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Abstract

We give a method to construct cospectral graphs for the normalized Laplacian
by a local modification in some graphs with special structure. Namely, under some
simple assumptions, we can replace a small bipartite graph with a cospectral mate
without changing the spectrum of the entire graph. We also consider a related result
for swapping out biregular bipartite graphs for the matrix A + tD.

We produce (exponentially) large families of non-bipartite, non-regular graphs
which are mutually cospectral, and also give an example of a graph which is cospec-
tral with its complement but is not self-complementary.

Keywords: normalized Laplacian; cospectral; bipartite subgraph swapping

1 Introduction

Spectral graph theory examines relationships between the structure of a graph and the
eigenvalues (or spectrum) of a matrix associated with that graph. Different matrices are
able to give different information, but all the common matrices have limitations. This is
because there are graphs which have the same spectrum for a certain matrix but different
structure—such graphs are called cospectral with respect to that matrix.

The following are some of the matrices studied in spectral graph theory:

• The adjacency matrix A. This is defined by A(u, v) = 1 when u and v are adjacent
and 0 otherwise. The spectrum of the adjacency matrix can determine the number

∗This work was done with support of an NSF Mathematical Sciences Postdoctoral Fellowship while
at UCLA.
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(a) Cospectral for A (b) Cospectral for L (c) Cospectral for Q (d) Cospectral for L

Figure 1: Examples of cospectral graphs for A, L, Q and L.

of edges and if a graph is bipartite, but it cannot determine if a graph is connected
(see [6] for more information). See Figure 1a, the “Saltire pair” [5, 15], for an
example of two graphs which are cospectral with respect to the adjacency matrix
but not any of the other matrices we will discuss.

• The Laplacian L = D−A. This matrix is also known as the combinatorial Laplacian
and is found by taking the difference of the diagonal degree matrix D and the
adjacency matrix. The spectrum of the Laplacian can determine the number of
edges and the number of connected components, but it cannot determine if a graph
is bipartite (see [6] for more information). See Figure 1b [10, 15], for an example of
two graphs which are cospectral with respect to the Laplacian but not any of the
other matrices we will discuss.

• The signless Laplacian Q = D + A. This matrix is found by taking the sum of
the diagonal degree matrix D and the adjacency matrix. The spectrum of the
signless Laplacian can determine the number of edges and the number of connected
components which are bipartite, but it cannot determine if a graph is bipartite or
connected (see [7, 8, 9] for more information). See Figure 1c [15], for an example of
two graphs which are cospectral with respect to the signless Laplacian but not any
of the other matrices we will discuss.

• The normalized Laplacian L. This matrix is defined by L = D−1/2LD−1/2, where
by convention if we have an isolated vertex then it will contribute 0 to the spectrum.
The spectrum of the normalized Laplacian is closely related to the spectrum of the
probability transition matrix of a random walk. This spectrum can determine if a
graph is bipartite and the number of connected components, but it cannot determine
the number of edges (see [4] for more information). See Figure 1d for an example of
two graphs which are cospectral with respect to the normalized Laplacian but not
any of the other matrices we will discuss.

One way to understand what structure the spectrum of a matrix cannot identify is to
study cospectral graphs. Cospectral graphs for the adjacency matrix [12, 13, 14, 15, 16]
and the Laplacian matrix [15, 17, 20] have been studied, particularly for graphs with few
vertices. Cospectral graphs for the signless Laplacian have been little studied beyond
their enumeration and rules which apply to all of these matrices [15].

Little is also known about cospectral graphs for the normalized Laplacian compared to
other matrices. Previously, the only cospectral graphs were bipartite (complete bipartite
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graphs [4, 20] and bipartite graphs found by “unfolding” a small bipartite graph in two
ways [2]) or were regular and cospectral for A (since a regular graph is cospectral for all
of these four matrices if it is cospectral for any one of them).

In Table 1, we have listed the number of graphs with a cospectral mate for the nor-
malized Laplacian matrix for graphs on nine or fewer vertices, counted using Sage (see
Appendix A for example code). The number of cospectral graphs for the normalized
Laplacian have also been counted by Wilson and Zhu [21], though they give percentages
and not the count of how many have cospectral mates. We have also included similar
counts for the other three matrices which come from [1, 15].

#vertices #graphs A L=D−A Q=D+A L
1 1 0 0 0 0
2 2 0 0 0 0
3 4 0 0 0 0
4 11 0 0 2 2
5 34 2 0 4 4
6 156 10 4 16 14
7 1044 110 130 102 52
8 12346 1722 1767 1201 201
9 274668 51039 42595 19001 1092

Table 1: Number of graphs with a cospectral mate for the various matrices

Given the relatively small number of graphs with a cospectral mate with respect to
the normalized Laplacian, it is surprising that so little is known about forming cospectral
graphs for that matrix. The problem is that some of the main tools that are used to
form cospectral graphs for other matrices do not generalize to the normalized Laplacian.
One such example is a technique known as switching, which is accomplished by replacing
edges by non-edges and non-edges by edges between two subsets (see [14, 15, 18]; a simple
example is shown in Figure 2). Given some basic assumptions, this is an easy way to
construct cospectral graphs for the adjacency matrix. However, switching does not in
general work for the normalized Laplacian, in particular, it will only be guaranteed to
work when the degrees are unchanged (see [3]). So the graphs shown in Figure 2 are not
cospectral with respect to the normalized Laplacian.

