Integral Cayley graphs defined by greatest common divisors

Walter Klotz

Institut für Mathematik Technische Universität Clausthal, Germany klotz@math.tu-clausthal.de

Torsten Sander

Fakultät für Informatik Ostfalia Hochschule für angewandte Wissenschaften, Germany t.sander@ostfalia.de

Submitted: Dec 6, 2010; Accepted: Apr 12, 2011; Published: Apr 21, 2011 Mathematics Subject Classification: 05C25, 05C50

Abstract

An undirected graph is called integral, if all of its eigenvalues are integers. Let $\Gamma = Z_{m_1} \otimes \cdots \otimes Z_{m_r}$ be an abelian group represented as the direct product of cyclic groups Z_{m_i} of order m_i such that all greatest common divisors $gcd(m_i, m_j) \leq 2$ for $i \neq j$. We prove that a Cayley graph $Cay(\Gamma, S)$ over Γ is integral, if and only if $S \subseteq \Gamma$ belongs to the the Boolean algebra $B(\Gamma)$ generated by the subgroups of Γ . It is also shown that every $S \in B(\Gamma)$ can be characterized by greatest common divisors.

1 Introduction

The greatest common divisor of nonnegative integers a and b is denoted by gcd(a, b). Let us agree upon gcd(0, b) = b. If $x = (x_1, \ldots, x_r)$ and $m = (m_1, \ldots, m_r)$ are tuples of nonnegative integers, then we set

$$gcd(x,m) = (d_1, \ldots, d_r) = d, \quad d_i = gcd(x_i, m_i) \text{ for } i = 1, \ldots, r.$$

For an integer $n \ge 1$ we denote by Z_n the additive group, respectively the ring of integers modulo n, $Z_n = \{0, 1, \ldots, n-1\}$ as a set. Let Γ be an (additive) abelian group represented as a direct product of cyclic groups.

$$\Gamma = Z_{m_1} \otimes \cdots \otimes Z_{m_r}$$
, $m_i \ge 1$ for $i = 1, \ldots, r$

The electronic journal of combinatorics $\mathbf{18}$ (2011), #P94

Suppose that d_i is a divisor of m_i , $1 \le d_i \le m_i$, for i = 1, ..., r. For the divisor tuple $d = (d_1, ..., d_r)$ of $m = (m_1, ..., m_r)$ we define the *gcd-set* of Γ with respect to d,

$$S_{\Gamma}(d) = \{x = (x_1, \dots, x_r) \in \Gamma : \gcd(x, m) = d\}.$$

If $D = \{d^{(1)}, \ldots, d^{(k)}\}$ is a set of divisor tuples of m, then the gcd-set of Γ with respect to D is

$$S_{\Gamma}(D) = \bigcup_{j=1}^{k} S_{\Gamma}(d^{(j)}).$$

In Section 2 we realize that the gcd-sets of Γ constitute a Boolean subalgebra $B_{gcd}(\Gamma)$ of the Boolean algebra $B(\Gamma)$ generated by the subgroups of Γ . The finite abelian group Γ is called a *gcd-group*, if $B_{gcd}(\Gamma) = B(\Gamma)$. We show that Γ is a gcd-group, if and only if it is cyclic or isomorphic to a group of the form

$$Z_2 \otimes \cdots \otimes Z_2 \otimes Z_n, \ n \ge 2.$$

Eigenvalues of an undirected graph G are the eigenvalues of an arbitrary adjacency matrix of G. Harary and Schwenk [8] defined G to be *integral*, if all of its eigenvalues are integers. For a survey of integral graphs see [3]. In [2] the number of integral graphs on n vertices is estimated. Known characterizations of integral graphs are restricted to certain graph classes, see e.g. [1]. Here we concentrate on integral Cayley graphs over gcd-groups.

Let Γ be a finite, additive group, $S \subseteq \Gamma$, $0 \notin S$, $-S = \{-s : s \in S\} = S$. The undirected *Cayley graph over* Γ with shift set S, $Cay(\Gamma, S)$, has vertex set Γ . Vertices $a, b \in \Gamma$ are adjacent, if and only if $a - b \in S$. For general properties of Cayley graphs we refer to Godsil and Royle [7] or Biggs [5]. We define a gcd-graph to be a Cayley graph $Cay(\Gamma, S)$ over an abelian group $\Gamma = Z_{m_1} \otimes \cdots \otimes Z_{m_r}$ with a gcd-set S of Γ . All gcd-graphs are shown to be integral. They can be seen as a generalization of unitary Cayley graphs and of circulant graphs, which have some remarkable properties and applications (see [4], [9], [11], [15]).

