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Abstract

We work with a unifying linear algebra formulation for nowhere-zero flows and
colorings of graphs and matrices. Given a subspace (code) U ≤ Zk

n – e.g. the bond
or the cycle space over Zk of an oriented graph – we call a nowhere-zero tuple
f ∈ Zk

n a flow of U if f is orthogonal to U . In order to detect flows, we view the
subspace U as a light pattern on the n-dimensional Berlekamp Board Zk

n with
kn light bulbs. The lights corresponding to elements of U are ON, the others are
OFF. Then we allow axis-parallel switches of complete rows, columns, etc. The
core result of this paper is that the subspace U has a flow if and only if the light
pattern U cannot be switched off. In particular, a graph G has a nowhere-zero
k-flow if and only if the Zk-bond space of G cannot be switched off. It has a vertex
coloring with k colors if and only if a certain corresponding code over Zk cannot
be switched off. Similar statements hold for Tait colorings, and for nowhere-zero
points of matrices. Studying different normal forms to equivalence classes of light
patterns, we find various new equivalents, e.g., for the Four Color Problem, Tutte’s
Flow Conjectures and Jaeger’s Conjecture. Two of our equivalents for colorability
and existence of nowhere zero flows of graphs include as special cases results by
Matiyasevich, by Balázs Szegedy, and by Onn. Alon and Tarsi’s sufficient condition
for k-colorability also arrives, remarkably, as a generalized full equivalent.

Introduction

While working at Bell Labs in the 1960s, Elwyn Berlekamp built a 10 × 10 grid of
light bulbs. The grid had an array of 100 switches in the back to control each light
bulb individually. It also had 20 switches in the front, one for every row and column.
Flipping a row or column switch would invert the state of each bulb in the row or column.
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A simplistic game that can be played with such a grid is to arrange some initial pattern of
lighted bulbs using the rear switches, and then try to turn off as many bulbs as possible
using the row and column switches, as, e.g., described in [FiSl, CaSt, RoVi]. The problem
of finding a configuration with most light bulbs switched on, and with the property that
no combination of row and column switches can reduce this number, is equivalent to the
problem of finding the covering radius of the binary code generated by row and column
switches. One can also ask how few lights we may turn on if we start with a dark
board. This corresponds to finding the minimal weight of the binary code. Such kinds
of examinations have been the primary focuses in the literature. Aside from the binary
code generated by row and column switches, we are not aware of any previously known
useful application of the game.

In this paper, we consider an n-dimensional version of Berlekamp’s game with k1×k2×
· · ·×kn many light bulbs, where mostly k1 = k2 = · · · = kn =: k , so that we can identify
the light bulbs with the points in the group Zk

n . An elementary move in the game inverts
all lights v ∈ Zk

n that lie on an axis-parallel affine line of the free Zk-module Zk
n . We

call this game Berlekamp or Affine Berlekamp modulo 2 of order k and dimension n , k, n

for short ABn
2 (k) . Actually, it is more general to examine a nonmodular version ABn(k) , ABn

2 (k)

ABn(k)with the integers Z as the set of possible states of a light bulb. In this version, an
elementary move increases or decreases the state of the bulbs along an axis-parallel affine
line. ABn

r (k) is the modulo r version of this game. Figure 1 shows the 4-dimensional ABn
r (k)

3 × 3 × 3 × 3 cube AB4
2(3) with the characteristic function of a certain 2-dimensional

subspace as initial light pattern. This pattern can be switch off. Figure 1 illustrates this
fact using a special 4-step procedure. The strategy is to switch off all lights on 4 fixed
pairwise orthogonal “side faces” of the cube (here e⊥1 , e⊥3 , 2e4 + e⊥2 and 2e4 + e⊥4 ), and
then to hope for the best for the remaining light bulbs. In each step of the procedure, we
shuts off all 33 lights in one side face, only using moves in the direction orthogonal to the
side face (33 possible moves, one through each point of the side face). We will see that this
procedure is best possible. A pattern can be switched off by a combination of elementary
moves if and only if it can be switched off in this way (Theorem3.1). Actually, we are
only interested in the question if a given light pattern can be switched off or not, since
this switchability will turn out to be important in applications. Therefore, we provide
several normal forms and invariants to investigate this property. Different switchability
equivalents follow from this first approach to the problem. They are employed in different
fields of application.

As we will see, in many applications we have to deal with characteristic functions of
subspaces U ≤ Zk

n as initial patterns. Our core result is the surprising discovery that U ≤ Zk
n

such 0-1 patterns U ∈ ZZk
n

can be switched off if and only if there does not exist a U ∈ ZZk
n

nowhere-zero vector f ∈ Zk
n orthogonal to U , f ⊥ U . More precisely, it will turn f ⊥ U

out that U can be switched off over Z , in ABn(k) , if and only if it can be switched
off modulo r , in ABn

r (k) , with any given r not dividing |U | . We just speak about
switchability when we refer to any of these equivalent cases. So, if U is not switchable in
this sense, then there is a nowhere-zero f ⊥ U . The existence of such a flow f is a very
important property with respect to many combinatorial problems. We will study various
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The initial characteristic function
of 〈(1, 0, 1, 1), (0, 1, 1, 2)〉 ≤ Z3

4

(yellow)

After switching off e⊥1
(blue) through 3 moves
parallel to e1 =

After switching off e⊥3
(blue) through 4 moves
parallel to e3 =

After switching off 2e2 + e⊥2 (blue)
through 5 moves parallel to e2 =

Success after switching off 2e4 + e⊥4 (blue)
through 5 moves parallel to e4 =

In AB4
2(3) each of the 34 bulbs

has 2 possible states:

0 = grey

1 = yellow

Actually, 〈(1, 0, 1, 1), (0, 1, 1, 2)〉

even can be switched in AB4(3),

in contrast to 〈(1, 1)〉 ≤ Z2
2 ,

which only can be switched

modulo 2 , in AB2
2(2) .

Figure 1: The pattern 〈(1, 0, 1, 1), (0, 1, 1, 2)〉 ≤ Z3
4

can be switched off in AB4
2(3)

subspaces U related to graphs and matrices. The flow f of U will then be a nowhere-
zero flow or coloring of a graph, or a nowhere-zero point of a matrix. If, e.g., we take the
Zk-bond space Bk(

�����

G) of a directed graph
�����

G , then a flow f of Bk(
�����

G) is just a nowhere-

zero flow of
�����

G . Therefore,
�����

G has a nowhere-zero k-flow if and only if Bk(
�����

G) is not
switchable. Based on this fact, we can translate our switchability equivalents into new
equivalents for the existence of nowhere-zero flows of graphs. This is our general strategy,
and the resulting new equivalents will usually have the flavor of Alon and Tarsi’s sufficient
condition for the existence of feasible graph colorings. Typically, one has to count certain
combinatorial substructures, usually with weights of ±1 , in order to detect the existence
of nowhere-zero flows, colorings, etc.

The polynomial method is the main tool behind our core results. Experts with this
method certainly will see in each light pattern a polynomial, and behind each move, a way

the electronic journal of combinatorics 18 (2011), #P65 3



to modify it. Such readers may even see the introduction of the whole Berlekamp language
as unnecessary. However, we wanted to distinguish between tools and structural insights.
The surprising connection between switchability and nonexistence of flows (Theorem7.3)
is a structural insight, and we tried to formulate it without mentioning polynomials. In
our formulation, one does not even have to know polynomials in order to be able to
apply the theorem. If somebody has new insights in Berlekamp’s Switching Game, he can
apply Theorem7.3, and may end up with a proof of the Five Flow Conjecture or a short
verification of the Four Color Theorem.

In order to clarify the different methods used we divided this article into two parts.
Part I, Section 1 – Section 8, deals with the light switching game. Part II, Section 9 – Sec-
tion 11, deals with flows of subspaces and their specializations to colorings and nowhere-
zero flows of graphs and matrices. The actual interface between these two parts is Theo-
rem7.3, but we combined in Theorem7.4 this interface with all results from the first part,
so that only Theorem7.4 is used in Part II. Readers interested in the new graph-theoretic
results can read this part without reading the first part. The first part, however, contains
the main ideas of this paper. This part is organized from general to special, so that each
section introduces new assumptions, and the reader always will know which properties
have to be used in each section. The sometimes very high degree of generality is required
to obtain the “modulo r statements” in the graph-theoretic results of the second part,
and to provide a solid base for further research.

Section 1 introduces the Berlekamp Game, together with some useful notations. Sec-
tion 2 provides two bases of the free module of light patterns. These bases go well together
with the Berlekamp Moves. In particular, we will see that the submodule of switchable
patterns is saturated. In Sections 3 and 4, we study the equivalence classes of light pat-
terns and introduce two types of normal forms for them. Formulas are given to calculate
these normal forms and switchability criteria are deduced. Section 5 describes light pat-
terns as polynomials and studies the corresponding polynomial maps on certain grids
X := X1 ×X2 × · · · ×Xn . As a result, we obtain a complete invariant for the equivalence
classes of the game. In particular, we see that the existence of a nonzero of such a poly-
nomial map is equivalent to the nonswitchability of the polynomial as a light pattern. In
order to incorporate the linear structure of the board Zk

n as a Zk-module, in Section 6,
we modify the underlying concept of polynomial rings to certain group rings. Section 7
uses this modified framework to study switchability of subspaces U ≤ Zk

n as 0-1 light
patterns given by their characteristic function U : Zk

n −→ {0, 1} , x 7−→ U(x) . It turns U

out that U can be switched off if and only if U possesses a flow, i.e., a full weight
vector orthogonal to U . This surprising insight is the mentioned interface to the second
part. Combined with the switchability criteria from Sections 3 and 4, this interface yields
Theorem7.4, a collection of equivalents to the existence of flows of subspaces. Finally,
Section 8 briefly discusses the Wedderburn Decomposition of the set of all light patterns
as a group algebra. This decomposition is not required in the second part of the paper.