Figure 2: An example of two cospectral graphs for the adjacency matrix related by switch-
ing.

In Section 2 we will introduce a method to construct cospectral graphs for the normal-
ized Laplacian. This construction will work similarly to switching in that we will make
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a small local change to the graph by swapping in one bipartite graph with a cospectral
mate and show the two graphs still share the same eigenvalues. In Section 3 we will show
that if we add additional constraints to the bipartite graphs which are swapped then the
resulting graphs are also cospectral with respect to A, L and Q. In Section 4 we will
show how to use this construction to produce large families of graphs which are mutually
cospectral. Finally, in Section 5 we will give some concluding remarks.

2 Swapping bipartite subgraphs

The method of finding cospectral graphs for the adjacency matrix by switching reduces
to making a local change of the graph from one bipartite subgraph to its complement and
showing that the spectrum is unchanged. We will consider something similar, namely a
local change, but instead of replacing a bipartite subgraph with its complement we will
swap out a bipartite subgraph for a cospectral mate.

For a subset W of the vertices V of G, we will let G[W ] be the induced subgraph of
G on the vertex set W .

Theorem 1. Let P1 and P2 be bipartite, cospectral graphs with respect to the normalized
Laplacian on the vertex set B ∪ C such that all edges go between B and C and where all
vertices in B have degree k for both graphs.

Let G1 be a graph on the vertices A∪A′∪B∪C where G1[A∪A′] is an arbitrary graph;
G1[B] and G1[C] have no edges; there are no edges going between A and B, between A and
C, or between A′ and C; G1[A

′ ∪ B] is a complete bipartite graph; and G1[B ∪ C] = P1.
The graph G2 is defined similarly except that G2[B ∪ C] = P2. Then G1 and G2 are
cospectral with respect to the normalized Laplacian.

If the dimension of the eigenspace associated with λ = 1 intersected with the subspace
of vectors that are nonzero only on B is the same for both P1 and P2, then the graphs H1

and H2 are also cospectral with respect to the normalized Laplacian, where H1 only differs
from G1 in that H1[B] is the complete graph and similarly H2 only differs from G2 in that
H2[B] is the complete graph.

An example of the construction described in Theorem 1 is shown in Figure 3. In this
case P1 and P2 are the graphs K1,1 ∪K1,6 and K1,4 ∪K1,3 where we have put the degree 1
vertices into B. It is well known that the spectrum of a complete bipartite graph Kp,q is
0[1], 1[p+q−2], 2[1], where the exponent indicates multiplicity, hence these graphs are easily
seen to be cospectral. Moreover it is easy to check that the dimension of the eigenspace
for the eigenvalue 1 intersected with the subspace of vectors which are nonzero only on
B is 5 for both graphs, i.e., we could also have put a complete graph on the vertices of B
in the graphs shown in Figure 3 and still had a cospectral pair.

Additional examples of graphs P1 and P2 satisfying (both) the conditions on Theorem 1
are P1 = Kℓ,p ∪ Kℓ,q and P2 = Kℓ,r ∪ Kℓ,s where the vertices of degree ℓ are all placed in
B and p + q = r + s. Two further examples are shown in Figures 4 and 5.

To prove Theorem 1 we will find it convenient to work with the harmonic eigenvectors
of the normalized Laplacian. Namely, if x 6= 0 is an eigenvector associated with the
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(a) G1
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(b) G2

Figure 3: An example of cospectral graphs using the construction given in Theorem 1.

B C

(a) P1

B
C

(b) P2

Figure 4: A pair of cospectral graphs satisfying the conditions of Theorem 1.

eigenvalue λ, i.e., Lx = λx, then the corresponding harmonic eigenvector is y = D−1/2x.
This translates the relationship Lx = λx into (D − A)y = λDy, which at a vertex v
becomes ∑

u∼v

y(u) = (1 − λ)y(v)d(v), (1)

where d(v) is the degree of the vertex v. We will say that two harmonic eigenvectors y1

and y2 are orthogonal if y∗
2Dy1 = 0, i.e., if the corresponding eigenvectors are orthogonal.

Before we begin the proof of Theorem 1 it will be useful to make some observations
about bipartite graphs that will come up in the proof.

B
C

(a) P1

B

C

(b) P2

Figure 5: A pair of cospectral graphs satisfying the conditions of Theorem 1.
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Lemma 2. Let P be a bipartite graph on the vertices B ∪ C where all edges go between
B and C and the vertices in B all have degree k. Further, if x is an eigenvector for the
normalized Laplacian then we can write it as x = b + c where b is the vector x restricted
to the vertices of B, and similarly for c. Then the following hold:

(a) If Lx = x, i.e., x is an eigenvector for the eigenvalue 1, then Lb = b and Lc = c.
In other words, we can divide the eigenspace for the eigenvalue 1 between those which
are nonzero only on the vertices of B and nonzero only on the vertices of C.

(b) If x = b + c is an eigenvector associated with λ, then b − c is an eigenvector
associated with 2 − λ.

