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Abstract

Inspired by the definition of the barred pattern-avoiding permutation, we intro-

duce the new concept of dotted pattern for permutations. We investigate permu-

tations classes avoiding dotted patterns of length at most 3, possibly along with

other classical patterns. We deduce some enumerating results which allow us to ex-

hibit new families of permutations counted by the classical sequences: 2n, Catalan,

Motzkin, Pell, Fibonacci, Fine, Riordan, Padovan, Eulerian.
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1 Introduction and notation

Let Sn be the set of permutations on [n] = {1, 2, . . . , n}, i.e., all one-to-one correspon-
dences from [n] into itself. We represent a permutation π ∈ Sn in one-line notation
π = π(1)π(2) . . . π(n). For instance the identity permutation idn of length n will be writ-
ten 12 . . . n. A permutation π ∈ Sn avoids the pattern τ ∈ Sk if and only if there does
not exist a sequence of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that π(i1)π(i2) . . . π(ik) is
order-isomorphic to τ (see [13, 15]). We denote by Sn(τ) the set of permutations of Sn

avoiding the pattern τ . For example, if τ = 321 then 34125 ∈ S5(τ) while 43512 /∈ S5(τ).
Many classical sequences in combinatorics appear as the cardinality of pattern-avoiding
permutation classes. A large number of these results were firstly obtained by West and
Knuth [9, 13, 15, 17, 18] (see the surveys of Kitaev and Mansour [8, 10]).

In the literature we can also find the concept of barred pattern (see [7, 16], [11] for a
systematic study of these patterns and [2, 5, 15, 19] for some applications). Let τ be a
permutation in Sk and b = b1 . . . bk ∈ {0, 1}k. The barred pattern τ̄ is a permutation in
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Sk obtained from τ by copying the entries of τ and by putting a bar over τi if and only if
bi = 1. For example, if τ = 312 and b = 001 then τ̄ = 312̄. Let r be the number of barred
entries in τ̄ (or equivalently the number of ones in b). We denote the permutation on
[k− r] made up of the (k− r) unbarred elements of τ̄ by τ̂ , rewritten to be a permutation
on [k− r]. Obviously τ contains the pattern τ̂ and we will say that τ extends the pattern
τ̂ according to the binary string b (the positions of the extended entries are the same as
the positions of 1s in b). The permutation π ∈ Sn avoids the pattern τ̄ if and only if
each occurrence of the pattern τ̂ in π can be extended into an occurrence of the pattern
τ in π according to b. For example, if τ̄ = 213465 then b = 001100, 3124576 ∈ S7(τ̄)
and 3142576 /∈ S7(τ̄). Moreover we will say that π ∈ Sn weakly avoids the pattern τ̄ if
and only if each occurrence of the pattern τ̂ in π can be extended into an occurrence of
the pattern τ in π (without considering the string b). Let Sw

n (τ̄) be the set of n-length
permutations that weakly avoid τ̄ . For example, if τ̄ = 123̄ then 1243 ∈ Sw

4 (τ̄) when
1243 /∈ S4(τ̄ ) since the sequence 24 cannot be extended into a pattern 123 according to
b = 001. By definition the weak avoidance is less restrictive than the classical avoidance:
Sn(τ̄) ⊂ Sw

n (τ̄ ). Surprisingly and to my knowledge, the weak avoidance has not been
studied in the literature. One reason could be that the weak avoidance on permutation
classes does not provide the classical integer sequences (2n, Fibonacci, Motzkin, Catalan,
...). However using a variation of this concept we retrieve most of these sequences.

Now we define a dotted pattern τ̇ which adds dots over some entries τi, i ∈ I ⊂ [k],
of τ ∈ Sk. For each j /∈ I, let τ̄ j be the barred permutation of length k obtained from
τ by adding a bar over the entry τj . We will say that a permutation π avoids τ̇ if and
only if π weakly avoids τ̄ j for all j /∈ I. For example, if τ̇ = 132̇ then τ̄ 1 = 1̄32, τ̄ 2 = 13̄2
and S5(τ̇ ) = {15243, 15432, 13254, 13542}; if τ̇ = 231̇ then τ̄ 1 = 2̄31, τ̄ 2 = 23̄1 and
S3(τ̇ ) = {123, 231}. Less formally, if τ j is the pattern τ̄ j without its barred entry then
π avoids τ̇ if and only if each pattern τ j (j /∈ I) can be extended into the pattern τ in
π (without restriction for the position of the extended entry). A particular case of this
definition was studied in [3].

By convention we set Sn(τ̇) = Sn in the case where all entries of τ̇ are dotted. In the
sequel we consider that the pattern τ̇ contains at least one dotted entry and one undotted
entry. More generally we always have

Sn(τ) ⊆ Sn(τ j) ⊆ Sn(τ̇) ⊆ Sw
n (τ̄ j) for all j /∈ I, and

Sn(τ̇) =
⋂

j /∈I

Sw
n (τ̄ j).

We say that π contains τ̇ if π does not avoid τ̇ .
Moreover the Wilf equivalences are also valid: i.e., if δ = τ̇ then we have

|Sn(δ)| = |Sn(δ
r)| = |Sn(δc)| = |Sn(δ−1)|

where δr denotes the reverse of δ where the positions of dots are also reversed (i.e., for
i ∈ I, the position i is replaced with n− i+1), δc denotes the complement of δ where the
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positions of dots are preserved, and δ−1 denotes the inverse of δ where the dots are over
the entries i for i ∈ I.

In this paper, we present some enumeration results for some classes of permutations
avoiding dotted patterns. More precisely, Section 2 presents some basic general lemmas
concerning sets of permutations avoiding dotted patterns. Section 3 investigates exhaus-
tively the sets of permutations avoiding one pattern 21̇ possibly along with one classical
pattern of length 3. Section 4 deals with dotted patterns of length 3. Several open ques-
tions are given about the enumeration of one dotted patterns of length 3. However we
present others enumeration results for the case where the dotted pattern is associated with
one or more other classical patterns. This study allows us to exhibit several new families
of avoiding permutations that are enumerated by the well known sequences: Catalan,
Motzkin, Fibonacci, Riordan, binary, Fine, Padovan, Eulerian.