In Part II, starting with Section 9, we translate and specialize the results captured
in Theorem7.4 about subspace flows into graph-theoretic insights about nowhere-zero
flows. To do this, we specialize our definitions for flows of subspaces to matrices and
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graphs. Actually, such linear algebra generalizations of graph-theoretic notions go back
at least as far as Veblen’s paper [Ve] from 1912. In our terminology, it is easy to see that

a flow of the bond space BR(
�����

G) over a commutative ring R is a nowhere-zero R-flow

of
�����

G . This fact leads us to new equivalents for the existence of nowhere-zero graph
flows, and new equivalents to the Four Color Problem. Section 10 examines nowhere-zero
points of matrices in connection with Jaeger’s Conjecture. The matrix transformation in
Lemma10.2 provides the connection between flows and nowhere-zero points needed here.
Finally, Section 11 applies the results of the two previous sections to derive a bunch of
new equivalents for k-colorability of graphs. These equivalents are contained in the two
similar-looking but different Theorems 11.2 and 11.4. The first one is based on the duality
between proper colorings and nowhere-zero flows, the second one uses an interpretation
of a nowhere-zero point of a certain incidence matrix as a “nowhere-zero coloring” of the
underlying graph.

Part I

Berlekamp’s Switching Game

1 Tensor Products of Berlekamps

We start here with a more general situation than described in the introduction. We take
any finite set I (of light bulbs) as board, and any system M ⊆ ZI of (light) patterns (i.e.
maps M : I −→ Z ) as our collection of elementary moves :

Definition 1.1 (General Berlekamp). A pair (I,M) of a finite set I and a system (I,M)

M ⊆ ZI of patterns is a (General) Berlekamp on the board I . The elements of M are
its (elementary) moves. The elements of its Z-linear span 〈M〉 are its switchable patterns 〈M〉, Zr

or composed moves, they can be switched off by a sequence of moves. By replacing Z

with Zr := Z/rZ , we obtain (I,M)r , (General) Berlekamp modulo r . (I,M)r

We identify subsets U ⊆ I with their characteristic functions I −→ {0, 1} ⊆ Z as
light patterns, i.e., U(v)

U(v) :=

{
1 if v ∈ U ,

0 if v /∈ U .
(1)

This is used extensively. It simplifies notation, but can lead to unusual expressions. For
example, the one-point sets {v} ( v ∈ I ) are also viewed as 0-1 patterns {v}

{v} : I −→ {0, 1}, u 7−→ {v}(u). (2)

They form the standard basis of ZI . We also need:
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Definition 1.2 (Tensor Product). The tensor product ⊗

(I,M) := (I1,M1) ⊗ (I2,M2)

of two Berlekamps (I1,M1) and (I2,M2) is the Berlekamp played on

I := I1 × I2

with elementary moves given by

M :=
{
M ⊗ {v} � M ∈ M1, v ∈ I2

}
∪

{
{v} ⊗ M � v ∈ I1, M ∈ M2

}
,

where

(U1 ⊗ U2)((v1, v2)) := U1(v1) U2(v2) for Uj ∈ ZIj and vj ∈ Ij ( j = 1, 2 ).

The set of all possible light patterns over the board I = I1 × I2 , actually, is the
analytic tensor product

ZI1 ⊗ ZI2 = ZI1×I2. (3)

For two subsets U1 ⊆ I1 and U2 ⊆ I2 , their direct product (viewed as a 0-1 pattern on
I = I1 × I2 ) and tensor product (with U1 , U2 as 0-1 patterns in ZI1 respectively ZI2 )
coincide,

U1 × U2 = U1 ⊗ U2. (4)

In particular, the standard basis of ZI is just the tensor product basis of the standard
bases of ZI1 and ZI2 ,

{(v1, v2)} = {v1} ⊗ {v2} for v1 ∈ I1 and v2 ∈ I2 . (5)

Equipped with the tensor product, we now can give the following definition (see Figure 2):

Definition 1.3 (Affine Berlekamp). Affine Berlekamp on a k1 × k2 × · · · × kn board
I := I1 × I2 × · · · × In is the game AB[I]

AB[I] = AB(I1, I2, . . . , In) := (I1, {I1}) ⊗ (I2, {I2}) ⊗ · · · ⊗ (In, {In}). (6)

If |Ij| = kj for j = 1, . . . , n , we also write AB(k1, k2, . . . , kn) for this type of game. If
all n entries are the same, we abbreviate ABn

ABn(I1) := AB(I1, I1, . . . , I1) and ABn(k1) := AB(k1, k1, . . . , k1).

In the modulo r case, with Zr in the place of Z , we write ABr respectively ABn
r with ABn

r

r as index.

The elementary moves of AB[I] are of the form v↾j

v↾j = (v1, . . . , vj−1, ∗, vj+1, . . . , vn) := {v1}×· · ·×{vj−1}×Ij ×{vj+1}×· · ·×{vn}, (7)

where v = (v1, v2, . . . , vn) ∈ I (see Figure 2). Obviously, the patterns v↾J with ∅ 6= J ⊆ v↾J

{1, 2, . . . , n} are switchable as well, where, e.g. if n = 6 and J = {2, 4, 5} , (v1, ∗, v3)

v↾J = (v1, ∗, v3, ∗, ∗, v6) := {v1} × I2 × {v3} × I4 × I5 × {v6}. (8)
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Figure 2: AB(I1, I2) with I1 = {0, 1, 2, 3} (horizontal) and I2 = {0, 1, 2} (vertical)

Two moves are highlighted:

(∗, 1) = (0, 1)↾1 = (1, 1)↾1 = I1 × {1} identified with I1 ⊗ {1} as a 0-1 pattern,

(1, ∗) = (1, 0)↾2 = (1, 1)↾2 = {1} × I2 identified with {1} ⊗ I2 as a 0-1 pattern.

2 Two Convenient Bases

In Affine Berlekamp, we have a convenient basis for the module of all light patterns. In
the one-dimensional case AB(I1) = (I1, {I1}) , we may select one element {a1} of the
standard basis {{v1} � v1 ∈ I1} , and replace it with I1 as all-1 pattern. The new basis
Ba1 consists of the vectors Ba1

Ba1,v1

Ba1,v1 :=

{
{v1} if v1 6= a1,

I1 if v1 = a1,
(9)

where v1 runs through I1 . In the n-dimensional case, if a = (a1, a2, . . . , an) is a fixed
given point of our board I

I := I1 × I2 × · · · × In, (10)

the patterns (see Figure 3) Ba,v

Ba,v := Ba1(v1) ⊗ · · · ⊗ Ban
(vn) = Ba1(v1) × · · · × Ban

(vn) = v↾{j � vj = aj}, (11)

where v = (v1, v2, . . . , vn) runs through I , form the corresponding tensor product basis
Ba of Ba

ZI1×···×In = ZI1 ⊗ · · · ⊗ ZIn. (12)

This basis has the advantage that it contains a basis of the subspace of all switchable
light patterns. Indeed, for any fixed j , the Ba,v with vj = aj can be composed from
elementary moves u↾j , but there are not enough such u↾j to generate more elements
than those in the span of these Ba,v . Both sets span the same subspace. Summarizing,
we have (where 〈〈. . .〉〉 stands for the linear independent span over Z ): 〈〈. . .〉〉

Theorem 2.1 (First Basis). Let a ∈ I := I1 × I2 × · · · × In be given. The Ba,v with
v ∈ I form a basis Ba of the module of all light patterns over I ,

ZI = 〈〈Ba,v � v ∈ I 〉〉.

Those with vj = aj for at least one j ∈ {1, 2, . . . , n} form a basis of the Z-submodule of
all switchable light patterns in AB(I1, I2, . . . , In) =: (I,M) ,

〈M〉 = 〈〈Ba,v � v ∈ I with vj = aj for at least one j 〉〉.
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If a pattern U cannot be switched, then one basis vector Ba,v with v ≡6= a (“ v
nowhere equal a ”) must occur in its linear combination of basis vectors; where the “≡ ”
in “≡6= ” stands for “everywhere” or “always”, i.e., v ≡6= a

v ≡6= a :⇐⇒ vj 6= aj for j = 1, . . . , n . (13)

Such a Ba,v will also occur in a decomposition of a z-times multiple of U . Hence, if U
is not switchable then the multiple zU is not switchable either. More precisely, we have:

Corollary 2.2. The Z-submodule of all switchable light patterns in AB(I1, I2, . . . , In) is
saturated, i.e., its elementary divisors are units. In particular, if the z-times multiple
zU : v 7→ zU(v) ( 0 6= z ∈ Z ) of a pattern U can be switched off, then U can be switched zU

off as well.

Based on these results we can introduce another even more convenient basis ba . Again, ba

a ∈ I := I1 × I2 × · · · × In is a fixed point, and I\\a

I\\a := { v ∈ I � v ≡6= a } =
n∏

j=1

Ij\aj =
n⊗

j=1

Ij\aj . (14)

For each v ∈ I , we introduce a new basis vector ba,v as follows: ba,v

ba,v :=

{
{v} if v ∈ I\\a,

{v} − (−1)
|{j � vj=aj}|

(Ba,v ∩ I\\a) else,
(15)

where, once again, we identified sets with their characteristic functions, and “− ” is the −
minus in ZI (“ \ ” is the set-theoretic minus). If v ∈ I \ (I\\a) then ba,v is one point \
at v together with a d-dimensional axis-parallel “layer” of the n-dimensional (k1 − 1) ×
(k2 − 1)× · · ·× (kn − 1) cuboid I\\a , where d := |{j � vj = aj}| . Actually, ba,v takes the
value −1 on this layer if d is even (see Figure 3).

If we want to switch a given pattern U by using the ba,v as moves, then for each
v ∈ I \ (I\\a) , only the basis vector ba,v can switch the point v (as outside I\\a the
ba,v coincide with the patterns {v} ). After switching off all lights in I \ (I\\a) , for each
of the remaining points v ∈ I\\a , exactly one among the so far unused basis vectors can
switch it, namely ba,v = {v} . Hence, each pattern can uniquely be written as a linear
combination of the ba,v , i.e., the ba,v form a basis:

Theorem 2.3 (Second Basis). Let a ∈ I := I1 × I2 × · · · × In be given. The ba,v with
v ∈ I form a basis ba of the module of all light patterns over I ,

ZI = 〈〈 ba,v � v ∈ I 〉〉.