(c) If x1 = 1B + 1C , . . . ,xi = bi + ci, . . . ,xm = 1B − 1C are a set of orthogonal
harmonic eigenvectors of P , then for 1 < i < m we have bi is orthogonal to 1B and
ci is orthogonal to 1C. In particular, for 1 < i < m the sum of the entries of bi is
0.

Parts (a) and (b) easily follow from (1). For (c) we note that xi will be orthogonal to
the vectors 1

2
(x1 +xm) = 1B and 1

2
(x1−xm) = 1C , also since the vertices in B are regular

the result on the sum of the entries of bi follows by the definition of orthogonality.

Proof of Theorem 1. Let x1 = 1B + 1C , . . . ,xi = bi + ci, . . . ,xm = 1B − 1C be a full
set of orthogonal harmonic eigenvectors of P1 associated with λ1 = 0, . . . , λi, . . . , λm = 2
respectively. Let s denote the degree of a vertex in B for the graph G1 and k the degree
in P1. Then for 1 < i < m we have that x̂i = bi +

√
s
k
ci is a harmonic eigenvector for

G1 associated with eigenvalue γi = 1− (1− λi)
√

k
s
. To see this we need to examine what

happens for each vertex v in G1 using (1).

• For v ∈ A: Then all of the entries of the vertex and its neighbors are all 0 and so
(1) trivially holds.

• For v ∈ A′: All of the neighbors in A and A′ are 0 while the sum of the entries in
B will be 0 by Lemma 2(c), so both sides again are 0 and (1) holds.

• For v ∈ B: We note that all of the nonzero elements of x̂i adjacent to v are in C,
and further we have that for the harmonic eigenvector xi for P1 that

∑

u∼v

xi(u) = (1 − λi)xi(v)k.

So we have for G1 that

∑

u∼v

x̂i(u) =

√
s

k

∑

u∼v

xi(u) =

√
s

k
(1 − λi)xi(v)k =

√
k

s
(1 − λi)x̂i(v)d(v)

= (1 − γi)x̂i(v)d(v),

so (1) again holds.
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• For v ∈ C: We proceed similarly as we did for vertices in B and we get

∑

u∼v

x̂i(u) =
∑

u∼v

xi(u) = (1−λi)xi(v)d(v) =

√
k

s
(1−λi)x̂i(v)d(v) = (1−γi)x̂i(v)d(v).

Next we note by Lemma 2(c) that 1B and 1C are orthogonal to each of the vectors
x̂i for 1 < i < m. On P1, the dimension of the space orthogonal to the x̂i for 1 < i < m
restricted to P1 is two. A basis for the orthogonal complement of span{x̂i} is {1B, 1C},
so any harmonic vector orthogonal to all of these must be a linear combination of 1B and
1C . In particular, if we let y be a harmonic eigenvector of G1 that is orthogonal to all of
the x̂i for 1 < i < m, then y restricted to B and C is orthogonal to the x̂i, so we have
y|B∪C = b1B + c1C for some constants b and c. In other words, the harmonic eigenvector
y is constant on the vertices of B and constant on the vertices of C.

Everything that we have done for G1 carries over to G2. In particular, since P1 and
P2 are cospectral, then the γi found by generalizing the harmonic eigenvectors of P1 and
P2 remain the same. Furthermore, every other harmonic eigenvector orthogonal to the
x̂i must be constant on the vertices of B and the vertices of C. To finish off the first
claim of the theorem, we now only need to observe that any harmonic eigenvector which
is orthogonal to all of the x̂i in G1 is also a harmonic eigenvector for G2 for the same
eigenvalue. Again to see this we only need to consider what happens for each vertex.

• For v ∈ A∪A′: Then all of the entries of the vertex and its neighbors are the same
for both graphs, so (1) trivially holds.

• For v ∈ B: All of the neighbors in A′ are the same, and we have the exact same
number of neighbors in C as before with the same value and so again (1) holds.

• For v ∈ C: For the graph G1, let β be the fixed value of the vertices in B. We have

∑

u∼v

y(u) = d(v)β = (1 − λ)y(v)d(v).

Of course the d(v) terms cancel and we are left with β = (1 − λ)y(v). So even
though the degree of the vertex in C might change, it will have no effect on this
relationship and so (1) again holds.

In summary, we were able to find m − 2 harmonic eigenvectors for G1 and G2 that
gave the same set of eigenvalues. For any other harmonic eigenvector orthogonal to
these, the same harmonic eigenvector worked for both graphs and so the remaining set of
eigenvalues also agreed. So we can conclude that G1 and G2 are cospectral with respect
to the normalized Laplacian.

We now turn to the second statement of the theorem. Let s be the degree of a vertex
in B in the graph H1. So let x1 = 1B + 1C , . . . ,xi = bi + ci, . . . ,xm = 1B − 1C be a full
set of orthogonal harmonic eigenvectors of P1 associated with λ1 = 0, . . . , λi, . . . , λm = 2
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respectively. First, we consider the harmonic eigenvectors of the graph P1 in the eigenspace
corresponding to λ = 1. By Lemma 2(a) we can assume that the vectors xi are either of
the form bi or ci. Let the corresponding harmonic eigenvector of H1 be x̂i = xi, i.e., we
simply expand xi to be zero outside of P1. Then we have two cases.

