35)

since H(x) is still a homogenous component of P (x), if we view H(x) and P (x) as poly-
nomials in the variables Tj and Xv (j ∈ N, v ∈ V ).

Proof of Theorem 4.5. Let a nonempty subset VP ⊆ V be given. In view of Implica-
tion (35), we may assume that P is homogeneous of degree

deg(P ) = deg(Xα) , (36)
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so that ∑

δ∈α+N
VP

Pδ = Pα 6= 0 , (37)

and we can apply Lemma 4.6 (iv). This yields a potentially good subset VC ⊆ VP and
a tuple α′ ≤ α. We substitute T for all variables Xv with v ∈ VC in P, and obtain the
polynomial

P \ VC ∈ R′[XV \VC
] with R′ := R[T ] . (38)

We know that
(P \ VC)α′′ 6= 0 for α′′ := α′|V \VC

, (39)

since even
(P \

T
VC)α′′ |T=1

4.2
=

(
P |
|
Xv = 1

v∈V
C

)
α′′ =

∑

δ∈α′+N
VC

Pδ

4.6
6= 0 , (40)

as α′|VC

4.6
≡ 0. Using an induction argument, it follows that P \ VC is (α′′+ 1)-paintable.

Hence,
P (α′+1) \ VC = (P \ VC)(α

′′+1) (41)

is paintable, and so is P (α+1) ⇂ VP \ VC , as α′
v < αv for all v ∈ VP \ VC . This means, in

view of Definition 4.4, that P is (α + 1)-paintable.

Note that it was necessary to use symbolic variables in Theorem 4.5, a similar version
where we allow Mr. Paint to use elements of the ground ring R does not hold. The poly-
nomial P := X1 + X2 − 2 ∈ Z[X1, X2] with one eraser at X1 (α := (1, 0) in Theorem 4.5 )
is a counterexample. Mr. Paint may play as follows:

Correc
t

7−−−−
−−→ P (0, X2)

Paint
7−−−−−→ P (0, 2) = 0

P (X1, X2)
Paint

7−−−−−→ P (0, X2) Correct7−−−−−−→ P (X1, X2)
Paint

7−−−−−→ P (1, 1) = 0 .

(42)
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