Those with vj = aj for at least one j ∈ {1, 2, . . . , n} form a basis of the subspace of all
switchable light patterns in AB(I1, I2, . . . , In) =: (I,M) ,

〈M〉 = 〈〈 ba,v � v ∈ I with vj = aj for at least one j 〉〉.
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x3

e3

0 x1

x2

The basis vector B0,e3
=

(0, 0, 1)↾1 + (0, 1, 1)↾1 + (0, 2, 1)↾1

x3

e3

0 x1

x2

The basis vector b0,e3
=

(0, 0, 1)↾1 − (1, 0, 1)↾2 − (2, 0, 1)↾2

x3

e3

0 x1

x2

J(1,1,1),(2,2,2) from page 10.
Here supp(J(1,1,1),(2,2,2)) = I\\0

Figure 3: Important patterns in AB3(3) ( yellow, gray, blue stand for values of +1, 0,−1)

Proof. Only the second part is left to prove. We show, by induction on the number of
indices j with vj = aj , that any ba,v with at least one such j can be switched off:

If there is exactly one such j , then ba,v = Ba,v = v↾j is just an elementary axis-
parallel move. If j is not the only such index, we decrease the state of the bulbs in v↾j ,
and obtain

ba,v − v↾j = ±
[
Ba,v ∩ I\\a

]
+ {v} − v↾j = ±

[
(

⋃

u∈(v↾j)\v

Ba,u ) ∩ I\\a
]
−

∑

u∈(v↾j)\v

{u}

= −
∑

u∈(v↾j)\v

[
∓(Ba,u ∩ I\\a ) + {u}

]
= −

∑

u∈(v↾j)\v

ba,u.
(16)

However, each of the patterns ba,u in the last expression can be switched off by the
induction assumption. Hence, all ba,v with vj = aj for at least one j are switchable,
and span a submodule of 〈M〉 . As this submodule is spanned by basis vectors it is
saturated. It also has the same rank as 〈M〉 , by Theorem2.1, so that the ba,v with
vj = aj for at least one j span the whole of 〈M〉 .

3 First Normal Form

In this section, we use the basis ba of the Z-module ZI of all light patterns to derive a
normal form for the equivalence classes of AB[I] , where we call two classes equivalent if
they can be transformed into each other by Berlekamp Moves. If we look at a pattern

U =
∑

v∈I

λvba,v, (17)

then
λv = U(v) for all v ∈ I \ (I\\a) , (18)

since, for v ∈ I \ (I\\a) , only the basis vector ba,v switches the point v . From this
we see that we have to add the basis move ba,v exactly −U(v) many times in order to
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switch off the light at v ∈ I \ (I\\a) . We have enough basis moves to switch off all v in
I \ (I\\a) , but afterwards there are no moves in 〈M〉 left to modify the pattern. If the
board is dark afterwards then the initial pattern was switchable, otherwise not. We call
the remaining pattern of burning lights the normal form Na(U) of U with respect to a , Na(U)

Na(U) := U −
∑

v∈I\(I\\a)

U(v)ba,v =
∑

v∈I\\a

λvba,v. (19)

If U1 and U2 are two patterns, then they can be transformed into each other using
regular moves if and only if the difference U1 −U2 can be switched off, i.e., if and only if
Na(U1) − Na(U2) ≡= 0 (“everywhere-zero”). In other words two patterns are equivalent ≡=

in this sense if and only if they have the same normal form. The normal forms are unique
representatives of the equivalence classes. We have:

Theorem 3.1 (First Normal Form). Let a ∈ I := I1 × I2 × · · · × In be given. Each light
pattern U ∈ ZI can be transformed, using regular moves, into a pattern Na(U) ∈ ZI

with
supp(Na(U)) ⊆ I\\a.

This normal form is uniquely determined, and the map U 7−→ Na(U) is linear, i.e.,

Na(U1 + U2) = Na(U1) + Na(U2) for all U1, U2 ⊆ ZI .

A pattern U can be switched off if and only if Na(U) ≡= 0 .

In order to say more about the normal form Na , we need the patterns Ja,v ∈ ZI ,
v ∈ I , given by (see Figure 3) Ja,v

Ja,v(u) :=






0 if u /∈ ⌊a, v⌉ ,

1 if u ∈ ⌊a, v⌉ and uj = aj for evenly many j,

−1 if u ∈ ⌊a, v⌉ and uj = aj for oddly many j,

(20)

where ⌊a, v⌉
⌊a, v⌉ := {a1, v1} × {a2, v2} × . . . × {an, vn}. (21)

With this we have the following explicit formula for the normal form of a pattern:

Theorem 3.2 (Normal Form Formula). Let a ∈ I := I1 × I2 × · · · × In . The normal
form Na(U) of a pattern U : I −→ Z is determined, on its actual domain I\\a , by the
formula

Na(U)(v) =
∑

x∈I

Ja,v(x) U(x) for all v ∈ I\\a .

Proof. We transform U into Na(U) with its characterizing property supp(Na(U)) ⊆
I\\a . For each fixed given x ∈ I \ (I\\a) , we have to switch off the corresponding bulb
by switching ba,x . Since the original state of x is U(x) , we have to add −U(x) ba,x . A
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bulb at v in I\\a is switched by such a move if and only if x ∈ ⌊a, v⌉ . Therefore, its
original state

U(v) =
(
(−1)0 U(x)

)
|x=v =

(
(−1)

|{j � xj=aj}|

U(x)
)
|x=v (22)

will increase by

(−1)
|{j � xj=aj}|

U(x) (23)

for each
x ∈

(
I \ (I\\a)

)
∩ ⌊a, v⌉ = ⌊a, v⌉\v, (24)

i.e.,

Na(U)(v) =
∑

x∈⌊a,v⌉
(−1)

|{j � xj=aj}|

U(x) =
∑

x∈I

Ja,v(x)U(x). (25)

From the two last theorems we derive:

Theorem 3.3 (Switchability Criterion). Assume a ∈ I := I1 × I2 ×· · ·× In , and let, for
j = 1, 2, . . . , n , the map ϕj : Ij −→ Ij be such that for any xj ∈ Ij there exists tj ∈ N

with ϕ
tj
j (xj) = aj . Define the map ϕ : I −→ I by ϕ(x) := (ϕ1(x1), ϕ2(x2), . . . , ϕn(xn)) .

Then for patterns U : I −→ Z , the following statements are equivalent:

(i) U can be switched off.

(ii)
∑
x∈I

Ja,v(x) U(x) = 0 for all v ∈ I\\a .

(iii)
∑
x∈I

Jv,ϕ(v)(x) U(x) = 0 for all v ∈ I\\a .

This equivalence holds also modulo r ≥ 2 , i.e. over Zr , in ABr[I] .

Proof. By Theorems 3.2 and 3.1 (ii) ⇒ (i) ⇒ (iii) , so that we only have to prove the
implication (iii) ⇒ (ii) . Let v ∈ I\\a be given, and select t = (t1, t2, . . . , tn) ∈ Nn by
choosing

tj > 0 minimal with ϕtj (vj) = aj , j = 1, 2, . . . , n. (26)

For s ∈ Nn, define ϕs : I −→ I by

ϕs(x) := (ϕs1
1 (x1), ϕs2

2 (x2), . . . , ϕsn
n (xn)), i.e., ϕt(v) = a. (27)

Then, with 1 = (1, 1, . . . , 1) , 1

∑

x∈I

Ja,v(x)U(x) =
∑

x∈I

Jv,ϕt(v)(x)U(x) =
∑

0≤t′≤t−1

∑

x∈I

Jϕt′ (v),ϕt′+1(v)(x)U(x)
(iii)
= 0, (28)

as ∑

0≤t′≤t−1

Jϕt′(v),ϕt′+1(v) = Jv,ϕt(v). (29)

This follows inductively from the fact that any pair of “neighboring cubes” ej
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⌊ϕt′(v), ϕt′+1(v)⌉ and ⌊ϕt′+ej(v), ϕt′+ej+1(v)⌉ , where ej := (0, . . . , 0, 1, 0, . . . , 0), (30)

“overlaps and cancels” in one side ⌊ϕt′+ej(v), ϕt′+1(v)⌉ , they “add up” to a “bigger
cuboid” ⌊ϕt′(v), ϕt′+ej+1(v)⌉ . More precisely,

Jϕt′ (v),ϕt′+1(v) + J
ϕt′+ej (v),ϕt′+ej+1(v)

= J
ϕt′ (v),ϕt′+ej+1(v)

. (31)

In the simplest case t := (2, 1, . . . , 1) = e1 + 1

∑

0≤t′≤t−1

Jϕt′ (v),ϕt′+1(v) = Jϕ0(v),ϕ1(v) + Jϕe1 (v),ϕe1+1(v) = Jϕ0(v),ϕe1+1(v) = Jv,ϕt(v). (32)

4 Second Normal Form

Here we present another normal form based on the following definition:

Definition 4.1. We say that a pattern U ∈ ZI has vanishing row sums, respectively
modulo r ≥ 2 vanishing row sums, if for all v ∈ I and j = 1, . . . , n

∑

x∈v↾j

U(x) = 0, respectively
∑

x∈v↾j

U(x) ≡ 0 (mod r).

Only certain modular cases will be nice enough for our applications in part two of this
paper. Therefore, we state the following lemma only for the modulo r case:

Lemma 4.2. Assume a ∈ I := I1×I2×· · ·×In , and let r ≥ 2 . To any pattern U ∈ ZI ,
there exists exactly one Ū ∈ ZI with

(i) Ū |I\\a = U |I\\a .

(ii) 0 ≤ Ū(x) ≤ r − 1 for all x ∈ I \ (I\\a) .

(iii) Ū has modulo r vanishing row sums.

In particular, in ABr(k1, k2, . . . , kn) , there are exactly r(k1−1)(k2−1)···(kn−1) patterns with
vanishing row sums.

