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Abstract

This note answers a question posed by Levine in [3]. The main result is Theo-
rem 1 which shows that under certain circumstances a critical group of a directed
graph is the quotient of a critical group of its directed line graph.

1 Introduction

Let G be a finite multidigraph with vertices V and edges E. Loops are allowed in G, and
we make no connectivity assumptions. Each edge e ∈ E has a tail e− and a target e+.
Let ZV and ZE be the free abelian groups on V and E, respectively. The Laplacian1 of
G is the Z-linear mapping ∆G : ZV → ZV determined by ∆G(v) =

∑

(v,u)∈E(u − v) for
v ∈ V . Given w∗ ∈ V , define

φ = φG,w∗
: ZV → ZV

v 7→

{

∆G(v) if v 6= w∗,

w∗ if v = w∗.

The critical group for G with respect to w∗ is the cokernel of φ:

K(G,w∗) := cokφ.

1The mapping Λ: Z
V → Z

V defined by Λ(f)(v) =
∑

(v,u)∈E(f(v)− f(u)) for v ∈ V is often called the

Laplacian of G. It is the negative Z-dual (i.e., the transpose) of ∆G.
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The line graph, LG, for G is the multidigraph whose vertices are the edges of G and whose
edges are (e, f) with e+ = f−. As with G, we have the Laplacian ∆LG and the critical
group K(LG, e∗) := cokφLG,e∗ for each e∗ ∈ E.

If every vertex of G has a directed path to w∗ then K(G,w∗) is called the sandpile

group for G with sink w∗. A directed spanning tree of G rooted at w∗ is a directed subgraph
containing all of the vertices of G, having no directed cycles, and for which w∗ has out-
degree 0 and every other vertex has out-degree 1. Let κ(G,w∗) denote the number of
directed spanning trees rooted at w∗. It is a well-known consequence of the matrix-tree
theorem that the number of elements of the sandpile group with sink w∗ is equal to
κ(G,w∗). For a basic exposition of the properties of the sandpile group, the reader is
referred to [2].

In his paper, [3], Levine shows that if e∗ = (w∗, v∗), then κ(G,w∗) divides κ(LG, e∗)
under the hypotheses of our Theorem 1. This leads him to ask the natural question as to
whether K(G,w∗) is a subgroup or quotient of K(LG, e∗). In this note, we answer this
question affirmatively by demonstrating a surjection K(LG, e∗) → K(G,w∗). Further, in
the case in which the out-degree of each vertex of G is a fixed integer k, we show the
kernel of this surjection is the k-torsion subgroup of K(LG, e∗). These results appear
as Theorem 1 and may be seen as analogous to Theorem 1.2 of [3]. In [3], partially for
convenience, some assumptions are made about the connectivity of G which are not made
in this note. For related work on the critical group of a line graph for an undirected graph,
see [1].

2 Results

Fix e∗ = (w∗, v∗) ∈ E. Define the modified target mapping

τ : ZE → ZV

e 7→

{

e+ if e 6= e∗,

0 if e = e∗.

Also define

ρ : ZE → ZV

e 7→

{

∆G(w∗) − v∗ − w∗ + e+ if e 6= e∗,

0 if e = e∗.

Let k be a positive integer. The graph G is k-out-regular if the out-degree of each of
its vertices is k.

Theorem 1 If indeg(v) ≥ 1 for all v ∈ V and indeg(v∗) ≥ 2, then

ρ : ZE → ZV

descends to a surjective homomorphism ρ : K(LG, e∗) → K(G,w∗).
Moreover, if G is k-out-regular, the kernel of ρ is the k-torsion subgroup of K(LG, e∗).
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Proof. Let ρ0 : ZV → ZV be the homomorphism defined on vertices v ∈ V by

ρ0(v) := ∆G(w∗) − v∗ − w∗ + v

so that ρ = ρ0 ◦ τ . The mapping ρ0 is an isomorphism, its inverse being itself:

ρ2
0(v) = ρ0(∆G(w∗) − v∗ − w∗ + v)

=
∑

e−=w∗

(ρ0(e
+) − ρ0(w∗)) − ρ0(v∗) − ρ0(w∗) + ρ0(v)

= ∆G(w∗) − ρ0(v∗) − ρ0(w∗) + ρ0(v)

= v.

Let ψ : ZV → ZV be the homomorphism defined on vertices v ∈ V by

ψ(v) :=

{

∆G(v) if v 6= w∗,

∆G(w∗) − v∗ if v = w∗.

Let φG and φLG denote φG,w∗
and φLG,e∗, respectively. We claim the following diagram

commutes:

ZE

τ

��

φLG // ZE

τ

��

ZV
ψ

// ZV

ρ0

��

ZV
φG // ZV.

To prove commutativity of the top square of the diagram, first suppose e 6= e∗. Then

τ(φLG(e)) = τ(∆LG(e)) = τ

(

∑

f−=e+

(f − e)

)

.

If e 6= e∗ and e+ 6= w∗, then

τ

(

∑

f−=e+

(f − e)

)

=
∑

f−=e+

(f+ − e+) = ∆G(e+) = ψ(τ(e)).