2 Some general results

In this section we provide some general lemmas about sets of permutations avoiding dotted
patterns. As defined in Section 1, we consider a dotted pattern τ̇ and the permutation
τ ∈ Sk obtained from τ̇ by deleting its dots. If I ⊂ [k] is the set of dotted positions in τ̇
then we also need patterns τ̄ j and τ j for j /∈ I (see Section 1 for these definitions).

Lemma 1 Let τ̇ be a dotted pattern with only one undotted entry. Then we have

Sn(τ̇ ) = Sw
n (τ̄ )

where the pattern τ̄ is obtained from τ by adding a bar over the entry corresponding to
the only one undotted entry of τ̇ .

Proof. Here only one position j is undotted in τ̇ . So we have I = [k]\{j} which induces
only one barred pattern τ̄ j . By definition, π avoids τ̇ if and only if π weakly avoids τ̄ j = τ̄
which achieves the proof. 2

Lemma 2 Let τ̇ be a dotted pattern such that all patterns τ j, j /∈ I, are identical. Then
Sn(τ̇) = Sw

n (τ̄ j) for each j /∈ I.

Proof. Let j and k be two integers that do not lie in I. Recall that τ j (resp. τk) is the
permutation obtained from τ̄ j (resp. τ̄k) by deleting its barred entries. By definition, a
permutation π avoids τ̇ if and only if each pattern τ j (j /∈ I) can be extended into the
pattern τ in π. Therefore we directly deduce Sn(τ̇ ) = Sw

n (τ̄ j) for each j /∈ I. 2

Now Lemma 2 induces the following result:

Lemma 3 Let τ̇ = k(k+1) . . . nδ̇ be a dotted pattern such that δ̇ is obtained from δ ∈ Sk−1

by dotting all its entries. Then Sn(τ̇) = Sw
n (k(k + 1) . . . nδ).

In the remainder of this study, we focus on the enumeration of permutation classes
avoiding dotted patterns.
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3 Avoiding a dotted pattern of length 2

In this section, we present some enumeration results for permutations (and involutions)
avoiding a dotted pattern of length 2, possibly along with one or more classical patterns.
Considering the Wilf equivalences, we obviously obtain

|Sn(21̇)| = |Sn(12̇)| = |Sn(1̇2)| = |Sn(2̇1)|.

Moreover Lemma 1 induces Sn(21̇) = Sw
n (2̄1) and with the definition of the weak avoidance

we also obtain Sn(21̇) = Sw
n (21̄).

Now let us give some useful definitions and notations. A fixed point of a permutation
π ∈ Sn is an integer i ∈ [n] such that πi = i. A permutation without fixed point will be
called derangement, and the set of n-length derangements is denoted Dn. A strong fixed
point of a permutation π ∈ Sn is an integer i ∈ [n] such that πi = i and πj < πi < πk for
all j, k verifying j < i < k. An involution of length n is a permutation π ∈ Sn such that
π2 = idn. Let In be the set of n-length involutions.

Theorem 1 The set Sn(21̇) is the set of the permutations with no strong fixed point.

Its generating function is known (see A052186, [14]) and given by F (x)
1+xF (x)

where F (x) =
∑

n>=0

n!xn.

Proof. Let π be an n-length permutation having a strong fixed point i. We have πi = i
and πj < πi < πk for j < i < k. Consequently, the entry i cannot be extended into a
pattern 21 in π. Thus π /∈ Sn(21̇). Conversely, if π contains an entry πi that cannot be
extended into a pattern 21 then we necessarily have πj < πi < πk for j < i < k which
implies that πi = i. Thus π contains a strong fixed point i which completes the proof. 2

Theorem 2 The set Sn(21̇, 12̇) is the set of the permutations π with no strong fixed point
and without i such that πi = n − i + 1 and πj > πi > πk for j < i < k. We have
|Sn(21̇, 12̇)| = 2|Sn(21̇)| − n!.

Proof. By symmetry a permutation avoiding 12̇ has no i such that πi = n − i + 1 and
πj > πi > πk for j < i < k. Thus there does not exist a permutation π ∈ Sn, n ≥ 2, that
contains both the patterns 21̇ and 12̇. So we have |Sn(21̇, 12̇)| = |Sn|−2(|Sn|−|Sn(21̇)|) =
2|Sn(21̇)| − n!. 2

Pattern Sequence Sloane [14]

{21̇}, {12̇}, {1̇2}, {2̇1} no strong fixed point A052186

{21̇, 12̇} 2|Sn(21̇)| − n! new

Table 1: Enumeration for the sets of permutations avoiding dotted patterns of length 2

the electronic journal of combinatorics 18 (2011), #P178 4



3.1 21̇ and one classical pattern of length 3

In this part we give exhaustive results about the cardinalities of the sets of permutations
avoiding 21̇ and one classical pattern of length 3. We also consider the sets of involutions
avoiding these patterns.

Theorem 3 For n ≥ 3, the set Sn(21̇, 123) is enumerated by cn − 2 (see A120304, [14])
where cn = 1

n+1

(

2n
n

)

is the nth Catalan number.

Proof. It is well known that Sn(123) is enumerated by the nth Catalan number (see
for instance [4]). Now if π ∈ Sn(123) contains 21̇ then Theorem 1 implies that there
exists a strong fixed point i in π. There are only two possibilities: either i = 1 and
π = 1n(n − 1) . . . 2 or i = n and π = (n − 1) . . . 21n. Thus |Sn(21̇, 123)| = cn − 2 for all
n ≥ 3. 2

Theorem 4 The set Sn(21̇, 321) is enumerated by the Fine numbers fn (see A000957,
[14]) defined by cn = 2fn + fn−1 where f1 = 0, f2 = 1 and cn is the nth Catalan number.