Proof. Let, w.l.o.g., a := 0 ∈ I . After setting Ū(x) := U(x) for x ∈ I\\0 , there is only
one way to choose the values Ū(x) for points x of weight n − 1 . If, say, xj = 0 then
we have to choose Ū(x) such that the sum over x↾j vanishes, and the summands Ū(x′)
with x′ ∈ (x↾j)\x are already fixed. Now, if x has weight n − 2 , say

xj1 = xj2 = 0, j1 6= j2, (33)
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we have to choose Ū(x) such that the sum over the plane x↾{j1, j2} vanishes. Only then
any of the two row sums ∑

x′∈x↾j1

Ū(x′) and
∑

x′∈x↾j2

Ū(x′) (34)

will vanish, as the plane x↾{j1, j2} is already made up of “vanishing parallels” to x↾j1 ,
respectively x↾j2 . Proceeding in this manner, we come to points x of lower and lower
weight. The very last step will be to choose U(0) := −

∑
x 6=0 U(x) , so that the sums over

the coordinate axes will vanish as all parallel rows will have vanishing sums already.

For simplicity, we work from here on only over the boards I of size k × k × · · · × k .
We present the following somehow more symmetric normal form:

Theorem 4.3 (Second Normal Form). Let r be coprime to k , and t (−k)n ≡ 1 (mod r) .
Any light pattern U ∈ ZI

r in ABn
r (k) can be transformed into a pattern N(U) with

vanishing row sums. This normal form N(U) of U is uniquely determined, and the
group endomorphism N : U 7−→ N(U) is given by

N({u}) = t
∑

J⊆{1,...,n}
(−k)n−|J |(u↾J) ∈ ZI

r ,

In other words, for v ∈ I ,

N({u})(v) = t (1 − k)|{i � vi=ui}| ∈ Zr.

Under the stronger assumption that r divides k − 1 we have

N({u}) = (−1)n(I\\u) and N(U)(v) = (−1)n
∑

u∈I\\v

U(u).

Proof. Provided that a normal form N : ZI
r −→ ZI

r exists, the uniqueness follows immedi-
ately from the fact that, by Lemma4.2 and Theorem3.1, there are only as many patterns
with vanishing row sums as there are equivalence classes. However, it is straightforward
to check that the suggested patterns

N({u}) :=
∑

J⊆{1,...,n}
t (−k)n−|J |(u↾J) (35)

have vanishing row sums, and are in second normal form. If, e.g., we sum along the line
(∗, v2, . . . , vs, us+1, . . . , un) , where (v2, . . . , vs) ≡6= (u2, . . . , us) , then we have to sum up
for each possible first coordinate v1 6= u1 the value

∑

J⊇{1,...,s}
t (−k)n−|J | = t (1 − k)n−s (36)

and for v1 = u1 the value
∑

J⊇{2,...,s}
t (−k)n−|J | =

∑

J⊇{1,...,s}
t (−k)n−|J | +

∑

1/∈J⊇{2,...,s}
t (−k)n−|J | = t (1− k)n−s + t (−k)(1− k)n−s,

(37)
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which makes a total of

(k − 1) t (1 − k)n−s + t (1 − k)n−s + t (−k)(1 − k)n−s = 0. (38)

Furthermore, all summands in N({u}) are switchable, except the one to J = ∅ , which
is

t (−k)n{u} = {u} ∈ ZI
r (39)

Hence, modulo r our N({u}) is a switchable pattern plus {u} . This means that {u}
can be transformed into N({u}) , so that, indeed, the group endomorphism

N : U 7−→ N(U), N({u}) :=
∑

J⊆{1,...,n}
t (−k)n−|J |(u↾J) (40)

is a normal form.
Our pointwise formula follows from this, similarly as in Equation (36) above, since for

any fixed point v ∈ I
v ∈ u↾J ⇐⇒ J ⊇ {i � vi 6= ui}. (41)

Under the stronger assumption that r divides k− 1 , the values of this formula at points
v /∈ I\\u vanish, so that

N({u}) = t (I\\u) = (−1)n(I\\u) ∈ ZI
r , (42)

and
N(U)(v) =

∑

u∈U

N({u})(v) =
∑

u∈I

U(u) (−1)n(I\\u)(v) = (−1)n
∑

u∈I\\v

U(u). (43)

We obtain the following obvious corollary:

Corollary 4.4 (Switchability Criterion). Let U ∈ ZI be a pattern on a k × k × · · · × k
board I . If r divides k − 1 , the following statements are equivalent:

(i) U can be switched off modulo r .

(ii)
∑

u∈I\\v

U(u) ≡ 0 (mod r) for all v ∈ I .

5 Polynomials as Light Patterns

This section contains the original idea behind this paper. It reveals a connection between
polynomial maps and affine Berlekamp AB(k1, . . . , kn) , which we play on the board [k)

k

I = [k) := [k1) × · · · × [kn) , k := (k1, . . . , kn), (44)

where [n)

(n]

[n) = [0, n) := {0, 1, . . . , n − 1} and (n] = (0, n] := {1, 2, . . . , n}. (45)
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More precisely, we always work with polynomial maps on what we call a Berlekamp
(k−1)-Domain. That is a Cartesian product X

X := X1 × · · · × Xn ⊆ F
n, |Xj| = kj−1 for j ∈ (n] , (46)

over a field F , with the property that

LXj ,s := (−1)s
∑

S⊆Xj
|Xj\S|=s

∏
S 6= 0 for all j ∈ (n] and s ∈ [kj) , (47)

where
∏

S :=
∏
σ∈S

σ . In other words,
Q

S

LX,v

Lv = LX,v :=

n∏

j=1

LXj ,vj
6= 0 for all v ∈ [k) . (48)

Note that the k-board [k) is bigger than the (k−1)-domain X , |[kj)| > |Xj| for all
j ∈ (n] . Therefore, each map X −→ F can be described by different polynomials F[X<k]

P ∈ F[X<k] := {P ∈ F[X1, . . . , Xn] � degj(P ) < kj , j ∈ (n] }. (49)

However, we will see that such interpolation polynomials P are unique up to a “switchable
part”. In this respect, the map Ψ = ΨX

Ψ = ΨX : Z[k) −→ F[X<k], U 7−→ ΨX(U) :=
∑

v∈[k)

LX,vU(v)Xv, (50)

with Xv := Xv1
1 Xv2

2 · · ·Xvn
n , is of central interest. The most important case is when the Xv

Xj are made up of k th
j roots of unity different from 1 over F = C , i.e., X(kj)

Xj = X(kj) := { ξ t
kj

� t = 1, 2, . . . , kj − 1 } where ξkj
:= e2π

√
−1/kj ∈ C. (51)

In this case, for all v ∈ [k) , X(k)

Lv = LX(k),v = 1 where X(k) := X(k1) × · · · × X(kn), (52)

as ∑

s∈[kj)

LX(kj),sx
s = (x − ξ 1

kj
) · · · (x − ξ

kj−1
kj

) =
xkj − 1

x − 1
=

∑

s∈[kj)

xs, (53)

i.e., we end up with the simpler Z-module isomorphism

ΨX(k) : Z[k) −→ Z[X<k], U 7−→ ΨX(k)(U) :=
∑

v∈[k)

U(v)Xv. (54)

Via this isomorphism, we may view light patterns in Z[k) and polynomials Z[X<k] as
the same thing. However, polynomials P over Z also give rise to polynomial maps
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P |X(k) : X(k) −→ C , x 7−→ P (x) , and these maps are important in applications and P |X(k)

structural examinations, as we will see. In what follows, we work over general Berlekamp
(k−1)-Domains X , and examine the composed map

Z[k) −→ F[X<k] −→ FX

U 7−→ ΨX(U) 7−→ ΨX(U)|X,
(55)

where |X denotes restriction to polynomial maps on X . Our first main result shows that |X
Berlekamp’s game can be used to decide if, for polynomials P = ΨX(U) , the polynomial
map P |X describes the zero map:

Theorem 5.1. Let X ⊆ F
n be a Berlekamp (k−1)-Domain. For patterns U ∈ Z[k) the

following statements are equivalent:

(i) U can be switched off.

(ii) ΨX(U)|X ≡= 0 .

Proof. We examine the one-to-one correspondence

Ψ = ΨX : Z[k) −→ F[X<k], U 7−→
∑

v∈[k)

LvU(v)Xv . (56)

What happens on the right side of this correspondence if we add a move v↾j on the left
side? Well, if w.l.o.g. vj = 0 , then

Ψ(v↾j) =
∑

v∈v↾j

LvX
v =

∑

s∈[kj)

Lv+sej
Xv+sej =

∑

s∈[kj)

(
∏

i6=j

LXi,vi
)LXj ,sXvXsej

= (
∏

i6=j

LXi,vi
)Xv

∏

x∈Xj

(Xj − x),
(57)

and this polynomial vanishes on X . Therefore, the right side does not change when we
perform an elementary move v↾j ,

Ψ(U ± (v↾j))|X = Ψ(U)|X. (58)

Consequently, we also come off clear with many moves, and may apply our first normal
form Na with a := k − 1 . We obtain

Ψ(Nk−1(U))|X = Ψ(U)|X, (59)

but also
degj(Nk−1(Ψ(U))) < kj − 1 for all j ∈ (n] . (60)

By the Interpolation Theorem, see e.g. [Scha1, Section 2] or [AlTa, Lemma2.1], there is
only one interpolation polynomial with such restricted partial degrees to any map on X ,
i.e., Ψ(Nk−1(U)) is uniquely determined by Ψ(U)|X . Based on this uniqueness, we can
conclude as follows,

Ψ(U)|X ≡= 0 ⇐⇒ Ψ(Nk−1(U)) = 0 ⇐⇒ Nk−1(U) ≡= 0
3.1
⇐⇒ U is switchable. (61)
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The last theorem is important since it builds a bridge from Berlekamp to many appli-
cations. However, it also provides some insights about the game itself. Since two patterns
U1 and U2 are equivalent if and only if their difference U1 −U2 is switchable, we obtain
the following corollary:

Corollary 5.2. Let X ⊆ F
n be a Berlekamp (k−1)-Domain. The group homomorphism

Z[k) −→ FX , U 7−→ ΨX(U)|X is a complete invariant for the equivalence classes of Affine
Berlekamp AB([k1), . . . , [kn)) , i.e., two patterns U1 and U2 are equivalent if and only if
ΨX(U1)|X = ΨX(U2)|X .

