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Abstract

In this paper we give a construction, for any n, of an n-Venn diagram on the

sphere that has antipodal symmetry; that is, the diagram is fixed by the map that

takes a point on the sphere to the corresponding antipodal point. Thus, along with

certain diagrams due to Anthony Edwards which can be drawn with rotational

and reflective symmetry, for any isometry of the sphere that is an involution, there

exists an n-Venn diagram on the sphere invariant under that involution. Our

construction uses a recursively defined chain decomposition of the Boolean lattice.

Keywords: Venn diagrams, symmetry, involution, isometry, chain decompositions

of the Boolean lattice.

1 Introduction

Following Grünbaum [8], an n-curve Venn diagram is defined to be a collection of n simple
closed curves, Θ = {θ1, θ2, . . . , θn}, with the property that for each S ⊆ {1, 2, . . . , n} the
region

⋂

i∈S

interior(θi) ∩
⋂

i6∈S

exterior(θi) (1)

is nonempty and connected. In a Venn diagram the curves are assumed to intersect in
only finitely many points. An n-Venn diagram is one with n curves.

The isometries of the plane that can be exhibited by a finite diagram are subsets
of reflections or rotations, and most research on symmetric Venn diagrams has been
concerned with rotationally-symmetric diagrams where distinct curves in the diagram map

†Research supported in part by NSERC.

the electronic journal of combinatorics 18 (2011), #P191 1



onto one another. A natural question is: for which n is there a planar n-Venn diagram
with non-trivial rotational symmetry? It is necessary that n be prime [10, 15], and
sufficiency was recently proven by Griggs, Killian and Savage (GKS). Our construction is
similar to the GKS construction in that it recursively builds the dual graph from a chain
decomposition of the Boolean lattice. See the survey [13] for discussion and examples
regarding Venn diagrams with rotational symmetry on the plane.

The sphere, on the other hand, has 14 different types of isometry groups, seven of
which are infinite classes (see [1]). Grünbaum [9] was the first to discuss Venn diagrams
drawn on the sphere, though not in the context of symmetry. It is natural to ask: given
an isometry I of the sphere, is there an n-Venn diagram on the sphere that is invariant
(in some sense) under I?

In this paper we consider isometries of order two (i.e., the isometry is an involution).
Each such isometry is realized by a diagram where each curve gets mapped to itself (what
is termed a total symmetry in diagrams to distinguish it from the type where curves get
mapped to other curves). The only involutory isometries of the sphere are reflection across
a plane containing the centre of the sphere, rotation of the sphere by π radians about a
diagonal of the sphere, and a rotation of the sphere by π about a diagonal d followed by
reflection through a plane orthogonal to d through the centre of the sphere (this is called
inversion or antipodal symmetry and is equivalent to mapping each point of the sphere
to the antipodal point).

The contributions of this paper are: first, to show that the existing Edwards diagrams
realize rotational and reflective symmetry, and second, to provide a construction, for any
n, of an n-Venn diagram with antipodal symmetry on the sphere. Thus, for any involutory
isometry f of the sphere and any n > 1, there is an n-Venn diagram on the sphere that
is invariant under f .

2 Reflective and Rotationally Symmetric Venn Dia-

grams on the Sphere

Anthony Edwards, in a series of papers [6, 5], gave a construction, for any n, of an n-
Venn diagram on the plane. Edwards’ construction is topologically isomorphic to earlier
constructions such as Grünbaum’s construction from 1975 [8], but Edwards was the first
to note the possibility of observing interesting symmetries of the diagrams produced by
embedding them on the sphere, though he did not extend his analysis to all n. Edwards’
constructions are also discussed in [6] and [13].

On the sphere the Edwards construction has reflective symmetry across two different
planes; see Figure 1, in which the planes of symmetry are the two vertical planes containing
the curves through the poles. The cylindrical projection of this diagram is shown in
Figure 3.