• If xi = bi: In this case, we know there are no problems for the vertices in A (every
term in (1) is 0) or C (since (1) reduces to what was done in P1). For the vertices
in A′ we can use Lemma 2(c) to see that both sides of (1) are 0. Finally, suppose
that v is a vertex in B. Then we have

∑

u∼v

x̂i(u) =
∑

u∈B

x̂i(u) − x̂i(v) = −x̂i(v) = −1

s
x̂i(v)s = −1

s
x̂i(v)d(v).

In particular, we have that 1 − γi = −1
s

is an eigenvalue, i.e., that γi = 1 + 1
s

is an
eigenvalue, for this harmonic eigenvector.

• If xi = ci: In this case we similarly know there are no problems for vertices in A, A′

and B. For vertices in C, (1) reduces to what we had in P1 and so we can conclude
that this is a harmonic eigenvector for the eigenvalue γi = 1.

Now suppose that xi = bi + ci is associated with λi 6= 1 for P1. Then we now will
create two harmonic eigenvectors for H1, namely

y1
i = bi + t1ci = bi +

(
1 +

√
1 + 4(1 − λi)2sk

2k(1 − λi)

)
ci,

y2
i = bi + t2ci = bi +

(
1 −

√
1 + 4(1 − λi)2sk

2k(1 − λi)

)
ci.

These will be associated with the eigenvalues of

γ1 =
2s + 1 −

√
1 + 4(1 − λi)2sk

2s
and γ2 =

2s + 1 +
√

1 + 4(1 − λi)2sk

2s
,

respectively, for H1. Some simple computations show that the following relationships
hold:

t1(1−γ1) = t2(1−γ2) = 1−λi, t1(1−λi)k−1 = (1−γ1)s, and t2(1−λi)k−1 = (1−γ2)s.

(Before we proceed to the next step of showing that these are indeed harmonic eigen-
vectors and eigenvalues we first make the observation that we are not creating more
harmonic eigenvectors than we had before. This is because in Lemma 2(b) we can pair
up harmonic eigenvectors and eigenvalues. In particular, we would have generated the
same new harmonic eigenvectors and eigenvalues if we had used 2 − λi and bi − ci. So
really we are taking pairs of eigenvectors and eigenvalues to new pairs of eigenvectors and
eigenvalues.)

To verify that these are harmonic eigenvectors with the specified eigenvalues we need
to examine what happens for each vertex v in H1 using (1). We will step through y1

i and
γ1, the arguments for y2

i and γ2 are the same.
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• For v ∈ A: Then all of the entries of the vertex and its neighbors are all 0 and so
(1) trivially holds.

• For v ∈ A′: All of the neighbors in A and A′ are 0 while the sum of the entries in
B will be 0 by Lemma 2(c), so both sides again are 0 and (1) holds.

• For v ∈ B: We note that all of the nonzero elements of x̂i adjacent to v are in B
and C, and further we have that for the harmonic eigenvector xi for P1 that

∑

u∼v

u∈C

xi(u) = (1 − λi)xi(v)k.

So we have for H1 that
∑

u∼v

y1
i (u) = t1

∑

u∼v

u∈C

xi(u) +
∑

u∈B

xi(u) − xi(v) = t1(1 − λi)xi(v)k − xi(v)

=
(
t1(1 − λi)k − 1

)
xi(v) = (1 − γ1)y

1
i (v)s = (1 − γ1)y

1
i (v)d(v).

so (1) again holds.

• For v ∈ C: We proceed similarly as we did for vertices in B and we get
∑

u∼v

y1
i (u) =

∑

u∼v

xi(u) = (1−λi)xi(v)d(v) = t1(1−γ1)xi(v)d(v) = (1−γ1)y
1
i (v)d(v).

The remainder of this case now proceeds as before. Namely, everything that we did
for H1 carries over for H2 (counting multiplicity of eigenvalues). Further, any other
harmonic eigenvector orthogonal to the ones given must be constant on B and C and so
any other harmonic eigenvector which works for H1 also works for H2. Therefore we can
conclude that they have the same set of eigenvalues, i.e., are cospectral with respect to
the normalized Laplacian.

3 Swapping biregular bipartite subgraphs

The graphs generated by Theorem 1 will generally not give cospectral graphs for other
matrices. So it is instructive to examine the proof and try to understand the point at
which the fact that we were using the normalized Laplacian as compared to some other
matrix came into play. The key is understanding how (1) remains true even when the
degrees of vertices in C change—if the degree of a vertex in C changes, the d(v) term on
the right side of (1) will change proportionally to the sum on the left so that the equality
still holds.

In the case when the degrees of vertices do not change, for example, when P1 and
P2 are both (k, ℓ)-biregular, then the proof generalizes. Recall that a bipartite graph is
(k, ℓ)-biregular if the vertices can be partitioned into B ∪ C where all edges go between
B and C, the vertices in B all have degree k, and the vertices in C have degree ℓ. We
now have the following theorem.
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Theorem 3. Let P1 and P2 be bipartite, cospectral with respect to the adjacency matrix,
(k, ℓ)-biregular graphs on the vertex set B∪C such that all vertices in B have degree k and
all vertices in C have degree ℓ and edges go between B and C. Further, the dimension of
the eigenspace associated with λ = 0 for the adjacency matrix intersected with the subspace
of vectors which are nonzero only on B is the same for both P1 and P2.