We also have the following modular corollary:

Corollary 5.3. Let X ⊆ F
n be a Berlekamp (k−1)-Domain. For patterns U ∈ Z[k) and

any r ∈ N the following holds:

U can be switched off modulo r =⇒ ΨX(U)|X ≡≡ 0 (mod rZ[
⋃

j Xj ] ).

Proof. The pattern U can be switched off modulo r if and only if there is a switchable

pattern Û such that U − Û is everywhere zero modulo r , i.e., if and only if

U = rŮ + Û with Ů , Û ∈ ZI and Û switchable. (62)

Therefore,
Ψ(U)|X = rΨ(Ů)|X + Ψ(Û)|X

5.1
≡≡ 0 (mod rZ[

⋃
j Xj ] ). (63)

6 The Polynomial Algebra of Light Patterns

In the rest of the paper we examine AB(Zk1 , Zk2 , . . . , Zkn
) , i.e., Berlekamp on the board I

I := Zk1 × Zk2 × · · · × Zkn
= 〈e1, e2, . . . , en〉, (64)

where the ej are the standard basis vectors of the Z-module I . This setting is general ej

enough to allow all possible board sizes k1×k2×· · ·×kn , just as the board [k) used in the
last section, but it also provides an additive structure on the board I . Since we already
have an additive structure on the set of light patterns ZI , we have to be careful. Subsets
of I are usually viewed as 0-1 patterns in ZI and added in (ZI , +), while elements of I
are always added in (I, +) . We also provide a multiplicative copy (XI , · ) of the additive XI , Xv

group (I, +) . We write Xv for the copy of an element v ∈ I , and set

XuXv = Xu · Xv := Xu+v, (65)

i.e.,
(I, +) ∼= (XI , · ) := ({Xv � v ∈ I }, · ) via v 7−→ Xv. (66)

We will work in the group algebra ZXI ⊆ QXI of XI over Z , i.e., the set of all formal ZXI
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linear combinations of elements of XI , with coefficients in Z , and with distributively
extended multiplication. When we study subsets and subgroups U ⊆ I , the notation ΣXU

ΣXU :=
∑
u∈U

Xu, (67)

and the following folkloric lemma will be helpful:

Lemma 6.1. Let U1 and U2 be subgroups of I := Zk1 × Zk2 × · · · × Zkn
, with set-

theoretic sum U1 + U2 := { u1 + u2 � u1 ∈ U1, u2 ∈ U2 } . In QXI it holds that

ΣXU1

|U1|
ΣXU2

|U2|
=

ΣXU1+U2

|U1 + U2|
, in particular,

ΣXU1

|U1|
is an idempotent. (68)

Our Z-algebra ZXI is a free Z-module with basis XI isomorphic to the Z-module
of light patterns ZI , Ψk

ZI ∼= ZXI via Ψk : U 7−→
∑

v∈I

U(v)Xv. (69)

Based on this isomorphy, we may view ZXI as our set of light patterns, where the axis-
parallel moves have the form ΣXv↾j . In what follows we will show that the isomorphism ΣXv↾j

map Ψk is basically the same as the map ΨX(k) in Equation (54), and that ZXI and
Z[X<k] are isomorphic Z-modules. We start by setting Xj

Xj := Xej . (70)

With this, the elements of the algebra can be written as polynomials in X1, . . . , Xn , as
the elements of I can be written as Z-linear combinations of the ej . The elements of the
algebra can even uniquely be written as polynomials in X1, . . . , Xn , if we use elements
of Zkj

as exponents of Xj , j = 1, . . . , n , and define

X
(z+kjZ)
j := Xj

z, (71)

which is well defined as
Xj

kj = Xkjej = X0 = 1. (72)

Therefore, the group algebra ZXI is nothing else but the polynomial Z-algebra
Z[X1, . . . , Xn] with elements of Zk1 × Zk2 × . . . × Zkn

as exponents and multiindex
notation,

X(v1,...,vn) = Xv1
1 Xv2

2 · · ·Xvn

n . (73)

More precisely, if we denote the representative of an element z ∈ Zkj
in [kj) by ẑ , i.e.

z = ẑ + kjZ , and extend this notation to an operation on I and ZXI by defining

̂(v1, . . . , vn) := (v̂1, . . . , v̂n) and
∑̂

v∈I

PvXv :=
∑

v∈I

PvX
v̂, (74)
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then each P ∈ ZXI corresponds to an ordinary polynomial P̂ ∈ Z[X1, . . . , Xn] with bP

partial degrees degj P̂ < kj . The diagram

ZI Ψk−−−−→ ZXI ∋ P
−−−−→

�

→ 7→

ΨX(k)
Z[X<k] ∋ P̂

(75)

of group isomorphisms commutes. The advantage of the new structure is that it is closed
under multiplication, Z[X<k] is not. By identifying all three structures we obtain a
multiplication on the set of light patterns, which we will study in Section 8. We are also
able to substitute numbers ζ1, . . . , ζn ∈ C into our new kind of polynomials P ∈ ZXI ,

P (ζ1, . . . , ζn) = P |X=(ζ1,...,ζn) := P̂ (ζ1, . . . , ζn). (76)

In particular,
(ζ1, . . . , ζn)v = Xv|X=(ζ1,...,ζn) := ζ v̂1

1 · · · ζ v̂n

n . (77)

Usually, this substitution does not go well together with the multiplication in ZXI .
However, as

ζ
v̂j+ŵj

j = ζ
v̂j+wj

j if ζ
kj

j = 1 , (78)

we have the following important special case:

Proposition 6.2. If, for j = 1, . . . , n , ζj is a k th

j root of unity, then substitution
ZXI −→ C , P 7−→ P (ζ1, . . . , ζn) is a Z-algebra homomorphism.

Actually, the k1k2 · · · kn = |I| possible substitution homomorphisms are exactly the
irreducible characters of the commutative group I .

7 Switchable Subspaces

In this section we study ABn(Zk) , 2 ≤ k ∈ N , and the switchability of subgroups
U ≤ I := Zk

n as 0-1 light patterns. Surprisingly, the switchability of a subgroup can I := Zk
n

be characterized in terms of orthogonality relations, which suddenly involves the multi-
plicative structure on Zk . Based on this fact, we speak about subspaces U rather than
subgroups. Actually, any subgroup of Zk

n is already a subspace (submodule) of Zk
n

viewed as a free Zk-module. We define orthogonality for elements v, w ∈ I and subsets
U ⊆ I by (v · w)

v ⊥ U
v ⊥ w :⇐⇒ (v · w) :=

∑
j∈(n]

vjwj = 0 and v ⊥ U :⇐⇒ ∀u ∈ U : v ⊥ u, (79)

and make the following important observation:

Theorem 7.1. Let k ≥ 2 , ξ := e2π
√
−1/k ∈ C , f ∈ Zk

n and ξf := (ξf1, ξf2, . . . , ξfn) . ξf

For subspaces U ≤ Zk
n , and r ∈ N not dividing |U | , the following statements are

equivalent:
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(i) f ⊥ U .

(ii) ΣXU |X=ξf 6= 0 .

(iii) ΣXU |X=ξf 6≡ 0 (mod rZ[ξ]) .

(iv) ΣXU |X=ξf = |U | .

Proof. In view of Lemma6.1, it is enough to prove the equivalence of statement (i), (ii)
and (iv) only for cyclic subspaces U , U =: 〈u〉 . Using the univariate polynomial

S(x) := x0 + x1 + · · · + xk−1 =
xk − 1

x − 1
= (x − ξ1)(x − ξ2) · · · (x − ξk−1), (80)

we see that
1
|U | ΣXU = 1

k

∑
λ∈Zk

Xλu = 1
k S(Xu) , (81)

so that
1
|U | ΣXU |X=ξf = 1

k S((ξf )u) = 1
k S(ξ(f ·u)) (82)

as

(ξf )u = (ξf1 , . . . , ξfn)(u1,...,un) = ξf1u1 · · · ξfnun = ξf1u1+···+fnun = ξ(f ·u). (83)

It follows that

ΣXU |X=ξf 6= 0 ⇐⇒ S(ξ(f ·u)) 6= 0 ⇐⇒
ξ(f ·u) = 1 ⇐⇒ (f · u) = 0 ⇐⇒ f ⊥ U.

ΣXU |X=ξf = |U | ⇐⇒ S(ξ(f ·u)) = k ⇐⇒

(84)
Therefore, statements (i), (ii) and (iv) are equivalent for any subspace U ≤ Zk

n . Now,
obviously, statement (iii) implies statement (ii) and its equivalent (iv), which, conversely,
entails statement (iii) since

|U | /∈ rZ[ξ], (85)

as
|U | /∈ rZ = r(OC ∩ Q) ⊇ r(Z[ξ] ∩ Q) = rZ[ξ] ∩ Q, (86)

where OC is the set of algebraic integers, see e.g. [DuFo].

The connection to orthogonality is the crucial point. It is important with respect to
the following definition, which plays a fundamental role in the second part of this article:

Definition 7.2. A (nowhere-zero) flow f = (f1, . . . , fn) ∈ Zk
n of a subspace U ≤ Zk

n is
a nowhere-zero vector (i.e. fj 6= 0 for j = 1, 2, . . . , n ) orthogonal to U , f ⊥ U .

We can now prove our core theorem:
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Theorem 7.3. For subspaces U ≤ Zk
n , and r ∈ N not dividing |U | , the following

statements are equivalent:

(i) U does not have a flow.

(ii) U can be switched off.

(iii) U can be switched off modulo r .

Proof. We start with the proof of (i) ⇒ (ii) . If U has no flow, then

Ψk(U)|X(k)n = ΣXU |X(k)n ≡= 0, (87)

by Theorem7.1, and, with Theorem5.1, this means that U can be switched off.
The implication (ii) ⇒ (iii) is trivial. We are left with the proof of (iii) ⇒ (i) .