Proof. In [12], it is proved that the number of permutations π ∈ Sn(321) with no fixed
point is enumerated by the Fine numbers. Thus it suffices to verify that a permutation π ∈
Sn(321) with no strong fixed point does not contain any fixed point. For a contradiction,
let us assume that π contains a fixed point πi = i. Theorem 1 shows that there exists
j 6= i such that at least one of the following conditions is true: (a) j < i and πj > πi; (b)
j > i and πj < πi. For the case (a), this implies that there does not exist πk, k > i such
that πk < πi = i. Therefore each value of the set {1, 2, . . . , i − 1, j} appears (in π) on
the left of πi which contradicts the hypothesis πi = i. The case (b) is obtained similarly.
Thus |Sn(21̇, 321)| = |Sn(321) ∩ Dn| where Dn is the set of n-length permutations with
no fixed point (derangements). By [12], we conclude that Sn(21̇, 321) is enumerated by
the nth Fine number fn. 2

Theorem 5 The set Sn(21̇, 231) is enumerated by the Fine numbers fn defined by cn =
2fn + fn−1 where f1 = 0, f2 = 1 (see A000957, [14]) and cn is the nth Catalan number.

Proof. We use the well known bijection ϕ between Sn(321) and Sn(231) found by Simion
and Schmidt [13] (see also Bóna [4], Lemma 4.3, p. 130). They consider the right-to-left
minima of π ∈ Sn(231); i.e., the entries πi of π such that πj ≥ πi for all j > i. The
bijection ϕ keeps the right-to-left minima of π ∈ Sn(231) fixed and to place all other
entries in increasing order. For example, if π = 85214376 ∈ S8(231) then the right-to-left
minima are 1, 3 and 6 (in boldface) and ϕ(π) = 24517386 ∈ S8(321). As a strong fixed
point also is a right-to-left minimum the bijection ϕ preserves the strong fixed points.
Thus ϕ induces a bijection from Sn(21̇, 231) to Sn(21̇, 321). We conclude using Theorem
4. 2

Theorem 6 The set Sn(21̇, 213) is enumerated by the sequence cn − cn−1 = 3(2n−2)!
(n+1)!(n−2)!

(see A000245, [14]) where cn is the nth Catalan number.
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Proof. Let π be a permutation in Sn(21̇, 213). As π avoids 213, π can be decomposed as
follows: π = kδγ where δ (resp. γ) is a sequence made up of the values in {(k +1), . . . , n}
(resp. values in {1, 2, . . . , (k − 1)}) such that δ and γ also avoid the pattern 213 (see
Bóna [4], p. 132). Now since π avoids 21̇ the first entry k of π must be different from
1. It is straightforward to see that this condition is also sufficient. Thus the cardinality
of Sn(21̇, 213) is exactly cn − cn−1 where cn is the nth Catalan number. Thus we deduce

|Sn(21̇, 213)| = 3(2n−2)!
(n+1)!(n−2)!

. 2

The Wilf equivalences applied to the above results allow us to obtain the enumeration
for all sets of permutations avoiding 21̇ with a classic pattern of length 3:

Pattern Sequence Sloane

{21̇, 321}, {21̇, 312}, {21̇, 231} Fine A000957

{21̇, 132}, {21̇, 213} cn − cn−1 = 3(2n−2)!
(n+1)!(n−2)!

A000245

{21̇, 123} cn − 2 A120304

Table 2: Enumeration for the sets of permutations avoiding 21̇ and one classical pattern
of length 3

Now we present a similar study for the sets of involutions avoiding 21̇ and a classical
pattern of length 3. Recall that In denotes the set of involutions of length n, i.e., the set
of n-length permutations π such that π2 = idn.

Theorem 7 The following statements hold:

i) For n ≥ 1, |In(21̇)| = dn where dn is recursively defined by d1 = 0 and for n ≥ 2,

dn = |In| −
n−1
∑

r=1

dr · |In−1−r|.

For instance dn = 0, 1, 1, 4, 9, 31, 94, 337, 1185, 4540 for n ≤ 10.

ii) For n ≥ 3, |In(21̇, 123)| =
(

n
⌊n

2
⌋
)

− 2.

iii) For n ≥ 3, |In(21̇, 132)| = |In(21̇, 213)| =
(

n−1
⌊n−2

2
⌋
)

,

iv) For n ≥ 3, |In(21̇, 231)| = |In(21̇, 312)| = fibn where fibn is the nth Fibonacci
number defined by fib1 = 0, fib2 = 1 and fibn = fibn−1 + fibn−2 for n ≥ 3.

v) For n ≥ 1, |I2n(21̇, 321)| = cn and |I2n+1(21̇, 321)| = 0 where cn is the nth Catalan
number.

Proof. i) Let π be an n-length involution that contains 21̇. By Theorem 1, π can be
written π = δkγ where k ≥ 2, δ ∈ Sk−1(21̇) and γ is a subsequence of elements in
{k + 1, . . . , n}. As δ belongs to Sk−1 and π is an involution, δ ∈ Ik−1(21̇). On the other
hand γ considered as a permutation in Sn−k is necessarily an involution. Therefore the
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set of involutions that contain 21̇ is enumerated by
n
∑

k=2

|Ik−1(21̇)| · |In−k| which induces

that for n ≥ 2,

|In(21̇)| = |In| −
n

∑

k=2

|Ik−1(21̇)| · |In−k|.

ii) It is straightforward to see that only two involutions containing 21̇ avoid 123: 1n(n −
1) . . . 2 and (n − 1) . . . 21n. Thus for n ≥ 3 we have

|In(21̇, 123)| = |In(123)| − 2 =

(

n

⌊n
2
⌋

)

− 2.

iii) An n-length permutation π that contains 21̇ and avoids 132 can be written π =
δk(k + 1) . . . n where k ≥ 2, δ ∈ Ik−1(21̇). So if an = |In(21̇, 132)| then an = |In(132)| −
1 −

n−1
∑

r=2

ar =
(

n
⌊n

2
⌋
)

− 1 −
n−1
∑

r=2

ar for n ≥ 3 anchored by a2 = 1. In order to prove the result

we proceed by induction on n ≥ 3. For n = 3 then a3 =
(

3
⌊ 3

2
⌋
)

− 1 − 1 = 1 thus the result

holds. For n ≥ 3 we have,

an =

(

n

⌊n
2
⌋

)

− 1 −
n−1
∑

r=2

ar =

(

n − 1

⌊n
2
⌋

)

+

(

n − 1

⌊n
2
⌋ − 1

)

− 1 −
(

n − 2

⌊n−3
2
⌋

)

−
n−2
∑

r=2

ar.