Let G1 be a graph on the vertices A∪A′∪B∪C where G1[A∪A′] is an arbitrary graph;
G1[B] and G1[C] have no edges; there are no edges going between A and B, between A and
C, or between A′ and C; G1[A

′ ∪ B] is a complete bipartite graph; and G1[B ∪ C] = P1.
The graph G2 is defined similarly except that G2[B ∪ C] = P2. Then G1 and G2 are
cospectral with respect to the matrix A + tD for t arbitrary.

Similarly, the graphs H1 and H2 are also cospectral with respect to A + tD for t
arbitrary, where H1 only differs from G1 in that H1[B] is the complete graph and similarly
H2 only differs from G2 in that H2[B] is the complete graph.

Note when t = 0 then A + tD = A, when t = 1 then A + tD = A + D = Q, and when
t = −1 then A + tD = A−D = −L, so that any such pairs of graphs are cospectral with
respect to all of the matrices A, L, and Q. Further, these are also cospectral for L since
if t = −λ − 1, we have

det(A + (−λ − 1)D) = det((A − D) − λD)

= det(D1/2(L − λI)D1/2)

= (
∏

di) det(L − λI).

Since the two graphs have the same degree sequence, the product
∏

di is the same, so the
characteristic polynomials also are the same.

In order to use this theorem, we must find two (k, ℓ)-biregular bipartite graphs which
are cospectral and for which the dimensions of the eigenspace of 0 restricted to B agree
on both graphs. There is one special case for which this is much easier, namely the
theorem does not prohibit the possibility that P1 and P2 are the same graph (so trivially
are cospectral so we only are reduced to checking the dimension of the eigenspaces). This
is not so trivial as it might sound since we are distinguishing the two parts of the bipartite
graph in the proof of the theorem, so that while P1 and P2 are the same graph we are
attaching them in two different ways and so the resulting graphs might not be isomorphic.

As an example of this consider the graphs shown in Figure 6. These are both the
same graph (just flipped) and a simple check shows that the dimension of the eigenspace
associated with 0 and restricted to B is 2 in both graphs. Therefore Theorem 3 applies,
and any two graphs to which these two graphs are attached are cospectral. But note that
in P2 there are two vertices in C with the same neighbors (marked), but there are no such
pairs in P1. So the resulting graphs are not isomorphic as long as A′ 6= ∅.

So for example if we consider the graphs H1 and H2 where A∪A′ = ∅ and we induce a
complete graph on the vertices of B, then Theorem 3 shows that the resulting graphs are
cospectral, and again since there are two vertices with degree 3 sharing common neighbors
in one graph but not the other they are non-isomorphic. These graphs are shown in
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B C

(a) P1

B C

(b) P2

Figure 6: A pair of cospectral graphs satisfying the conditions of Theorem 3.

Figure 7. These graphs also happen to be complements of one another, and so give an
example of a graph which is cospectral with its complement but not self-complementary.
(Note the graph shown in Figure 1c is another example of a graph which is cospectral
with its complement, but in that case it is only cospectral with respect to Q and not with
respect to A, L or L.)

(a) H1 (b) H2

Figure 7: A pair of non-isomorphic cospectral graphs for A, L, Q and L. (Note H1 = H2.)

The proof for Theorem 3 will proceed similar to the proof for Theorem 1, so we will
skip some of the routine computations and provide an outline of the proof. Note that if
x is an eigenvalue associated with eigenvalue λ, i.e., (A + tD)x = λx, then at a vertex v
we have ∑

u∼v

x(u) =
(
λ − td(v)

)
x(v). (2)

We first start with some simple properties of bipartite graphs that will be helpful in the
proof. The proofs are similar to Lemma 2 and we will omit them.

Lemma 4. Let P be a bipartite (k, ℓ)-biregular graph on the vertices B ∪ C where all
edges go between B and C. Further, if x is an eigenvector for the adjacency matrix, then
we can write it as x = b + c where b is the vector x restricted to the vertices of B, and
similarly for c. Then the following hold:

(a) If Ax = 0, i.e., x is an eigenvector for the eigenvalue 0, then Ab = 0 and Ac = 0.
In other words, we can divide the eigenspace for the eigenvalue 0 between those which
are nonzero only on the vertices of B and nonzero only on the vertices of C.
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(b) If x = b + c is an eigenvector associated with λ, then b − c is an eigenvector
associated with −λ.

(c) If x1 =
√

k1B +
√

ℓ1C , . . . ,xi = bi + ci, . . . ,xm =
√

k1B −
√

ℓ1C are a set of
orthogonal eigenvectors of P , then for 1 < i < m we have bi is orthogonal to 1B

and ci is orthogonal to 1C. In particular, for 1 < i < m the sum of the entries of
bi is 0.

Proof of Theorem 3. We will first consider the case when the vertices on B induce an
empty graph.

Let x1 =
√

k1B +
√

ℓ1C , . . . ,xi = bi + ci, . . . ,xm =
√

k1B −
√

ℓ1C be a full set of
orthogonal eigenvectors of P1 for the adjacency matrix associated with the eigenvalues
λ1 =

√
kℓ, . . . , λi, . . . ,−

√
kℓ respectively. Let s denote the degree of a vertex in B in G1,

and note by construction that ℓ will be the degree of a vertex in C in G1. We now show
how to extend each of these eigenvectors to an eigenvector for G1. We have the following:

• For an eigenvector of the form x = b (i.e., only nonzero on the vertices of B) and
λ = 0 then y = b is an eigenvector for A+ tD on G1 associated with the eigenvalue
of γ = ts.