However, if U is switchable modulo r , then

ΣXU |X(k)n ≡≡ 0 (mod rZ[e2π
√
−1/k]), (88)

by Corollary 5.3, and, with Theorem7.1, this implies that U has no flow.

We are currently working on a purely combinatorial proof of this fact over finite fields,
which will nicely fit together with our planned description of Projective Berlekamp. But,
first, let us collect everything that we need in the second part of this article in the following
theorem. With U\\v := { u ∈ U � u ≡6= v } and the pattern Ja,v : I = Zk

n −→ {−1, 0, 1} U\\v

Ja,vfrom Equation (20) the following holds:

Theorem 7.4. Let a ∈ Zk
n and b ∈ (Zk\0)n, e.g. a ≡= 0 and b ≡= 1 . Let U ≤ Zk

n be
a subspace, and assume that r ≥ 2 does not divide |U | , and that r′ ≥ 2 divides k − 1 .
Then the following statements are equivalent:

(i) U does not have a flow.

(ii)
∑
x∈U

Ja,v(x) = 0 for all v ∈ Zk
n
\\a .

(iii)
∑
x∈U

Ja,v(x) ≡ 0 (mod r) for all v ∈ Zk
n
\\a .

(iv)
∑
x∈U

J0,b(x − v) = 0 for all v ∈ Zk
n
\\0 .

(v)
∑
x∈U

J0,b(x − v) ≡ 0 (mod r) for all v ∈ Zk
n
\\0 .

(vi)
∣∣U\\v

∣∣ ≡ 0 (mod r′) for all v ∈ Zk
n .
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Proof. This follows from Theorem7.3 together with Theorem3.3 and Corollary 4.4. Only
point (iv) and (v) may look a bit unexpected. However, if we use ϕ(x) := x + b and
a ≡= 0 in Theorem3.3, we will arrive at the term

∑

x∈I

Jv,ϕ(v)(x)U(x) =
∑

x∈U

Jv,v+b(x) =
∑

x∈U

J0,b(x − v), (89)

which is exactly the expression in these two parts of our theorem.

8 Wedderburn Decomposition

In this short section we discus the Wedderburn Decomposition of our game. This is not
required for the other sections, but it seems to be an interesting question. Since we have
no further applications, we restrict ourselves to an example, and do not present detailed
proofs. Why Wedderburn Decomposition? Well, the isomorphism Ψ

Ψ: ZI ∼−→ ZXI , U 7−→
∑

v∈I

U(v)Xv, (90)

from the last section pulls back a multiplicative structure on our set of patterns. With
this multiplication ZI is a group algebra. If we view only the classical modulo 2 case,
with the two states ON and OFF, this becomes the group algebra ZI

2
∼= F2XI over the

field F2 = Z2 . If we further choose I := Z3
n , which is an important case with respect to

the Four Color Problem and the Three Flow Conjecture, as we will see, the group algebra

Z
Z3

n

2
∼= F2X

Z3
n

(91)

fulfills the Maschke Condition. Therefore, it is isomorphic to a direct product of extension
fields of F2 . It turns out that

Z
Z3

n

2
∼= F2 × F4 × F4 × · · · × F4, (92)

with the single factor F2 corresponds to the trivial representation. Where can these fields

be found inside Z
Z3

n

2 ? Well, they are given by the following types of sets of patterns:

{∅, Z3
n} ∼= F2 and {∅, H, v+H, −v+H } ∼= F4, (93)

where H := Z3
n \H is the complement of a hyperplanes H , and ±v+H is H shifted by

an arbitrary v ∈ H . The complements H are, together with the all-1 pattern Z3
n , the

primitive idempotents of Z
Z3

n

2 . For details, we refer the reader to [Wa, Sections 9.1-9.4],

and the detailed example Z
Z5

2

2 on page 837 of this book. Using Theorem7.3, one can
further show that the subspace (ideal) of switchable patterns is the product of the first
factor {∅, I} ∼= F2 and those F4-factors corresponding to hyperplanes H = h⊥ with a
0-entry in h ∈ Z3

n .
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Part II

Nowhere Zero Conditions in

Graph Theory and Combinatorics

We initially work in the general framework of finite commutative rings R with 1 6= 0 , R, k

k := |R| , but soon come back to Zk := Z/kZ . Our objective is to apply Theorem7.4 Zk

about switchable subspaces U ≤ Zk
n to graphs and matrices. Therefore, we have to

consider subspaces U related to these combinatorial structures. In all cases U will be
defined with the help of (incidence) matrices. We use the following convention for vector-
matrix and matrix-vector multiplication, based on matrix-matrix multiplication: uA

Av

uA := [u]tA and Av := A[v] for A ∈ Rm×n, u ∈ Rm, v ∈ Rn, (94)

where [u] ∈ Rm×1 is the usual interpretation of u ∈ Rm as a column-matrix, and [u]t is [u]t

its transposed in R1×m (transposition is not defined in Rm ).

9 Nowhere Zero Flows

We repeat and extend the definition of a flow of a subspace from the first part of this
article. A subspace or a linear code or a chain-group on a set N over the ring R is a
submodule U of the free R-module RN. Mostly, we use N := {1, 2, . . . , n} and work
in Rn . It is also worth mentioning that linear codes are basically the same as linear
matroids, see e.g. [Ca]. We prefer here the term subspace even though the term code
would emphasize the relative position of the subspace U to the coordinate axes 〈ej〉 . 〈ej〉
Actually, this should be emphasized, as our definition of subspace flows will depend on
coordinates. Again, we write “ f ≡6= 0 ” if f = (f1, f2, . . . , fn) ∈ Rn has full weight, and f ≡6= 0

“ v ⊥ w ” if
∑

j vjwj = 0 . With this the following definition generalizes nowhere-zero ⊥
flow of graphs:

Definition 9.1 (Flows).

(i) A (nowhere-zero) flow f ∈ Rn of a subset U ⊆ Rn is a tuple f ≡6= 0 orthogonal
to U , f ⊥ U . Such an f is then automatically a flow of the whole span 〈U〉 .

(ii) A (nowhere-zero right) flow of a matrix A ∈ Rm×n (an A-flow) is a flow f ∈ Rn

of the row space RS(A) of A , i.e., f ≡6= 0 and Af ≡= 0 . RS

(iii) A (nowhere-zero) left flow of a matrix A ∈ Rm×n is a flow f ∈ Rm of the column
space CS(A) of A , i.e., f ≡6= 0 and fA ≡= 0 . CS

A nowhere-zero R-flow of a directed graph
�����

G = (V, E , �����) is nothing else but a left �����

G

flow f ∈ RE of its arc-vertex incidence matrix AVR(
�����

G) ∈ {−1, 0, 1}E×V over R . It is AVR(
�����

G)
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known that the existence of such a flow depends neither on the orientation of the graph
nor on the structure of R , only on k := |R| . Therefore, we may say that the underlying
graph G = (V, E) has a nowhere zero k-flow if such a flow exists. G

One also says that a flow f ∈ RE of a directed graph
�����

G = (V, E , �����) is a flow through

the edges ε of
�����

G . In accordance with this, we could say that a flow f ∈ Rn of a subspace
U ≤ Rn is a flow through the standard basis vectors e1, e2, . . . , en of Rn . The nowhere- ej

zero condition f ≡6= 0 just means

f 6⊥ ej for j = 1, 2, . . . , n ; (95)

and
f ⊥ U (96)

is the flow condition.
The column space CS(AVR(

�����

G)) ≤ RE of the arc-vertex incidence matrix AVR(
�����

G) of
�����

G is also called the R-bond space or coboundary module of
�����

G . We abbreviate Bk

BR(
�����

G) := CS(AVR(
�����

G)) and Bk(
�����

G) = BZk
(

�����

G). (97)

The R-bond space is the subspace of all potential differences in the edge space RE of
�����

G ,
i.e., its elements u = (uε)ε∈E are of the form

u =
(
λ(ε�����) − λ(ε�����)

)
ε∈E with λ ∈ RV (98)

(where ε����� and ε����� are the target and the source of the edge ε , respectively). These ε�����, ε�����

coboundaries u ∈ BR(
�����

G) are also called tensions, R-coflows or dual R-flows, as the

signed sum of arc values on each circuit of
�����

G is zero. A nowhere-zero coflow u exists if
and only if a proper vertex coloring λ exists. Summarizing, we see that the concept of
flows of subspaces generalizes the graph-theoretic one:

Proposition 9.2. Assume |R| = k . A graph G = (V, E) has a nowhere-zero k-flow if

and only if the R-bond space BR(
�����

G) ≤ RE of an oriented version
�����

G of G has a flow.

With this proposition we have a connection to nowhere-zero flows of graphs, and obtain
the following new equivalents; where again U\\a := { u ∈ U � u ≡6= a } , and Ja,g(x) is U\\a

Ja,g(x)nonzero and equal to (−1)
|{j � xj=aj}|

only if xj ∈ {aj , gj} for all j , as in Equation (20):

Theorem 9.3. Let
�����

G = (V, E , �����) be a connected directed graph, a ∈ Zk
E and b ∈

(Zk\0)E , e.g. a ≡= 0 and b ≡= 1 . Assume that r ≥ 2 does not divide k|V|−1, and that
r′ ≥ 2 divides k − 1 . Then the following six statements are equivalent:

(i)
�����

G has a nowhere-zero k-flow.

(ii) There is a g ∈ Zk
E
\\a with

∑

x∈Bk(
�����

G)

Ja,g(x) 6= 0 .
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(iii) There is a g ∈ Zk
E
\\a with

∑

x∈Bk(
�����

G)

Ja,g(x) 6≡ 0 (mod r) .

(iv) There is a g ∈ Zk
E
\\0 with

∑

x∈Bk(
�����

G)

J0,b(x − g) 6= 0 .

(v) There is a g ∈ Zk
E
\\0 with

∑

x∈Bk(
�����

G)

J0,b(x − g) 6≡ 0 (mod r) .

(vi) There is a g ∈ Zk
E with

∣∣Bk(
�����

G)\\g
∣∣ 6≡ 0 (mod r′) .