Edwards also discussed a variant of his construction which he called binary-form; see
Figure 2. These diagrams have three different axes of 180 ◦ rotational symmetry; see the
cylindrical projection in Figure 4, in which the axes of symmetry are through x − x′,

the electronic journal of combinatorics 18 (2011), #P191 2



through y − y′, and through the poles of the sphere.
Thus the Edwards constructions demonstrate that two of the three non-trivial involu-

tions on the sphere are realizable by n-Venn diagrams, for any n.

Figure 1: The Edwards construction for a
symmetric spherical 6-Venn diagram.

Figure 2: Edwards binary form construction
drawn symmetrically on the sphere.

In order to construct n-Venn diagrams on the sphere with the third type of symmetry,
antipodal symmetry, next we will recursively define the dual graph of such a diagram and
show that it has the required symmetry.

3 The Boolean Lattice and Chain Decompositions

Let Bn be the set of all subsets of {1, 2, . . . , n} and let Bn denote the corresponding
Boolean lattice. The 2n elements of Bn correspond naturally to the bitstrings of length n
where a bit in position i in a bitstring is 1 if and only if the corresponding subset includes
element i. The cover relations of Bn are then exactly those pairs of bitstrings a ⊂ b such
that a and b differ in one bit position where a has a 0 and b has a 1. In Bn elements are
ranked by the Hamming weight of the corresponding bitstring (the size of the subset).

An elegant chain decomposition of the Boolean lattice Bn was given by de Bruijn, et al.
in 1951 [2], and studied by many subsequent authors. In the important paper by Griggs,
Killian and Savage [7], it is shown how de Bruijn’s symmetric chain decomposition of
Bn can be used to construct n-Venn diagrams. They then create a new symmetric chain
decomposition with a certain n-fold symmetry and use it to create n-fold rotationally
symmetric n-Venn diagrams. This in turn has seemingly spawned recent renewed interest
in symmetric chain decompositions with additional symmetries by several authors [3, 4,
11].
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Figure 3: Cylindrical projection of the Edwards construction for an 6-Venn diagram.

y x y′ x′

Figure 4: Cylindrical projection of Edwards binary-form construction.
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3.1 Embeddings of Chain Decompositions

The embeddings of some chain decompositions of Bn have the property that they form
a spanning subgraph of a dual graph of a Venn diagram. If C is a chain decomposition
then we define the following notation.

max(C) := {v ∈ Bn | v is maximal in some chain of C},

and
min(C) := {v ∈ Bn | v is minimal in some chain of C},

Definition. Let E be a planar embedding of an ordered chain decomposition C =
{C0, C1, . . . , Cm−1} in which each chain forms a vertical line segment, and the chains are
indexed so that Ci is to the left of Cj if i < j. Then E is said to be a venerable embedding
if there are functions π : max(C)\{1n} → max(C) and π′ : min(C)\{0n} → min(C) such
that the edge sets Eπ = {{v, π(v)} ∈ Bn | v ∈ max(C) \ {1n}} and Eπ′ = {{v, π′(v)} ∈
Bn | v ∈ min(C)\{0n}} can be added to E without creating any crossing edges; the edges
in Eπ ∪Eπ′ are called chain cover edges. Note: in some of the later sections, we draw the
chains horizontally instead of vertically, whatever is most convenient.

Note that the two sets of chain cover edges form trees. It was proven in [7] that
every venerable embedding is the dual of a Venn diagram (although they use different
terminology). Figure 5 shows an example of a venerable embedding in which the thin
(black) segments indicate chains and the thick (red) segments indicate chain cover edges.
Given a bitstring x we denote by x̄ the bitstring obtained by complementing each bit of x.
Also, if Ci is a chain then C̄i denotes the chain obtained by complementing each bitstring
in C (and the ordering of the chain elements is reversed).

Definition. Let E be a venerable embedding of an ordered chain decomposition C =
{C0, C1, . . . , Cm−1}. The embedding E is an antipodally symmetric chain decomposition
embedding (or is an ASCDE ) if the following conditions are met.