• For an eigenvector of the form x = c (i.e., only nonzero on the vertices of C) and
λ = 0 then y = c is an eigenvector for A + tD on G1 associated with the eigenvalue
of γ = tℓ.

• For an eigenvector x = b+ c associated with an eigenvalue λ 6= 0, we can construct
two new eigenvectors, namely

y1 = 2λb +
(
− t(s − ℓ) +

√
t2(s − ℓ)2 + 4λ2

)
c and

y2 = 2λb +
(
− t(s − ℓ) −

√
t2(s − ℓ)2 + 4λ2

)
c.

These are associated with the eigenvalues of A + tD for G1

γ1 =
t(s + ℓ) +

√
t2(s − ℓ)2 + 4λ2

2
and γ2 =

t(s + ℓ) −
√

t2(s − ℓ)2 + 4λ2

2

respectively.

(Note, as in the proof of Theorem 1, that we are not creating too many new eigen-
vectors and eigenvalues, i.e., by Lemma 4(b) we can pair up the eigenvalues and
eigenvectors. In particular, x = b + c and λ will create the same new eigenvectors
and eigenvalues as x = b − c and −λ.)

The verification that each of these is an eigenvector/eigenvalue pair for G1 reduces
to verifying (2) for each vertex, similarly as was done in Theorem 1. We will skip these
routine computations.

Next we note by Lemma 4(c) that 1B and 1C are orthogonal to each of the new
eigenvectors for 1 < i < m. Since the dimension of the space orthogonal to the new
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eigenvectors restricted to P1 is two, any vector orthogonal to all of these new vectors must
be a linear combination of 1B and 1C when restricted to P1. In particular, if we let y be
an eigenvector of G1 that is orthogonal to all of the new eigenvectors, then y restricted
to B and C must be of the form y|B∪C = b1B + c1C for some constants b and c. In other
words, the eigenvector y is constant on the vertices of B and constant on the vertices of
C.

Everything that we have done for G1 carries over to G2. In particular, since P1 and P2

are cospectral, then the newly found γi are the same for both graphs, and further, every
other eigenvector orthogonal to the ones found must be constant on the vertices of B and
the vertices of C. To finish off the first case of the theorem, we now only need to observe
that any eigenvector which is orthogonal to all of the new eigenvectors in G1 is also an
eigenvector for G2 for the same eigenvalue. This again is done in the exact same way as
in Theorem 1 and we will skip the computations here.

In summary, we were able to find m − 2 eigenvectors of A + tD for G1 and G2 that
gave the same set of eigenvalues. For any other eigenvector orthogonal to these, the same
eigenvector worked for both graphs and so the remaining set of eigenvalues also agreed.
So we can conclude that G1 and G2 are cospectral with respect to the matrix A + tD.

Now we turn to the case when the vertices on B induce a complete graph.
Using the same notation as in the previous case, we will extend the eigenvectors of P1

for the adjacency matrix to eigenvectors of H1 for A + tD. We have the following:

• For an eigenvector of the form x = b (i.e., only nonzero on the vertices of B) and
λ = 0 then y = b is an eigenvector for A+ tD on H1 associated with the eigenvalue
of γ = ts − 1.

• For an eigenvector of the form x = c (i.e., only nonzero on the vertices of C) and
λ = 0 then y = c is an eigenvector for A + tD on H1 associated with the eigenvalue
of γ = tℓ.

• For an eigenvector x = b+ c associated with an eigenvalue λ 6= 0, we can construct
two new eigenvectors, namely

y1 = 2λb +
(
1 − t(s − ℓ) +

√(
1 − t(s − ℓ)

)2
+ 4λ2

)
c and

y2 = 2λb +
(
1 − t(s − ℓ) −

√(
1 − t(s − ℓ)

)2
+ 4λ2

)
c.

These are associated with the eigenvalues of A + tD for H1

γ1 =
t(s + ℓ) − 1 +

√(
1 − t(s − ℓ)

)2
+ 4λ2

2
and

γ2 =
t(s + ℓ) − 1 −

√(
1 − t(s − ℓ)

)2
+ 4λ2

2

respectively.
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(Note, as in the proof of Theorem 1, that we are not creating too many new eigen-
vectors and eigenvalues, i.e., by Lemma 4(b) we can pair up the eigenvalues and
eigenvectors. In particular, x = b + c and λ will create the same new eigenvectors
and eigenvalues as x = b − c and −λ.)

The verification that each of these is an eigenvector/eigenvalue pair for H1 reduces
to verifying (2) for each vertex, similarly as was done in Theorem 1. We will skip these
routine computations.

The remainder of this case now proceeds as before. Namely, everything that we did
for H1 carries over for H2 (counting multiplicity of eigenvalues). Further, any other
eigenvector orthogonal to the ones given must be constant on B and C, so any other
eigenvector for A + tD which works for H1 also works for H2. Therefore we can conclude
that they have the same set of eigenvalues, i.e., are cospectral with respect to A+ tD.