In our paper [10] we proved for an abelian group Γ and $S \in B(\Gamma)$, $0 \notin S$, that the Cayley graph $Cay(\Gamma, S)$ is integral. We conjecture the converse to be true for finite abelian groups in general. This can be confirmed for cyclic groups by a theorem of So [16]. In Section 3 we extend the result of So to gcd-groups. A Cayley graph $Cay(\Gamma, S)$ over a gcd-group Γ is integral, if and only if $S \in B(\Gamma)$.

2 gcd-Groups

Throughout this section Γ denotes a finite abelian group given as a direct product of cyclic groups,

$$\Gamma = Z_{m_1} \otimes \cdots \otimes Z_{m_r}$$
, $m_i \ge 1$ for $i = 1, \ldots, r$

Theorem 1. The family $B_{gcd}(\Gamma)$ of gcd-sets of Γ constitutes a Boolean subalgebra of the Boolean algebra $B(\Gamma)$ generated by the subgroups of Γ .

Proof. First we confirm that $B_{gcd}(\Gamma)$ is a Boolean algebra with respect to the usual set operations. From $S_{\Gamma}(\emptyset) = \emptyset$ we know $\emptyset \in B_{gcd}(\Gamma)$. If D_0 denotes the set of all (positive) divisor tuples of $m = (m_1, \ldots, m_r)$ then we have $S_{\Gamma}(D_0) = \Gamma$, which implies $\Gamma \in B_{gcd}(\Gamma)$. As $B_{gcd}(\Gamma)$ is obviously closed under the set operations union, intersection and forming the complement, it is a Boolean algebra.

In order to show $B_{gcd}(\Gamma) \subseteq B(\Gamma)$, it is sufficient to prove for an arbitrary divisor tuple $d = (d_1, \ldots, d_r)$ of $m = (m_1, \ldots, m_r)$ that

$$S_{\Gamma}(d) = \{x = (x_1, \dots, x_r) \in \Gamma : \gcd(x, m) = d\} \in B(\Gamma).$$

Observe that $d_j = m_j$ forces $x_j = 0$ for $x = (x_i) \in S_{\Gamma}(d)$. If $d_i = m_i$ for every $i = 1, \ldots, r$ then $S_{\Gamma}(d) = \{(0, 0, \ldots, 0)\} \in B(\Gamma)$. So we may assume $1 \leq d_i < m_i$ for at least one $i \in \{1, \ldots, r\}$. For $i = 1, \ldots, r$ we define $\delta_i = d_i$, if $d_i < m_i$, and $\delta_i = 0$, if $d_i = m_i$, $\delta = (\delta_1, \ldots, \delta_r)$. For $a_i \in Z_{m_i}$ we denote by $[a_i]$ the cyclic group generated by a_i in Z_{m_i} . One can easily verify the following representation of $S_{\Gamma}(d)$:

$$S_{\Gamma}(d) = [\delta_1] \otimes \cdots \otimes [\delta_r] \setminus \bigcup_{\lambda_1, \dots, \lambda_r} ([\lambda_1 \delta_1] \otimes \cdots \otimes [\lambda_r \delta_r]).$$
(1)

In (1) we set $\lambda_i = 0$, if $\delta_i = 0$. For $i \in \{1, \ldots, r\}$ and $\delta_i > 0$ the range of λ_i is

$$1 \leq \lambda_i < \frac{m_i}{\delta_i}$$
 such that $gcd(\lambda_i, \frac{m_i}{\delta_i}) > 1$ for at least one $i \in \{1, \dots, r\}$.

As $[\delta_1] \otimes \cdots \otimes [\delta_r]$ and $[\lambda_1 \delta_1] \otimes \cdots \otimes [\lambda_r \delta_r]$ are subgroups of Γ , (1) implies $S_{\Gamma}(d) \in B(\Gamma)$. \Box

A gcd-graph is a Cayley graph $Cay(\Gamma, S_{\Gamma}(D))$ over an abelian group $\Gamma = Z_{m_1} \otimes \cdots \otimes Z_{m_r}$ with a gcd-set $S_{\Gamma}(D)$ as its shift set. In [10] we proved that for a finite abelian group Γ and $S \in B(\Gamma)$, $0 \notin S$, the Cayley graph $Cay(\Gamma, S)$ is integral. Therefore, Theorem 1 implies the following corollary.

Corollary 1. Every gcd-graph $Cay(\Gamma, S_{\Gamma}(D))$ is integral.