Proof. By [Tu, TheoremVIII.46], U := Bk(
�����

G) has k|V|−1 many elements so that Theo-
rem7.4 applies.

This theorem generalizes a result by Onn [Onn, Theorem1.2], which is the special case
a ≡= −1 of the first equivalence, (i) ⇔ (ii) . Onn also applied his result in [Onn, Corol-
lary 1.4] to bridgeless triangulated (chordal) graphs, where he showed that such graphs
have a 4-flow. The inductive proof uses the fact that, on a cyclically directed triangle, the
trivial edge labelling x ≡= 0 is the only Z4-coflow contributing a nonvanishing summand
Ja,g(x) , if a ≡= −1 and g ≡= 0 .

By Tutte’s 5-Flow Conjecture, bridges in
�����

G should be the only obstruction against
the existence of k-flows with k ≥ 5 . Since bridges ε correspond to coordinate axes 〈eε〉

contained in Bk(
�����

G) , one could conjecture that every subspace U ⊆ Zk
n not containing

a coordinate axes possesses a flow. However, this is wrong. There is a 4-dimensional
subspace of the 6-dimensional space Z6

5 which is a counterexample. More generally, if k
is prime, the row space RS(A) of the matrix

A :=





1 · · · 0 1 1

1
... 1 2

...
. . .

...
...

0 · · · 1 1 k−1




, (99)

as matrix over Zk , is a simple counterexample (as can be seen by using the nowhere-
zero point equivalent in Lemma10.2 ). The point is that if we could prove that such
counterexamples do not arise from directed graphs, we would have found a proof of Tutte’s
5-Flow Conjecture.

Moreover, the generalized definition of a flow does not just capture flows of graphs. A
classical theorem by Heawood [Ai, Theorem7.61] reveals a connection to edge 3-colorings.
Let G = (V, E) be a connected 3-regular planar graph. Then G can be edge colored with
3 colors if and only if there is a vertex labelling with the numbers +1 and −1 , such
that for each face F of G , the sums over all labels of vertices which lie on the border of
F is zero modulo 3 . In our notation, this ±1-labelling is a right flow of the face-vertex
incidence matrix of G over Z3 and, again, a flow of a subspace:
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Proposition 9.4. Let G = (V, E) be a connected 3-regular planar graph. Then G can
be edge colored with 3 colors if and only if the row space RS(FV(G)) of the face-vertex
incidence matrix FV(G) ∈ {0, 1}F×V of G , as matrix over Z3 , has a flow.

By Appel and Haken’s Four Color Theorem [ApHa], in Tait’s edge coloring formulation
[Ai, Theorem7.61], such a Tait Coloring exists if and only if the graph has no bridge. We
present the following new equivalents which also may be of interest if one wants to find a
short proof of the Four Color Theorem:

Theorem 9.5. Let G = (V, E ,F) be a connected 3-regular planar graph with F as set of
faces, RS(FV(G)) the row space of its face-vertex incidence matrix FV(G) ∈ {0, 1}F×V,
as matrix over Z3 , a ∈ Z3

V and b ∈ (Z3\0)V , e.g. a ≡= 0 and b ≡= 1 . Then for r ∈ N

not dividing 3|F|−1, the following statements are equivalent:

(i) G can be edge colored with 3 colors.

(ii) There is a g ∈ Z3
V
\\a with

∑
x∈RS(FV(G))

Ja,g(x) 6= 0 .

(iii) There is a g ∈ Z3
V
\\a with

∑
x∈RS(FV(G))

Ja,g(x) 6≡ 0 (mod r) .

(iv) There is a g ∈ Z3
V
\\0 with

∑
x∈RS(FV(G))

J0,b(x − g) 6= 0 .

(v) There is a g ∈ Z3
V
\\0 with

∑
x∈RS(FV(G))

J0,b(x − g) 6≡ 0 (mod r) .

(vi) There is a g ∈ Z3
V with

∣∣RS(FV(G))\\g
∣∣ 6≡ 0 (mod 2) .

Proof. The subspace U := RS(FV(G)) has dimension |F|−1 and 3|F|−1 many elements.
Therefore, Theorem7.4 can be applied.

Heawood’s Theorem is based on the fact that the face cycles of a planar graph G
span the whole Z2-cycle space C2(G) ⊆ ZE

2 of the graph. However, this property is not
lost if we remove one face cycle, so that our results also hold if we delete one row in the
examined matrix. It is also known that even two rows may be deleted if they correspond
to two adjacent faces of G . Even three rows, corresponding to the three faces around
a common border vertex, can be removed. This can be proven using a double counting
argument, or as in [Tu, Theorem IX.53].

Furthermore, all this can be generalized to non-planar 3-regular graphs. We just need
a set of cycles that span the cycle space of G , and any distinguished cyclic order on
the three edges around each vertex. With respect to these orders, the generating cycles
usually will not turn to the same side all the time, they will dipsy-doodle through the
vertices. Therefore, the corresponding incidence matrix usually will contain the entry −1
as well.
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10 Nowhere Zero Colorings of Matrices

In this section we study nowhere-zero colorings of matrices. These results are then also
used in the succeeding section about graph colorings. We need the following definition:

Definition 10.1 (Nowhere Zero Colorings).

(i) A (nowhere-zero) coflow f ∈ Rn of a subset U ⊆ Rn is a tuple f ≡6= 0 in 〈U〉 .
Such an f is then automatically a coflow of the whole subspace 〈U〉 .

(ii) A (nowhere-zero right) coflow of a matrix A ∈ Rm×n (an A-coflow) is a coflow
f ∈ Rn of the column space CS(A) of A , i.e., f ≡6= 0 and f = Ag for a g ∈ Rn . CS

(iii) A (proper right) coloring of a matrix A ∈ Rm×n (an A-coloring) is a tuple g ∈ Rn

with Ag ≡6= 0 , i.e., Ag is a coflow of A .

(iv) A nowhere-zero (proper right) coloring or nowhere zero point of A ∈ Rm×n is a
tuple g ∈ Rn with g ≡6= 0 and Ag ≡6= 0 .

The following lemma builds the bridge from nowhere-zero points to flows and contains
another connection to colorings:

Lemma 10.2. Let A ∈ Rm×n and f ∈ Rn, then the following statements are equivalent:

(i) g is a nowhere-zero point of A .

(ii)
(

Ag
−g

)
is a flow of (IIm, A) .

(iii) g is a coloring of
(

A
IIn

)
, or equivalently of

(−A
IIn

)
.

In particular, since any right flow of (IIm, A) necessarily has the form
(

Ag
−g

)
, the following

existence statements are equivalent:

(i ′) A has a nowhere-zero point.

(ii ′) (IIm, A) has a flow.

(iii ′)
(

A
IIn

)
, or equivalently

(−A
IIn

)
, has a coloring.

Proof. It is easy to see that (i) ⇔ (ii) and (i) ⇔ (iii) .

In terms of subspaces this connection between nowhere-zero points and flows can be
stated as follows:

Proposition 10.3. A matrix A ∈ Rm×n has a nowhere-zero point if and only if the row
space RS(IIm, A) ≤ Rm+n of (IIm, A) has a flow.

With this we obtain new equivalents to the existence of nowhere-zero points:
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Theorem 10.4. Let A ∈ Zk
m×n, a ∈ Zk

m+n and b ∈ (Zk\0)m+n, e.g. a ≡= 0 and
b ≡= 1 . Assume that r ≥ 2 does not divide km, and that r′ ≥ 2 divides k − 1 . Then
the following statements are equivalent:

(i) A has a nowhere-zero point.

(ii) There is a v ∈ Zk
m+n

\\a such that
∑

x∈Zk
m

Ja,v(x, xA) 6= 0 .

(iii) There is a v ∈ Zk
m+n

\\a such that
∑

x∈Zk
m

Ja,v(x, xA) 6≡ 0 (mod r) .

(iv) There is a w ∈ Zk
n such that

∑
x∈Zk

m

J0,b(x, xA − w) 6= 0 .

(v) There is a w ∈ Zk
n such that

∑
x∈Zk

m

J0,b(x, xA − w) 6≡ 0 (mod r) .

(vi) There is a w ∈ Zk
n such that

∣∣RS(IIm, A)\\w
∣∣ 6≡ 0 (mod r′) .

Proof. With Theorem7.4 in mind we set U := RS(IIm, A) ⊆ Zk
m+n. Our matrix A has a

nowhere zero point if and only if there is a flow of U . Therefore, Theorem7.4 yields the
equivalence (i) ⇔ (vi) , and, together with the observation

∑

x∈Zk
m

Ja,v(x, xA) =
∑

u∈U

Ja,v(u), (100)

it proves the equivalences (i) ⇔ (iii) and (i) ⇔ (ii) . In order to prove (i) ⇔ (iv) and
(i) ⇔ (v) , we split each v ∈ Zk

m+n into v1 ∈ Zk
m and v2 ∈ Zk

n , v = (v1, v2) . If

w = v2 − v1A, (101)

then
∑

x∈Zk
m

J0,b(x, xA−w) =
∑

y∈Zk
m

J0,b(y − v1, yA− v2) =
∑

u∈U

J0,b(u− v) =
∑

u∈U

Jv,v+b(u), (102)

by substituting y = x+v1 and u = (y, yA) , so that, again, Theorem7.4 does the job.

Corollary 10.5. Let p be an odd prime. Then a matrix A ∈ Zp
m×n has a nowhere-

zero point if and only if the rows and columns of A can be multiplied with nonvanishing
scalars in such a way that the resulting matrix Ã has the following property:

There are altogether an odd number of zero-one combinations of the rows of Ã result-
ing in a zero-one vector. In other words, oddly many x ∈ {0, 1}m with xÃ ∈ {0, 1}n .

Proof. We set r := 2 and a := 0 ∈ Zp
m+n . If A has a nowhere-zero flow then there is a

v = (v1, . . . , vm+n) ≡6= 0 as in part (iii) of the last theorem. Now the matrix

Ã := Diag(v1, . . . , vm)A Diag(v−1
m+1, . . . , v

−1
m+n) (103)
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has the property that
∑

x∈Zp
m

J0,1(x, xÃ) =
∑

y∈Zp
m

J0,v(y, yA) 6≡ 0 (mod 2), (104)

as
(x, xÃ)Diag(v1, . . . , vm+n) = (y, yA) if y = (v1x1, . . . , vmxm). (105)

This singles out odd many x ∈ {0, 1}m with xÃ ∈ {0, 1}n, and proves one direction of
the equivalence. The other direction is proven similarly.