4 Large families of mutually cospectral graphs

We can use Theorem 1 to construct large families of mutually cospectral graphs for the
normalized Laplacian that need not be bipartite nor have the same degree sequences.

Example 1. Let n, k be positive integers such that m1 + · · · + mk = n is a partition of
n into k positive integer parts. Let FB(m1, m2, . . . , mk) be the graph on n + k vertices
b1, . . . , bn, v1, . . . , vk, where the bi induce a complete graph, each vi is only adjacent to
exactly mi vertices from b1, . . . , bn, and each bi is adjacent to exactly one of the vi. The
collection of all FB(m1, m2, . . . , mk) for partitions m1+m2+· · ·+mk = n give a family of
cospectral graphs for the normalized Laplacian, i.e., the spectrum is completely determined
for the normalized Laplacian by n and k.

We have dubbed these graphs “fuzzy balls” since they consist of a complete graph
(the bi) with some extra vertices attached (the fuzz). In Figure 8, we have shown the
cospectral family that corresponds to n = 8 and k = 3.

FB(6, 1, 1) FB(5, 2, 1) FB(4, 3, 1) FB(4, 2, 2) FB(3, 3, 2)

Figure 8: Fuzzy ball graphs for n = 8 and k = 3.

To see that these are all cospectral, we observe by Theorem 1 that FB(m1, m2, . . . , mk)
is cospectral with FB(m1 + mi − 1, m2, . . . , mi−1, 1, mi+1, . . . , mk) by using the pair of
cospectral graphs K1,m1

∪K1,mi
and K1,m1+mi−1∪K1,1 where B induces a complete graph.
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Therefore, applying this idea k − 1 times, we can conclude that for each partition of n
into k parts we have FB(m1, m2, . . . , mk) is cospectral with FB(n − k + 1, 1, . . . , 1). In
particular, they are all mutually cospectral.

Example 2. Let n, k be positive integers such that m1 + · · · + mk = n is a partition
of n into k positive integer parts. Let IS(m1, m2, . . . , mk) be the graph on n + k + 1
vertices a, b1, . . ., bn, v1, . . ., vk, where the bi and a induce a star graph with a as the
central vertex, each vi is only adjacent to exactly mi vertices from b1, . . . , bn, and each bi

is adjacent to exactly one of the vi. The collection of all IS(m1, m2, . . . , mk) for partitions
m1 +m2 + · · ·+mk = n give a family of cospectral graphs, i.e., the spectrum is completely
determined by n and k.

We have dubbed these graphs “inflated stars”. In Figure 9, we have shown the cospec-
tral family that corresponds to n = 8 and k = 3.

IS(6, 1, 1) IS(5, 2, 1) IS(4, 3, 1) IS(4, 2, 2) IS(3, 3, 2)

Figure 9: Inflated star graphs for n = 8 and k = 3.

Again, to see that these are all cospectral, we observe by Theorem 1 that the graph
IS(m1, m2, . . . , mk) is cospectral with IS(m1 + mi − 1, m2, . . . , mi−1, 1, mi+1, . . . , mk).
Therefore, applying this idea k − 1 times, we can conclude that for each partition of
n into k parts, we have IS(m1, m2, . . . , mk) is cospectral with IS(n − k + 1, 1, . . . , 1). In
particular, they are all mutually cospectral.

In both of these examples, we are using partitions to form large families. The number
of partitions grows subexponentially with n, however it is possible to use Theorems 1
or 3 to construct large mutually cospectral families that grow exponentially with n, either
with respect to the normalized Laplacian, or more generally with respect to A + tD.

Theorem 5. For n large, there exists a family of 2⌊n/7⌋ non-isomorphic, mutually cospec-
tral graphs with respect to the normalized Laplacian.

Proof. Find a graph G on ⌊n/7⌋ vertices that has a trivial automorphism group (for
n ≥ 42 this is easy to do). For each vertex v of G, attach one of the two inflated stars
shown in Figure 10 by identifying v with the vertex marked v in the inflated star. This
constructs 2|G| = 2⌊n/7⌋ graphs on 7⌊n/7⌋ ≤ n vertices. We note that for any one of these
graphs we can easily recover G and identify which attachment was done at v and so these
graphs are all non-isomorphic. Further, by Theorem 1 changing our choice of widget at
any single vertex does not change the spectrum and so all of the graphs are cospectral.
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v v

or

Figure 10: The two different inflated stars to add to vertices v in Theorem 5.

We have not tried to optimize the construction. For example, if instead of using the
family of inflated stars with n = 4 and k = 2 we used the family of inflated stars with
n = 21 and k = 5 (of which there are 101 such non-isomorphic members), then we get a
family with rate of growth 101⌊n/26⌋ ≈ 1.19423n which is faster than 2⌊n/7⌋ ≈ 1.10409n.

We similarly have the following result for graphs cospectral with respect to A + tD.

Theorem 6. For n large, there exists a family of 2⌊n/13⌋ non-isomorphic, mutually cospec-
tral graphs with respect to the matrix A + tD.

Proof. Find a graph G on ⌊n/13⌋ vertices that has a trivial automorphism group (for
n ≥ 78 this is easy to do). For each vertex v of G attach one of the two graphs shown
in Figure 11, which are taken from Figure 6. This constructs 2|G| = 2⌊n/13⌋ graphs on
13⌊n/13⌋ ≤ n vertices. We note that for any one of these graphs we can easily recover

v v

or

Figure 11: The two different widgets to add to vertices v in Theorem 6.