(a) Ci = C̄i+m/2 for i = 0, 1, . . . , m − 1, with indexing taken mod m.

(b) If (v, π(v)) ∈ Eπ, then (v̄, π′(v)) ∈ Eπ′ .

In Section 4, we will show how to construct antipodally symmetric chain decomposition
and then in Section 5 how to use such an embedding to create a Venn diagram on the
sphere with antipodal symmetry.

4 Constructing an Antipodally Symmetric Chain De-

composition

In this section we develop a variation of the chain decomposition decomposition of de
Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk [2] with the chain ordering of Knuth
[12, pg. 457], and use it to to create an antipodally symmetric chain decomposition.
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We define the construction recursively, along with an embedding on the plane, following
Knuth [12]’s presentation of the de Bruijn decomposition, and specify chain cover edges
as well as the chains for each step in the construction.

Lemma 4.1. Given an ASCDE M for Bn, there is an ASCDE M ′ for Bn+1.

Proof. The following recursive rules allow us to construct, given a ASCDE M for Bn, a
ASCDE M ′ for B(n+1).

Let m be the number of chains in M . The ith chain has chain cover edges embedded
as shown below. We refer to this configuration as the i-th row. The chain cover edges are
the thick (red) edges that connect different chains together; cover edges in the chains are
thin (black).

b

a

σ1 σ2 . . . σk

The row is replaced in one of two ways, depending on whether it is in the first half of
the ASCDE (i.e. whether i ≤ m

2
).

Rule 1. If i ≤ m
2
, then the row is replaced by the following two rows and chain cover

edges.

σ11

σ20 . . .

. . .

σk0

σk−11 σk1σ10

a0

b1

If k = 1 the first row is omitted and the second becomes σ10 — σ11. Note that two new
chain cover edges are added: between α10 and α20, and between αk0 and αk1.

Rule 2. If i > m
2
, the replacement is shown below.

σk−11σ11

σ10 σ20 σk0 σk1

a0

b1

. . .

. . .

If k = 1 the first row is omitted and the second becomes σk0 — σk1. Note again that
two new chain cover edges are added: between α10 and α11, and between αk−11 and αk1.
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Replacing every row in M in this fashion gives M ′; we must show that M ′ is an ASCDE.
It is easy to show by induction that each of the 2n+1 bitstrings appears exactly once, the
bit strings with k 1s all appear in the same column, and within each row, consecutive bit
strings differ by changing a 0 to a 1. Thus M ′ does give a chain decomposition.

Given a chain Ci = σ1 σ2 . . . σk in the first m/2 rows of M , since M is a ASCDE,
we have Ci+m = σk . . . σ2 σ1. Rule 1 creates chains

C ′
i = σ20, . . . , σk0 and C ′′

i = σ10, σ11, σ2 . . . , σk1.

Rule 2 creates the corresponding chain

C ′
i+m = σk1, . . . , σ21 and C ′′

i+m = σk0, . . . , σ20, σ11.

Since C ′
i = C ′

i+m and C ′′
i = C ′′

i+m condition (a) of the ASCDE definition is satisfied.
Condition (b) is satisfied since the old chain cover edges are preserved in the sense that
(σ1, a) and (σk, b) become (σ10, a0) and (σk1, b1); furthermore, the new chain cover edges
come in pairs (σ20, σ10) and (σ21, σ11).

Theorem 4.2. There exists an antipodally symmetric chain decomposition embedding
(ASCDE) of Bn for all n ≥ 2.

Proof. The basis is an ASCDE for B2, shown below. Now apply Lemma 4.1.

0100

10 11

In general, there are many ASCDEs for a given n; the construction of Lemma 4.1,
starting from the base case shown for n = 2, gives us just one of them. Figure 5 shows
the construction for n = 4 and the background (shown in grey) in Figure 6 shows the
construction for n = 5.