With the recurrence hypothesis and after considering the two cases n odd/even, we deduce
an =

(

n−1
⌊n−2

2
⌋
)

.

iv) We set an = |In(21̇, 231)|. Let π be an involution of In(21̇, 231). As π avoids 21̇,
πn = n does not occur. Thus we distinguish two cases: (a) πn = n− 1 and πn−1 = n; and
(b) πn < n − 1.

For the case (a), the permutation π′ ∈ Sn−2 obtained by deleting the two last entries
of π also is an involution in In−2(21̇, 231). Conversely, each permutation π ∈ In(21̇, 231)
(verifying the condition (a)) can be obtained from a permutation π′ as above.

For the case (b), let us assume πk = n with k < n − 1. We consider π′ ∈ Sn−1

obtained by deleting the entry πk = n in π. As π avoids 231, n − 1 is on the right of
n in π. Moreover, we necessarily have πk+1 = n − 1 because otherwise the subsequence
(k + 1)πn−1πn is a pattern 231. Iterating this process, π and π′ can be written π =
δn(n − 1) . . . k and π′ = δ(n − 1) . . . k where δ ∈ Ik−1(21̇, 231). This induces that π′

is a permutation in In−1(21̇, 231). Conversely each permutation π ∈ In(21̇, 231) can be
obtained from a permutation π′ ∈ In−1(21̇, 231) by inserting n just after the entry π′

k−1.
Therefore we deduce, for n ≥ 3 that an = an−1 + an−2 anchored by a1 = 0 and a2 = 1.

This defines the Fibonacci sequence.
v) Let π ∈ I2n+1(21̇, 321). As the length of π is odd, there exists a fixed point πk = k.
As π avoids 21̇, there exists j < k (or j > k) such that πj > πk (or πj < πk). In these
two cases this means that there exists a pattern 321 that is πjkππj

(or ππj
kπj) which is a

contradiction. Thus |I2n+1(21̇, 321)| = 0.
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Now let π ∈ I2n(21̇, 321). In this case, we refer to a result of Deutsch, Robertson, and
Saracino [6], which states that the number of 321-avoiding involutions on [2n] with no
fixed points is cn. Indeed, π is 21̇-avoiding iff it has no fixed point (which follows from
the 321-avoiding property and the fact that π is an involution). 2

Pattern Sequence Sloane

21̇ d1 = 0 and dn = |In| −
n−1
∑

r=1

dr · |In−1−r| new

{21̇, 123}
(

n
⌊n

2
⌋
)

− 2 new

{21̇, 132}, {21̇, 213}
(

n−1
⌊n−2

2
⌋
)

A037952

{21̇, 231}, {21̇, 312} Fibonacci A000045

{21̇, 321} cn
2

if n is even; and 0 otherwise A126120

Table 3: Enumeration for the sets of involutions avoiding 21̇ and one classical pattern of
length 3

3.2 21̇ and two classical patterns of length 3

In this part we give exhaustive results about the cardinalities of the sets of permutations
avoiding 21̇ and two classical patterns of length 3. For n ≥ 5, we have |Sn(21̇, 123, 321)| =
|Sn(123, 321)| = 0.

Theorem 8 The set Sn(21̇, 123, 213) is enumerated by 2n−1−1 for n ≥ 2 (see A000225).

Proof. It is well known that Sn(123, 213) is enumerated by 2n−1. Theorem 3 proves
that Sn(21̇, 123) is the set Sn(123) except the two permutations π = 1n(n − 1) . . . 2
and π′ = (n − 1) . . . 21n. However only π belongs to Sn(213). Therefore we deduce
|Sn(21̇, 123, 213)| = |Sn(123, 213)| − 1 = 2n−1 − 1. 2

Theorem 9 The set Sn(21̇, 132, 213) is enumerated by 2n−1−1 for n ≥ 2 (see A000225).

Proof. Let π be a permutation in Sn(21̇, 132, 213). Using the proof of Theorem 6, π can
be decomposed as follows: π = kδγ where k 6= 1, δ (resp. γ) is a sequence made up of the
values in {(k + 1), . . . , n} (resp. {1, 2, . . . , (k − 1)}) such that δ and γ avoid the pattern
213. The fact that π ∈ Sn(132) implies that δ ∈ Sn(132, 213) and γ does not contain any
pattern 21. As |Sn(132, 213)| = 2n−1, we deduce that the cardinality of Sn(21̇, 132, 213)

is exactly
n−1
∑

i=1

2i−1 = 2n−1 − 1. 2

Theorem 10 The set Sn(21̇, 123, 231) is enumerated by (n−1)n
2

− 1 for n ≥ 3 (see
A000096).

the electronic journal of combinatorics 18 (2011), #P178 8



Proof. It is well known that Sn(123, 231) is enumerated by the polygonal number (n−1)n
2

+

1. Theorem 3 shows that Sn(21̇, 123) is the set Sn(123) except the two permutations
π = 1n(n − 1) . . . 2 and π′ = (n − 1) . . . 21n. Therefore we deduce |Sn(21̇, 123, 231)| =

|Sn(123, 231)| − 2 = (n−1)n
2

− 1. 2

Theorem 11 The set Sn(21̇, 321, 132) is enumerated by n − 1 for n ≥ 2 (see A007953).

Proof. Let π be a permutation in Sn(21̇, 321, 132). As π avoids 21̇, π1 6= 1 and π 6= 12 . . . n.
Let us assume that πi = 1 for some i ≥ 2. We have πi−1 > πi = 1. As π avoids 321,
1 < π1 < π2 < . . . < πi−1 and πi+1 < πi+2 < . . . < πn. As π avoids 132, the values
π1, . . . , πi−1 are necessarily consecutive. As π avoids 21̇, π does not contain any strong
fixed point, which means that there does not exist any value greater than πi−1 to the
right of 1 in π. Thus πi−1 = n and π = k(k + 1) . . . n12 . . . (k − 1) with k 6= 1. Therefore
|Sn(21̇, 321, 132)| = n − 1 for n ≥ 2. 2

Theorem 12 The set Sn(21̇, 132, 231) is enumerated by 2n−2 for n ≥ 2 (see A034008).