On the other hand, if e 6= e∗ and e+ = w∗, then

τ

(

∑

f−=e+

(f − e)

)

=
∑

f−=e+,f 6=e∗

(f+ − e+) + τ(e∗ − e)

=
∑

f−=e+,f 6=e∗

(f+ − e+) − w∗

= ∆G(w∗) − v∗ = ψ(τ(e)).

the electronic journal of combinatorics 18 (2011), #P124 3



Therefore, τ(φLG(e)) = ψ(τ(e)) holds if e 6= e∗. Moreover, the equality still holds if e = e∗
since τ(e∗) = 0. Hence, the top square of the diagram commutes.

To prove that the bottom square of the diagram commutes, there are two cases. First,
if v 6= w∗, then

ρ0(ψ(v)) =
∑

(v,u)∈E

(ρ0(u) − ρ0(v)) =
∑

(v,u)∈E

(u− v) = ∆G(v) = φG(v).

Second, if v = w∗, then

ρ0(ψ(v)) = ρ0(∆G(w∗) − v∗) = ∆G(w∗) − ρ0(v∗) = w∗ = φG(v).

From the commutativity of the diagram, the cokernel of ψ is isomorphic to K(G,w∗),
and ρ = ρ0 ◦ τ descends to a homomorphism ρ : K(LG, e∗) → K(G,w∗) as claimed. The
hypothesis on the in-degrees of the vertices assures that τ , hence ρ, is surjective.

Now suppose that G, hence LG, is k-out-regular. This part of our proof is an adap-
tation of that given for Theorem 1.2 in [3]. Since ρ0 is an isomorphism, it suffices to
show that the kernel of the induced map, τ : K(LG, e∗) → cokψ, has kernel equal to the
k-torsion of K(LG, e∗). To this end, define the homomorphism σ : ZV → ZE, given on
vertices v ∈ V by

σ(v) :=
∑

e−=v

e.

We claim that the image of σ ◦ ψ lies in the image of φLG, so that σ induces a map, σ,
between cokψ and K(LG, e∗). To see this, first note that for v ∈ V ,

σ(∆G(v)) = σ

(

∑

e−=v

e+ − kv

)

=
∑

e−=v

∑

f−=e+

f − k
∑

e−=v

e

=
∑

e−=v

∆LG(e)

Therefore, for v 6= w∗, it follows that σ(ψ(v)) is in the image of φLG. On the other hand,
using the calculation just made,

σ(∆G(w∗) − v∗) =
∑

e−=w∗

∆LG(e) −
∑

f−=v∗

f

=
∑

e−=w∗

∆LG(e) −

(

∑

f−=v∗

f − k e∗ + k e∗

)

=
∑

e−=w∗

∆LG(e) − ∆LG(e∗) − k e∗

=
∑

e−=w∗,e 6=e∗

∆LG(e) − k e∗,

which is also in the image of φLG.
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We have established the mappings

cokψ
σ --

K(LG, e∗)
τ

ll .

For e 6= e∗,

σ(τ(e)) =
∑

f−=e+

f = ∆LG(e) + k e = k e ∈ K(LG, e∗).

Thus, the kernel of τ is contained in the k-torsion of K(LG, e∗), and to show equality it
suffices to show that σ is injective.

The case where k = 1 is trivial since there are no G satisfying the hypotheses: if G is
1-out-regular and indeg(v) ≥ 1 for all v ∈ V , then indeg(v) = 1 for all v ∈ V , including v∗.
So suppose that k > 1 and that η =

∑

v∈V av v is in the kernel of σ. We then have

σ(η) =
∑

v∈V

∑

e−=v

av e =
∑

e 6=e∗

be ∆LG(e) + c e∗ (1)

for some integers be and c. Comparing coefficients in (1) gives

ae− =
∑

f+=e−,f 6=e∗

bf − k be for e 6= e∗. (2)

Define

F (v) =
1

k

(

∑

f+=v,f 6=e∗

bf − av

)

.

From (2),
F (e−) = be for e 6= e∗. (3)

Since k > 1, for each vertex v, we can choose an edge ev 6= e∗ with e−v = v. By (2)
and (3), for all v ∈ V ,

av =
∑

f+=v,f 6=e∗

bf − k bev
=

∑

f+=v,f 6=e∗

F (f−) − k F (v).

Therefore, as an element of cokψ,

η =
∑

avv =
∑

e 6=e∗

F
(

e−
)

e+ −
∑

v∈V

kF (v)v

=
∑

v∈V,v 6=w∗

F (v)

(

∑

e−=v

e+ − kv

)

+ F (w∗)

(

∑

e−=w∗,e 6=e∗

e+ − kw∗

)

=
∑

v∈V,v 6=w∗

F (v)∆G(v) + F (w∗)(∆G(w∗) − v∗)

= 0,

which shows that σ is injective. �
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2008.

[3] Lionel Levine. Sandpile groups and spanning trees of directed line graphs. Journal of

Combinatorial Theory, Series A, 118:350–364, 2011.

the electronic journal of combinatorics 18 (2011), #P124 6