G and identify which attachment was done at v, so these graphs are all non-isomorphic.
Further, by Theorem 3 changing our choice of widget at any single vertex does not change
the spectrum and so all of the graphs are cospectral.

5 Concluding remarks

The method of swapping bipartite subgraphs was discovered by examining all cospectral
pairs of graphs on at most eight vertices (all cospectral pairs on at most seven vertices
has previously appeared in Tan [20]), which included several simple examples of this type.
The set of all cospectral graphs on at most eight vertices can be easily constructed in sage
(see Appendix A).

By looking at the small cases, we also discovered some new graphs which are regular,
but are cospectral for the normalized Laplacian with graphs which are not regular. We
have already seen that the four-cycle and the eight-cycle are members of cospectral pairs
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(see Figures 1d and 4). Also, Kn,n is cospectral with Kp,q for p+q = 2n. Another example
of a graph which is regular, but is cospectral with a graph which is not regular, is shown
in Figure 12. These examples show that the normalized Laplacian cannot, in general,
detect whether a graph is regular.

Figure 12: A regular non-bipartite graph which is cospectral for the normalized Laplacian
with a graph which is not regular.

As noted in the introduction, the number of edges in a graph is not uniquely determined
by the spectrum of the normalized Laplacian. As a consequence, it is possible for a graph
to be cospectral with one of its subgraphs; examples of this are shown in Figure 13. Further
examples of graphs which are cospectral with respect to the normalized Laplacian but have
differing number of edges are shown in Figure 14 (there is currently no known method
to generate cospectral graphs with differing number of edges other than using complete
bipartite graphs). This also indicates the difficulty in counting the number of cospectral
graphs. While for the adjacency and the combinatorial Laplacian, we could first subdivide
the graphs according to the number of edges and work with this coarsening when finding
cospectral pairs (see [15]), this is no longer possible for the normalized Laplacian.

(a) Cospectral pair (b) Cospectral pair

(c) Cospectral pair (d) Cospectral pair

Figure 13: Examples of graphs which are cospectral with a subgraph for the normalized
Laplacian.

It would be interesting to find techniques for constructing cospectral graphs for the
normalized Laplacian which differ in the number of edges. Similarly, it would be inter-
esting to investigate the cospectral graphs for the signless Laplacian and see if there are
any constructions unique to forming cospectral graphs for that matrix (similar to what
Theorem 1 is for the normalized Laplacian).
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(a) Cospectral pair (b) Cospectral pair

(c) Cospectral pair (d) Cospectral pair

Figure 14: Examples of graphs which are cospectral for the normalized Laplacian but
differ in the number of edges.

References

[1] Andries E. Brouwer and Edward Spence, Cospectral graphs on 12 vertices, Electronic
Journal of Combinatorics 16 (2009), #N20, 3pp.

[2] Steve Butler, Cospectral graphs for both the adjacency and normalized Laplacian
matrices, Linear and Multilinear Algebra 58 (2010), 387–390.

[3] Michael Cavers, The normalized Laplacian matrix and general Randic index of
graphs, Ph.D. Thesis, University of Regina, 2010.

[4] Fan Chung, Spectral Graph Theory, CBMS Lecture Notes, AMS, Providence, RI,
1997.
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A sage code to generate cospectral graphs

The code listing below shows how to use Sage version 4.5.2 [19] to generate and check
cospectral graphs with 8 vertices. In the listing below, we specifically generate cospectral
graphs with respect to the normalized Laplacian. The lines starting with the number sign
“#” are comment lines.

def DinverseA(g):

"Calculate D^{-1}A for a graph g"

A=g.adjacency_matrix(). change_ring(QQ)

for i in range(g.order()):

5 A.rescale_row(i, 1/len(A.nonzero_positions_in_row(i)))

return A

# Calculate the graphs and store them in cospectral_list.

# We use the DinverseA function defined above to determine

10 # if two graphs are cospectral.

# This command takes a few minutes to complete.

cospectral_list=graphs.cospectral_graphs(8,

graphs=lambda g: min(g.degree())>0)

15 # Give a list of all graph6 strings of these graphs.

graph6_list=[[g.graph6_string() for g in glist]

for glist in cospectral_list]

# Show all of the graphs , each row being cospectral.

20 for glist in cospectral_list: show(glist)

# Get the first two cospectral graphs and check

# to make sure they are cospectral.

graph1 , graph2 = cospectral_list[0]

25 graph1_poly=graph1.laplacian_matrix(normalized=True). charpoly ()

graph2_poly=graph2.laplacian_matrix(normalized=True). charpoly ()

graph1_poly== graph2_poly

# Construct fuzzy ball graphs corresponding to the partitions

30 # 4=3+1 and 4=2+2 and check that they are cospectral.

fb1=graphs.FuzzyBallGraph([3,1],0)

fb2=graphs.FuzzyBallGraph([2,2],0)

fb1_poly =fb1.laplacian_matrix(normalized=True).charpoly ()

fb2_poly =fb2.laplacian_matrix(normalized=True).charpoly ()

35 fb1_poly ==fb2_poly
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