5 Spherical Venn Diagrams with Antipodal Symme-

try

In this section we explain why an ASCDE can be drawn on the sphere with antipodal
symmetry and how the dual can then be drawn as a Venn diagram on the sphere, also with
antipodal symmetry. Given a cylindrical projection of a sphere to a rectangle, imagine
dividing the rectangle into two equal area smaller rectangles by bisecting the rectangle
with a vertical line. A fundamental region for antipodal symmetry is obtained by taking
a smaller rectangle, say the one to the left, call it L. The antipodal mapping, call it Ξ,
takes L, flips it vertically, and places it to the right of L.
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1010 1011

1000 1100 1110 1111

0000 0001 0011 0111

0010 0110

0100 0101

1001 1101

1010 1011

1000 1100 1110 1111

0000 0001 0011 0111

0010 0110

0100 0101

1001 1101

Figure 5: The ASCDE for B4 generated by the recursive construction

Given an ASCDE E with m ordered chains, embed the first m chains in L. Using Ξ
to position the remaining chains, the embedding now has the property that any bitstring
σ is antipodal to σ̄ (this is because of the condition Ci = C̄i+m in the definition of an
ASCDE). The background (shown in grey) in Figure 6 illustrates such an embedding.

The dual of a (primal) graph embedded on a surface can be drawn so as to preserve the
symmetries of the embedding of the primal; thus, the dual of E can be drawn so that it
has antipodal symmetry. Since E is venerable, there is an n-Venn diagram on the sphere
with antipodal symmetry corresponding to the cylindrical projection. Figure 6 illustrates
an 5-Venn diagram with antipodal symmetry constructed from our ASCDE and Figure 7
shows the spherical version. The preceding discussion is summarized by the following
theorem.

Theorem 5.1. For any involutory isometry of the sphere f and n ≥ 1, there is a spherical
n-Venn diagram that is fixed by f .

6 Further Remarks

6.1 Rotationally Symmetric Chain Decompositions and Dia-

grams

Consider the effect of changing Rule 2 to the following:

Rule 2′. If i > m
2
, the row becomes

σ20 . . . σk0σ10

σ11 . . . σk−11

σk1
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01010 01001 01100

01011 01101

00101

01110

00110

00010

00111

00011

00001

0000

10101 10110 10011 11010

11101

11001

10001

11111

11110

11100

11000

01111 10111 11011

01000 00100

10100 10010

10000

Figure 6: Antipodally symmetric 5-curve diagram based on the ASCDE for B5

where if k = 1 the second row is omitted and the first becomes σk0 — σk1.

That is, the order of the two rows is reversed, which has the effect of reversing the order
of the chains in the second half of the construction. Then the chain decomposition has a
different symmetry: the first chain C0 maps onto Cm−1, C2 onto Cm−2, etc. until Cm/2−1

which maps onto Cm/2. Once the projection onto the sphere is complete, the resulting
diagrams do not have antipodal symmetry but rather a rotational symmetry about an
axis passing through the centre of the sphere and the central vertex between Cm/2 and
Cm/2+1. Thus, for any n, we have a chain-based construction for an n-Venn diagram on
the sphere with total rotational symmetry, as opposed to the Edwards diagram shown
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Figure 7: Antipodally symmetric 5-Venn diagram from the ASCDE for B5 on the sphere

earlier in this paper, which has a diagrammatic construction. The Edwards construction
results in 2n−1 chains, for n curves, whereas our construction has fewer chains, as we see
in the next section. The resulting Venn diagrams are explored further in [16].

6.2 Counting Results

In this section we count the number of chains in the ASCDE construction. The solution
involves the Catalan numbers Cn =

(

2n
n

)

/(n + 1) =
(

2n+1
n

)

/(2n + 1). Let N(n, k) be the
number of chains of length k in the construction. Also, define the total number of chains
N(n) = Σ1≤k≤nN(n, k). Directly from the recursive construction, we have the recurrence
relation

N(n, k) =



















2 if n = k ≥ 1,

N(n − 1, 2) if k = 1,

N(n − 1, k − 1) + N(n − 1, k + 1) if k > 1,

0 otherwise.