Proof. Let π be a permutation in Sn(21̇, 132, 231). The case π1 6= n does not occur.
To see this, assume for a contradiction that π1 = k ≤ n − 1. As π avoids 231 and 132
we necessarily have πn = n which is a contradiction with the avoidance of 21̇. Thus we
have π1 = n. Moreover if π′ is the permutation in Sn−1 obtained from π by deleting
its first value n then π′ also belongs to Sn−1(132, 231). Conversely, if we add n on the
left from a permutation in Sn−1(132, 231), the obtained permutation obviously belongs to
Sn(21̇, 132, 231). Therefore we have |Sn(21̇, 132, 231)| = |Sn−1(132, 231)| = 2n−2. 2

Theorem 13 The set Sn(21̇, 132, 312) is enumerated by 2n−2 for n ≥ 2 (see A034008).

Proof. This proof is similar to that of Theorem 12 since a permutation π ∈ Sn(21̇, 132, 312)
can be written π = π′1 where π′ avoids 132 and 312. As Sn(132, 312) is enumerated by
2n−1, the set Sn(21̇, 132, 312) also is. 2

Theorem 14 The set Sn(21̇, 321, 312) is enumerated by the Fibonacci sequence defined
by fib2 = fib3 = 1 and fibn = fibn−1 + fibn−2 for n ≥ 4 (see A000045).

Proof. Let π be a permutation in Sn(21̇, 321, 312). As π avoids 21̇ we have πn 6= n.
Moreover, π avoids 312 and 321 implies that πn−1 necessarily equals to n and we also have
either πn−2 = n − 1 or πn = n − 1. If πn = n − 1 then the permutation π′ obtained from
π by deleting the two last values also belongs to Sn−2(21̇, 321, 312). On the other hand,
if πn−2 = n − 1 then the permutation π′ obtained from π by deleting πn−1 = n belongs
to Sn−1(21̇, 321, 312). Conversely, each permutation π ∈ Sn(21̇, 321, 312) can be obtained
from a permutation π′ as previous. Therefore, |Sn(21̇, 321, 312)| = |Sn−1(21̇, 321, 312)| +
|Sn−2(21̇, 321, 312)| which defines the Fibonacci sequence. 2

Theorem 15 The set Sn(21̇, 312, 231) is enumerated by the Fibonacci sequence defined
by fib2 = fib3 = 1 and fibn = fibn−1 + fibn−2 for n ≥ 4 (see A000045).
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Proof. Let π be a permutation in Sn(21̇, 312, 231). As π avoids 21̇ we have πn 6= n.
Moreover, π avoids 312 and 231 implies that there exists i ≥ 1 such that πi = n and
πi+1 = n − 1. If i = n − 1 then the permutation π′ obtained from π by deleting the two
last value n(n−1) also belongs to Sn−2(21̇, 312, 231). On the other hand, if i < n−1 then
the permutation π′ obtained from π by deleting πn−1 = n belongs to Sn−1(21̇, 312, 231).
Conversely, each permutation π ∈ Sn(21̇, 321, 312) can be obtained from a permutation
π′ as previous. Therefore, |Sn(21̇, 312, 231)| = |Sn−1(21̇, 312, 231)| + |Sn−2(21̇, 312, 231)|
which defines the Fibonacci sequence. 2

Pattern Sequence Sloane

{21̇, 123, 321} 0, 1, 2, 4, 0, 0, 0 . . .

{21̇, 123, 132}, {21̇, 123, 213}, {21̇, 132, 213} 2n−1 − 1 A000225

{21̇, 123, 231}, {21̇, 123, 312} (n−1)n
2

− 1 A000096

{21̇, 132, 231}, {21̇, 132, 312},
{21̇, 213, 231}, {21̇, 213, 312}

2n−2 A034008

{21̇, 132, 321}, {21̇, 213, 321} n − 1 A007953

{21̇, 231, 312}, {21̇, 231, 321}, {21̇, 312, 321} Fibonacci A000045

Table 4: Exhaustive results for 21̇ and two classical patterns of length 3.

3.3 21̇ and two classical patterns of length 3 or 4

Below we present three results for permutations avoiding 21̇ and two patterns of length
greater than two. We also present an open question for permutations avoiding the patterns
{21̇, 231, 4123}.

Theorem 16 The set Sn(21̇, 231, 4321) is enumerated by the Pell numbers (see A000129).

Proof. Let π be a permutation in Sn(21̇, 231, 4321). We necessarily have n−2 ≤ πn ≤ n−1.
Indeed, Theorem 1 implies that πn 6= n; moreover if πn ≤ n− 3 then (as π avoids 231) all
values in the interval I = [πn + 1, n− 1] appear in decreasing order to the right of n in π.
As π avoids 4321, the set I contains at most one element which produces a contradiction
with πn ≤ n − 3. Thus we have either πn = n − 1 or πn = n − 2.

Let π′ be a permutation in Sn−1(21̇, 231, 4321) and π be the permutation in Sn obtained
from π′ by increasing by one the entries n − 1 and n − 2 (resp. the entry n − 1) and by
appending n−2 (resp. n−1) on the right. Then π ∈ Sn(21̇, 231, 4321). Conversely, a per-
mutation π ∈ Sn(21̇, 231, 4321) such that πn = n−2 (resp. πn = n−1 and πn−1 6= n) can
be obtained by the previous construction from a permutation π′ ∈ Sn−1(21̇, 231, 4321).
On the other hand, let π′ be a permutation in Sn−2(21̇, 231, 4321) and π be the per-
mutation in Sn obtained from π′ by appending the sequence n(n − 1) on the right.
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Then π ∈ Sn(21̇, 231, 4321). Conversely, a permutation π ∈ Sn(21̇, 231, 4321) such that
πn = n− 1 and πn−1 = n can be obtained from π′ ∈ Sn−2(21̇, 231, 4321) by this construc-
tion. Therefore we have |Sn(21̇, 231, 4321)| = 2|Sn−1(21̇, 231, 4321)|+ |Sn−2(21̇, 231, 4321)|
anchored by |S2(21̇, 231, 4321)| = 1 and |S3(21̇, 231, 4321)| = 2. We obtain the Pell num-
bers (see A000129). 2

Theorem 17 The set Sn(21̇, 321, 2143) is enumerated by 2n−1 − n + 1 (see A000325),
i.e., an instance of the Eulerian numbers plus one.