This corollary may be of interest with respect to Jaeger’s Conjecture:

“Non-singular square matrices A over finite fields Fq with q > 3 elements
have a nowhere-zero point.”

Only the prime field case, Fq = Zp , is still open. A very nice proof, in the case of
proper prime powers, q = pk ( k > 1 ), was given by Alon and Tarsi in [AlTa2].

11 Colorings of Graphs

In this section we present our new equivalents for the colorability of graphs. A coloring
of a directed graph

�����

G = (V, E , �����) with colors taken from R , respectively from R\0 , �����

G

is nothing else but a coloring, respectively a nowhere-zero coloring, g ∈ RV of the arc-
vertex incidence matrix AVR(

�����

G) ∈ {−1, 0, 1}E×V of
�����

G over R . Obviously the existence AVR

of such colorings neither depend on the orientation of the graph nor on the structure of
R , only on k := |R| . Therefore, we may say that the underlying graph G = (V, E) has G

a k-coloring, respectively a (k−1)-coloring, if such a coloring exists.
Before we explain connections to flows, we want to mention some of the different

terminologies used in literature, mainly in the case of finite fields, R := Fq . With respect
to graph theory, a coflow also could be called a nowhere-zero coboundary. If a matrix
A has a coloring g then this vector g is not orthogonal to any row of A , so that no
row of A is contained in g⊥ . Conversely, if the rows of A form no 1-blocking set, i.e.,
if there is a hyperplane g⊥ avoiding the rows of A , then A has a coloring g (see e.g.
[We]). Equivalently, one can say that the set of rows of A has critical exponent at most
1 . Some authors would say that the linear matroid of these rows is 1-colorable over Fq .
Furthermore, one could generalize the concept of colorings and flows by allowing tuples
f1, . . . , ft ∈ Rn with the property that to any index j ≤ n at least one of the fi does
not vanish at the jth coordinate, as e.g. in [Ai, Theorem7.55]. Flows also can be defined
for orientable matroids, see e.g. [HoNi].

From our definition we see that a k-coloring of a graph exists if and only if the bond
space BR(

�����

G) := CS(AVR(
�����

G)) of
�����

G has a coflow. Equivalently, its orthogonal space

CR(
�����

G) := CS(AVR(
�����

G))⊥, the R-cycle space (or cycle module) of
�����

G , has a flow. This CR

equivalence is not quite obvious over rings, as for subspaces U ≤ Rn it does not always

hold that (U⊥)⊥ = U . However, by [Tu, TheoremVIII.42], it does hold for U := BR(
�����

G) .
We have:
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Proposition 11.1. Assume |R| = k . A graph G = (V, E) has a vertex k-coloring if and

only if the cycle space CR(
�����

G) ≤ RE of an oriented version
�����

G of G has a flow.

From this we derive the following result, where Ck(
�����

G) = CZk
(

�����

G) : Ck

Theorem 11.2. Let
�����

G = (V, E , �����) be a connected directed graph, a ∈ Zk
E and b ∈

(Zk\0)E , e.g. a ≡= 0 and b ≡= 1 . Assume that r ≥ 2 does not divide k|E|−|V|+1, and
that r′ ≥ 2 divides k − 1 . Then the following statements are equivalent:

(i) G is k-colorable.

(ii) There is a g ∈ Zk
E
\\a with

∑

x∈Ck(
�����

G)

Ja,g(x) 6= 0 .

(iii) There is a g ∈ Zk
E
\\a with

∑

x∈Ck(
�����

G)

Ja,g(x) 6≡ 0 (mod r) .

(iv) There is a c ∈ Zk
V with

∑

x : x AV(
�����

G)=c

J0,b(x) 6= 0 .

(v) There is a c ∈ Zk
V with

∑

x : x AV(
�����

G)=c

J0,b(x) 6≡ 0 (mod r) .

(vi) There is a g ∈ Zk
E with

∣∣Ck(
�����

G)\\g
∣∣ 6≡ 0 (mod r′) .

Proof. By [Tu, TheoremVIII.46], the bond space Bk(
�����

G) has k|V|−1 many elements so

that Ck(
�����

G) ∼= ZE/Bk(
�����

G) has cardinality k|E|−|V|+1, and Theorem7.4 applies. For the two
equivalences (i) ⇔ (iv) and (i) ⇔ (v) we also need that, if

c = −v AV(
�����

G), (106)

then
∑

x : xAV(
�����

G)=c

J0,b(x) =
∑

x : (x+v) AV(
�����

G)=0

J0,b(x) =
∑

y∈Ck(
�����

G)

J0,b(y − v) =
∑

y∈Ck(
�����

G)

Jv,v+b(y). (107)

The equivalence (i) ⇔ (v) , in the special case b ≡= 1 , r = 2 and k an odd prime,
was also obtained by Balázs Szegedy in [Sz, Proposition 30].

The condition in part (ii), with a ≡= 0 and g ≡= 1 , generalizes Alon and Tarsi’s
widely known sufficient condition [AlTa, Theorem1.1] for the existence of list colorings.
Alon and Tarsi’s Theorem is more special in that it assumes that the maximal outdegree
∆

+
(

�����

G) is strictly smaller than k . It is not difficult to see that, under this additional
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assumption, the nonvanishing summands J0,1(x) in part (ii) correspond to Eulerian sub-

graphs x ∈ Ck(
�����

G) ∩ {0, 1}E . It follows that

∑

x∈Ck(
�����

G)

J0,1(x) = |EE(
�����

G)| − |EO(
�����

G)|, (108)

where EE(
�����

G) , resp. EO(
�����

G) , is the set of even, resp. odd, Eulerian subgraphs, as in
Alon and Tarsi’s sufficient condition

|EE(
�����

G)| 6= |EO(
�����

G)|. (109)

However, as already said, Alon and Tarsi’s Theorem is more general in that it guar-
antees the existence of list colorings. Even k-paintability follows under their additional
assumptions ∆

+
(

�����

G) < k , as we showed in [Scha2].
The condition in part (ii), again with a ≡= 0 and g ≡= 1 , also contains Yuri

Matiyasevich’s earlier found sufficient condition in [Ma1]. Matiyasevich’s condition for
the existence of ordinary k-colorings is similar to Alon and Tarsi’s condition, but does
not require that the maximal outdegree ∆

+
(

�����

G) is strictly smaller than k . Without
this requirement Equation (108) still holds, but one has to allow all subgraphs that are
“Eulerian modulo k ”. By flipping around the edges in such a subgraph one obtains a
new orientation of

�����

G that has modulo k the same outdegrees as
�����

G . These kind of
orientations are in one-to-one correspondence with the modulo k Eulerian subgraphs.
Therefore, the condition in part (ii) (with a ≡= 0 and g ≡= 1 ) can be stated as a
statement about certain equivalence classes of orientations, exactly as in [Ma1].

Matiyasevich also provided in [Ma1] a necessary condition. This condition follows from
the condition in part (v), with b ≡= 1 . Now, the x with nonvanishing summands J0,1(x)
correspond to subgraphs with an outdegree sequence that differs form its indegree sequence
by the given sequence c modulo k . So, if we flip around the edges in such a subgraph, we
obtain a new orientation of

�����

G that has certain determined outdegrees modulo k . From
this we can derive Matiyasevich’s necessary condition in terms of equivalence classes of
such orientations.

Analogously, it should be possible to derive the similar result [Go, Theorem18] by
Goodall. Moreover, if we apply part (v), with b ≡= 1 , to the line graph of a plane
triangulation we further can deduce [Ma2, Theorem7].

We also make the following observation, where AVk(
�����

G) = AVZk
(

�����

G) : AVk

Proposition 11.3. Assume |R| = k , G = (V, E) is a graph and AVk(
�����

G) ∈ {−1, 0, 1}E×V

is the arc-vertex incidence matrix of a directed version
�����

G of G . Then G can be vertex
colored with k − 1 colors if and only if RS(IIE , AVk(

�����

G)) ≤ RE⊎V has a flow.

Proof. This is a special case of Proposition 10.3.

From this we derive the following graph coloring theorem:
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Theorem 11.4. Let a ∈ Zk
E⊎V and b ∈ (Zk\0)E⊎V, e.g. a ≡= 0 and b ≡= 1 . Further, let

AVk(
�����

G) ∈ {−1, 0, 1}E×V ⊆ Zk
E×V be the arc-vertex incidence matrix of a directed version

�����

G of a graph G . Assume that r ≥ 2 does not divide k|E|, and that r′ ≥ 2 divides k−1 .
Then the following statements are equivalent:

(i) G is (k − 1)-colorable.

(ii) There is a g ∈ Zk
E⊎V

\\a with
∑

x∈Zk
E

Ja,g(x, x AVk(
�����

G)) 6= 0 .

(iii) There is a g ∈ Zk
E⊎V

\\a with
∑

x∈Zk
E

Ja,g(x, x AVk(
�����

G)) 6≡ 0 (mod r) .

(iv) There is a c ∈ Zk
V with

∑

x∈Zk
E

J0,b(x, x AVk(
�����

G) − c) 6= 0 .

(v) There is a c ∈ Zk
V with

∑

x∈Zk
E

J0,b(x, x AVk(
�����

G) − c) 6≡ 0 (mod r) .

(vi) There is a g ∈ Zk
E⊎V with

∣∣RS(IIE , AVk(
�����

G))\\g
∣∣ 6≡ 0 (mod r′) .

Proof. The new corollary is just a reformulation of Theorem10.4 in the special case A :=
AVk(

�����

G) . The nowhere-zero points of this matrix are the colorings of the given graph
�����

G
with Zk\0 as color set.

The same holds for hypergraphs if a kind of incidence matrix with vanishing row sums
is used, as in [Scha3, Section 2].
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