(2)

Lemma 6.1. If n and k have the same parity, then

N(n, k) =
2k

n

(

n

(n − k)/2

)

and, otherwise, N(n, k) = 0.
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Proof. The recurrence relation (2) is the same as one for the Catalan triangle [14, Sequence
A053121], except that the base case is 2 instead of 1. The reference [14, Sequence A053121]
gives the closed form k

n

(

n
(n−k)/2

)

for the Catalan triangle (also easily verified by induction),

and twice this is the solution to (2).

Corollary 6.2. If n = 2m + 1 is odd, then N(n, 1) = 2Cm; otherwise N(n, 1) = 0.

Proof. If n is odd, let m = 2n + 1. Then

N(n, 1) =
2

n

(

n

(n − 1)/2

)

=
2

2m + 1

(

2m + 1

m

)

= 2Cm.

If n is even, the parity of n and k differ, so by Lemma 6.1, N(n, 1) = 0.

Lemma 6.3. If n is even, all chains in the chain decomposition given by the ASCDE
construction have even length, otherwise all chains have odd length.

Proof. The lemma is easily verified to be true for n = 2 and n = 3. Assume the lemma is
true for n − 1 and n − 2. Let n be even and assume the construction for n − 1 produces
chains of only odd lengths. The rule replaces a chain of odd length k > 1 with two chains
of length k +1 and k−1, so their lengths must both be even; the rule produces one chain
of length two if k = 1. In both cases the resulting chains all have even length. The case
for n odd is similar and is omitted.

Theorem 6.4. The number of chains N(n) in the ASCDE construction for n > 1 is
(

n
n/2

)

if n is even, and is 2
(

n−1
(n−1)/2

)

otherwise.

Proof. Our proof is by induction on n. The basis for n = 2 is shown in Theorem 4.2 and
the basis for n = 3 is easily verified. We now consider two cases, n odd and even.

For n odd, inductively the number of chains in the construction for n − 1 is
(

n−1
(n−1)/2

)

.
By Lemma 6.3 all chains in the construction for n − 1 are of even length and so are all
replaced by two odd chains; from the construction it is apparent that each even-length
chain gives exactly two odd-length chains. Thus for n odd, N(n) = 2

(

n−1
(n−1)/2

)

.

For n even, the construction for n − 1 gives 2
(

n−2
(n−2)/2

)

chains by induction, and all
chains have odd length. Applying the construction rule gives two chains for every chain
in the construction for n − 1, except for chains of length one which will give one chain.
By Lemma 6.2 the number of length one chains is

N(n − 1, 1) = 2Cn−2

2

=
2

(n − 2)/2 + 1

(

n − 2

(n − 2)/2

)

=
4

n

(

n − 2

(n − 2)/2

)

.
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Thus the number of chains for n even is

N(n) = 2N(n − 1) − N(n − 1, 1)

= 2 · 2

(

n − 2

(n − 2)/2

)

−
4

n

(

n − 2

(n − 2)/2

)

= 4
n − 1

n

(

n − 2

(n − 2)/2

)

=

(

n

n/2

)

, as claimed.

It is well-known that the minimum possible number of chains in a chain decomposition
is

(

n
⌊n/2⌋

)

. The results above show that the construction may, depending on n, give a
chain decomposition with more than the minimum number of chains possible. An easy
computation reveals that when n is odd, the difference is

N(n) −

(

n

(n − 1)/2

)

= Cn−1

2

.

6.3 Open Questions

We noted in the previous section that the construction gives more than the minimum
number of chains, starting with n ≥ 5. The ASCDE shown in Figure 8 for n = 5 contains
(

5
⌊5/2⌋

)

= 10 chains, as opposed to the number N(5) = 12, from Subsection 6.2, given by
the construction.

We conjecture that there exists an ASCDE with
(

n
(n−1)/2

)

chains whenever n+1 is not
a power of 2. If n+1 is a power of 2, then the middle binomial coefficient is odd and thus
there is no antipodally symmetric decomposition with this number of chains.
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