Proof. Let π be a permutation of Sn(21̇, 321, 2143). We will say that π has a descent in
position i ∈ [n] if πi > πi+1. We distinguish two cases: (a) π contains only one descent;
and (b) π contains at least two descents (notice that π cannot be the identity permutation
since idn does not avoid 21̇). First, we will enumerate n-length permutations verifying
the condition (a). Let us assume that the only descent occurs at position i ≥ 1. We
necessarily have πi+1 = 1. To see this, assume to the contrary that πi+1 ≥ 2. As π avoids
321, the value 1 is on the left of πi; as π contains only one descent π1 = 1 holds which
contradicts that π avoids 21̇. Moreover, we have πi = n. Otherwise, if πi 6= n then n
either is the last entry or just before a value smaller than it. This is a contradiction. The
permutation π can be written π = δn1γ. where δ (resp. γ) is an increasing subsequences

of [π1, n − 1] (resp. [2, n − 1]). The cardinality of such permutations is
n−1
∑

i=1

(

n−2
k−1

)

= 2n−2.

Now let us examine the case (b). The permutation π contains at least two descents.
Let i be the position of the leftmost descent (πi > πi+1). As π avoids 21̇ we have π1 6= 1
and πn 6= n; as π avoids 321 we have πi+1 = 1; as π avoids 2143, if πj > πj+1 for j > i + 1
then πj+1 < π1 and πn = π1 − 1. These conditions define a particular structure for π:
π = k . . . (k + i− 1)1δnℓ . . . k− 1 for some ℓ, 2 ≤ ℓ ≤ k− 1. Therefore these permutations

are enumerated by:
n−1
∑

k=3

n−k
∑

i=1

(

n−i−2
k−3

)

= 2n−2−n+1. Thus |Sn(21̇, 321, 2143)| = 2n−1−n+1.

2

Theorem 18 The set In(21̇, 231, 4321) is enumerated by the Padovan sequence (see
A000931).

Proof. The proof of Theorem 16 shows the form of a permutation π ∈ Sn(21̇, 231, 4321).
Indeed, we have either π = δn(n − 1) or π = δn(n − 1)(n − 2). We de-
duce |In(21̇, 231, 4321)| = |In−2(21̇, 231, 4321)| + |In−3(21̇, 231, 4321)| anchored by
|I1(21̇, 231, 4321)| = 0 and |I2(21̇, 231, 4321)| = 1 which gives the Padovan sequence (see
A000931). 2

Now we present an open question about the Pisot sequence a(n) defined by a(4) = 5,

a(5) = 11 and a(n + 1) is the nearest integer to a(n)2

a(n−1)
.

Problem 1 The set Sn(21̇, 231, 4123) is enumerated by a sequence b(n) that takes values
5, 11, 24, 52, 113, 246, 536, 1168 for 4 ≤ n ≤ 11. Is it true that b(n) is the Pisot sequence
for n ≥ 4 (see A021008)?
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Pattern Sequence Sloane

{21̇, 231, 4321} Pell A000129

Involutions avoiding {21̇, 231, 4321} Padovan A000931

{21̇, 321, 2143} 2n−1 − n + 1 A000325

Table 5: Permutations avoiding 21̇ and two classical patterns of length 3 or 4

4 Avoiding a dotted pattern of length 3

In this section we investigate the avoidance of one dotted pattern of length 3, possibly
along with other classical patterns. We obtain several results when we avoid one dotted
pattern of length 3 and one or more classical patterns. Unfortunately, we could not
determine the cardinality of Sn(τ̇) where τ̇ is a 3-length dotted pattern of the form τ1τ2τ̇3.
Thus we present three open problems:

Problem 2 The set Sn(231̇) is enumerated by the sequence a(n, 0) that takes values
1, 1, 2, 5, 17, 71, 357, 2101 for n ≥ 1 (see A101897). Is it possible to prove that this se-

quence is recursively defined by: a(n, 0) =
n
∑

k=1

(−1)k−1 · a(n, k) where a(n, k) =
n−k
∑

j=0

a(n −

k, j) · a(j + k − 1, k − 1) for 0 < k ≤ n anchored by a(0, 0) = 0.

Problem 3 Is it possible to obtain the cardinalities of the sets Sn(123̇)? The first val-
ues are 1, 1, 2, 7, 35, 218, 1598 for n ≥ 1. This sequence does not appear in the Sloane
Encyclopedia [14].

Problem 4 The set Sn(132̇) is enumerated by the sequence b(n) that takes values
1, 1, 2, 4, 13, 58, 299, 180 for n ≥ 1. Is it possible to prove that this sequence is recursively
defined by: b(n + 1) = a(n, 0) − b(n) where a(n, 0) is defined in Problem 2?

4.1 Avoiding 231̇ and 321 - Catalan

Before presenting the main results we provide two basic technical lemmas.

Lemma 4 Let n ≥ 1 be an integer. A permutation π belongs to Sn(321) if and only if
for every i ≥ 1, we have πi = min{πi, πi+1, . . . , πn} or πi = max{π1, π2, . . . , πi}.

Proof. Let π be an n-length permutation avoiding 321 and i be an integer such that
πi > πi+1. Since π avoids 321, it does not contain any value greater than πi before πi.
Thus πi = max{π1, π2, . . . , πi}. A similar argument gives πi = min{πi, πi+1, . . . , πn} if
πi < πi+1. Conversely, if π contains the pattern 321 then there are i < j < k such
that πi > πj > πk. Thus πj is neither the maximum of elements to its left and nor the
minimum of elements to its right which gives the result. 2
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Lemma 5 Let n ≥ 1 be an integer and π be a permutation in Sn(321). Then π avoids
231̇ if and only if πi 6= i − 1 for i ≥ 2.

Proof. Let π ∈ Sn(231̇, 321). Let us assume that π 6= idn avoids 231̇ and there exists i ≥ 2
such that πi = i − 1. Lemma 4 states that either πi = i − 1 = min{πi, πi+1, . . . , πn} or
πi = i − 1 = max{π1, π2, . . . , πi}. The first case implies that there exists j < i such that
πj > i−1. Therefore the subsequence πjπi cannot be extended into the pattern 231 which
is a contradiction. The second case does not occur since i− 1 cannot be the maximum of
i positive integers. Conversely, if π contains 231̇, then there exists i < j such that πi > πj

where the subsequence πiπj cannot be extended in π to a 231 pattern. As π avoids 321,
all entries before πj are smaller than πj . Thus πj ≥ j and there exists j ≥ 2 such that
πj 6= j − 1. 2

Theorem 19 The set Sn(231̇, 321) is enumerated by the (n−1)th Catalan number cn−1 =
1
n

(

2(n−1)
n−1

)

(see A000108).

Proof. Let π be a permutation in Sn(231̇, 321). For k ∈ [n + 1]\{n}, we define the
permutation δ ∈ Sn+1 by: δn+1 = k, and δi = πi + 1 if πi ≥ k, and δi = πi otherwise.

It is straightforward to verify that if k > πn then δ ∈ Sn+1(231̇, 321) (Lemma 5 excludes
the case k = n). We have the same remark when πn = n and k ≤ n− 1. Conversely, each
permutation δ ∈ Sn+1(231̇, 321) can uniquely be obtained by this construction for some k
and π ∈ Sn(231̇, 321) with k 6= n. Indeed, Lemma 5 implies δn+1 6= n. Now let us assume
that there exists i ≤ n such that δi = i > δn+1. As δ avoids 321, we have δj < i for j < i.
Thus the (n + 1 − i) values (i + 1), . . . , (n + 1) are necessarily on the right of δi = i, and
by considering the value δn+1 < i, there are (n + 2 − i) values on the right of δi which
cannot be possible. Consequently, this case does not occur. The permutation π verifies
πj 6= j − 1 for j ≥ 2. Lemma 5 implies that π ∈ Sn(231̇, 321). Thus each permutation π
such that πn = k, k ≤ n − 2 (resp. k = n), produces (n − k) (resp. n) permutations of
size (n + 1) verifying πn+1 = k + 1, . . . , n− 1, n+ 1 (resp. πn+1 = 1, 2, . . . , n− 1, n+ 1). If
we label by (k) a permutation π such that πn = n− k then such a permutation produces
k permutations of size n + 1 labeled (2), (3), . . . , (k + 1) and 12 is labeled (2). This is the
definition of succession rules for Catalan numbers (see the method ECO [1, 2]). 2

Theorem 20 The set Sn(231̇, 321, 213) is enumerated by the (n − 1)th central polygonal
sequence

(

n−1
2

)

+ 1 (or Lazy Caterer’s sequence, see A000124).

Proof. Let π ∈ Sn(231̇, 321, 213) and π 6= idn. We consider the smallest i such that there
exists j > i verifying πi > πj . As π avoids 321 and 213, we immediately have πk < πj

for k < i; πk > πi for i < k < j; and πj < πk < πi for k > j. As π avoids 231̇, there
exists at least one value between the entries πi and πj , i.e., i < j − 1. Conversely, each
permutation verifying these properties belongs to Sn(231̇, 321, 213). Therefore, if we also

consider idn then the cardinality of Sn(231̇, 321, 213) is
n
∑

j=3

j−2
∑

i=1

1 =
(

n−1
2

)

+ 1. 2
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4.2 Avoiding 231̇ and 132 - Motzkin

Theorem 21 The set Sn(231̇, 132) is enumerated by the (n − 1)th Motzkin number (see
A001006).

Proof. Let Mn be the set Sn(231̇, 132) and mn its cardinality. Let π be a permutation in
Mn. We write π as follows: π = δnγ where δn and γ are two subsequences of [n] (γ is
not empty). See Figure 1 for an illustration of the decomposition. As π avoids 132, the
set of values in δn necessarily constitutes an interval [s, n] for some s ≤ n. Consequently,
γ is a permutation in Ss−1. As π avoids 231̇ and 132, γ ∈ Ms−1 and δn can be viewed as
a permutation in Mn−s+1. Conversely, such a permutation π = δnγ verifying the above

conditions on δn and γ belongs to Mn. We deduce that mn =
n−1
∑

s=1

mn−sms−1 anchored by

m0 = m1 = 1. 2

δ

γ
s

Figure 1: The special structure of a permutation in Sn(231̇, 132)

4.3 Avoiding 231̇, 312 and 213 - Fibonacci

Theorem 22 The set Sn(231̇, 312, 213) is enumerated by the Fibonacci sequence (see
A000045).

Proof. Let π be a permutation in Sn(231̇, 312, 213). As π avoids 312 and 213, we have
either π1 = 1 or πn = 1. If πn = 1 then the permutation π′ obtained from π by deleting
πn = 1 and by decreasing by one all other values also belongs to Sn−1(231̇, 312, 213).
Moreover, as π avoids 231̇ we cannot have π′

n−1 = 1 (otherwise πn−1 = 2 and πn = 1
contradicts that π avoids 231̇). Thus we have π′

1 = 1 and thus π1 = 2. Let π′′ be the
permutation obtained from π′ by deleting the first entry 1 and by decreasing by one all
other values, then π′′ ∈ Sn−2(231̇, 312, 213). Conversely, if π′′ ∈ Sn−2(231̇, 312, 213) then
the permutation π obtained from π′′ by appending 2 (resp. 1) at the left (resp. at the
right) then π ∈ Sn(231̇, 312, 213). On the other hand, if π1 = 1 then the permutation
π′ obtained from π by deleting π1 = 1 and by decreasing by one all other values also
belongs to Sn−1(231̇, 312, 213). Conversely, each permutation π ∈ Sn(231̇, 312, 213) can
be obtained from a permutation π′ ∈ Sn−1(231̇, 312, 213) by adding the entry one on the
left and by increasing by one all other values. Finally, if a(n) = |Sn(231̇, 312, 213)| then
a(n) = a(n − 1) + a(n − 2) anchored by a(1) = 1, a(2) = 1. 2
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4.4 Avoiding 123̇, 213 and 231 - Binary

Theorem 23 The set Sn(123̇, 213, 231) is enumerated by the binary sequence 2n−2 (see
A034008).

Proof. Let π be a permutation in Sn(123̇, 213, 231). As π avoids 213 and 231, such a
permutation necessarily has: either πi = max{π1, . . . , πi} or πi = max{π1, . . . , πi}. Thus
we have π1 = 1 or π1 = n. If π1 = 1 then π2 = 2 since π avoids 123̇. Consequently
each permutation π can be written as either π = nπ′ or π = 12π′′ where π′ (resp. π′′)
belongs to Sn−1(123̇, 213, 231) (resp. Sn−2(213, 231)). Finally, by induction we obtain
|Sn(123̇, 213, 231)| = 2n−3 + 2n−3 = 2n−2. 2

4.5 Avoiding 2̇13, 231 - Riordan

Theorem 24 The cardinality of the set Sn(2̇13, 231) is given by the generating function
(1−z−

√
1−2 z−3 z2)z

1+z+
√

1−2 z−3 z2
(see A005043 for the Riordan sequence).

Proof. It is well known that a permutation π ∈ Sn(231) can be written kδγ where k ≥ 1,
δ ∈ Sk−1(231) and γ is a sequence of values in {k +1, . . . , n} that also avoids 231. Such a
permutation can be illustrated by a rooted binary tree T with n nodes as follows: T is the
rooted binary tree with its left subtree Tℓ (resp. right subtree Tr) represents δ (resp. γ
considered as a permutation in Sn−k(231)). Using the classical pre-order bijection between
binary trees and Dyck paths the permutation π can be viewed as a Dyck path. See Figure
2 for an example of the correspondence between π ∈ Sn(231), its binary tree with n nodes,
and its associated Dyck path.

5

1

2

3

4

6

7

Figure 2: A permutation π = 4213765 ∈ S7(2̇13, 231) with its corresponding binary
tree and the associated Dyck path UUUDDUDDUUUDDD where U = (1, 1) and D =
(1,−1).

As π avoids 2̇13, the sequence γ also avoids 2̇13; k 6= 1 and δ and γ are not empty.
Moreover the avoidance of 2̇13 implies that: (a) each subsequence πiπj of π with πi < πj

can be expanded into a 213 pattern; and (b) each subsequence πiπj of π with πi > πj

can be expanded into a 213 pattern. These two conditions also hold for the subsequence
γ. Moreover the sequence kδ always verifies (b) since γ contains the value n. Thus the
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permutation π belongs to Sn(2̇13, 231) if and only if γ avoids 2̇13 and 231, and δ verifies
(a).

Now if we consider these conditions in the context of Dyck path (via the above bi-
jection), the condition δ verifies (a) means that the Dyck path corresponding to the
left subtree Tℓ (of size at least 2) does not contain any occurrence of UDU . To see this,
assume for a contradiction that Tℓ contains an occurrence UDU . Then π verifies πi = k
and πi+1 = k+1 for some i and k such that πj > k if j < i. Thus the subsequence k(k+1)
cannot be expanded into a 213-pattern in π which contradicts the condition δ. So, these
Dyck paths are enumerated by the Motzkin numbers (see [14], A001006). Therefore, the
cardinalities of Sn(2̇13, 231) is given by the generating function: A(z) = z2M(z)(z+A(z))
where M(z) is the generating function of the Motzkin numbers. Thus we obtain

A(z) =

(

1 − z −
√

1 − 2 z − 3 z2
)

z

1 + z +
√

1 − 2 z − 3 z2
,

which is equal to z(R(z) − 1) where

R(z) =
2

(

1 + z +
√

1 − 2 z − 3 z2
)

is the well-known Riordan generating function. 2

From this previous proof, we directly deduce the following corollary.

Corollary 1 The cardinality of the set Sw
n (2̄13)∩Sn(231) is given by the Motzkin numbers

(see A001006).

4.6 Avoiding 231̇, 2413 and 3142 - Catalan

Theorem 25 The set Sn(231̇, 2413, 3142) is enumerated by the (n−1)th Catalan number.

Proof. Let π be a permutation in Sn(231̇, 2413, 3142). As π avoids the two patterns 2413
and 3142, π is separable; i.e., π can be written either (a) π = δγ where δ ∈ Sk for some
k ≤ n − 1, or (b) π = δγ where γ ∈ Sk for some k ≤ n − 1. For each case, we assume
that δ is minimal in the sense that δ does not belong to the considered case. Moreover, π
avoids 231̇ implies that δ and γ also avoid 231̇; and for the case (b), δ is not reduced to
one element. Thus the structure of permutations in the cases (a) or (b) induces the two
following equalities.

Let A(z) (resp. B(z)) be the generating function for permutations avoiding 231̇ and
verifying (a) (resp. verifying (b)); let F (z) = A(z) + B(z) + 1 the generating function for
the set Sn(231̇, 2413, 3142).

{

A(z) = zF (z) + B(z)(F (z) − 1) and

B(z) = (A(z) − z)(F (z) − 1).

If we sum these two equalities we obtain:

F (z)2 − 3F (z) + z + 2 = 0.
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Thus we conclude F (z) = 3−
√

1−4z
2

which is exactly 1+zC(z) where C(z) is the well-known
Catalan sequence. 2

Pattern Sequence Sloane

{231̇, 321}, cn−1 A000108

{231̇, 321, 213}
(

n−1
2

)

+ 1 A000124

{231̇, 132} Motzkin A001006

{231̇, 312, 213}, {231̇, 312, 132} Fibonacci A000045

{312̇, 132} Riordan A005043

{132̇, 213, 231} 2n−2 A034008

{231̇, 2413, 3142}, cn−1 A000108

Table 6: Some results for a dotted pattern of length 3 and other classical patterns.
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