We remind that we call Γ a gcd-group, if $B_{gcd}(\Gamma) = B(\Gamma)$. For $a = (a_i) \in \Gamma$ we denote by [a] the cyclic subgroup of Γ generated by a.

Lemma 1. Let Γ be the abelian group $Z_{m_1} \otimes \cdots \otimes Z_{m_r}$, $m = (m_1, \ldots, m_r)$. Then Γ is a gcd-group, if and only if for every $a \in \Gamma$, gcd(a, m) = d implies $S_{\Gamma}(d) \subseteq [a]$.

Proof. Let Γ be a gcd-group, $B_{gcd}(\Gamma) = B(\Gamma)$. Then every subgroup of Γ , especially every cyclic subgroup [a] is a gcd-set of Γ . This means $[a] = S_{\Gamma}(D)$ for a set D of divisor tuples of m. Now gcd(a, m) = d implies $d \in D$ and therefore $S_{\Gamma}(d) \subseteq S_{\Gamma}(D) = [a]$.

To prove the converse assume that the condition in Lemma 1 is satisfied. Let H be an arbitrary subgroup of Γ . We show $H \in B_{gcd}(\Gamma)$. Let $a \in H$, gcd(a, m) = d. Then our assumption implies

$$a \in S_{\Gamma}(d) \subseteq [a] \subseteq H, \quad H = \bigcup_{d \in D} S_{\Gamma}(d) = S_{\Gamma}(D) \in B_{gcd}(\Gamma),$$

where $D = \{ \gcd(a, m) : a \in H \}.$

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), #P94

For integers x, y, n we express by $x \equiv y \mod n$ that x is congruent to y modulo n.

Lemma 2. Every cyclic group $\Gamma = Z_n$, $n \ge 1$, is a gcd-group.

Proof. As the lemma is trivially true for n = 1, we assume $n \ge 2$. Let $a \in \Gamma$, $0 \le a \le n-1$, gcd(a, n) = d. According to Lemma 1 we have to show $S_{\Gamma}(d) \subseteq [a]$. Again, to avoid the trivial case, assume $a \ge 1$. From gcd(a, n) = d < n we deduce

$$a = \alpha d, \ 1 \le \alpha < \frac{n}{d}, \ \gcd(\alpha, \frac{n}{d}) = 1.$$

As the order of $a \in \Gamma$ is ord(a) = n/d, the cyclic group generated by a is

$$[a] = \{ x \in \Gamma : x \equiv (\lambda \alpha)d \mod n, \ 0 \le \lambda < \frac{n}{d} \}.$$

Finally, we conclude

$$[a] \supseteq \{x \in \Gamma : x \equiv (\lambda \alpha)d \mod n, \ 0 \le \lambda < \frac{n}{d}, \ \gcd(\lambda, \frac{n}{d}) = 1\}$$
$$= \{x \in \Gamma : x \equiv \mu d \mod n, \ 0 \le \mu < \frac{n}{d}, \ \gcd(\mu, \frac{n}{d}) = 1\} = S_{\Gamma}(d).$$

Lemma 3. If $\Gamma = Z_{m_1} \otimes \cdots \otimes Z_{m_r}$, $r \ge 2$, is a gcd-group, then $gcd(m_i, m_j) \le 2$ for every $i \ne j, i, j = 1, \ldots, r$.

Proof. Without loss of generality we concentrate on $gcd(m_1, m_2)$. We may assume $m_1 > 2$ and $m_2 > 2$. Consider $a = (1, 1, 0, ..., 0) \in \Gamma$ and $b = (m_1 - 1, 1, 0, ..., 0) \in \Gamma$. For $m = (m_1, ..., m_r)$ we have

$$gcd(a,m) = (1, 1, m_3, \dots, m_r) = gcd(b,m).$$

By Lemma 1 the element b must belong to the cyclic group [a]. This requires the existence of an integer λ , $b = \lambda a$ in Γ , or equivalently

$$\lambda \equiv -1 \mod m_1 \pmod{\lambda} \equiv 1 \mod m_2.$$

Therefore, integers k_1 and k_2 exist satisfying $\lambda = -1 + k_1 m_1$ and $\lambda = 1 + k_2 m_2$, which implies $k_1 m_1 - k_2 m_2 = 2$ and $gcd(m_1, m_2)$ divides 2.

The next two lemmas will enable us to prove the converse of Lemma 3.

Lemma 4. Let $a_1, \ldots, a_r, g_1, \ldots, g_r$ be integers, $r \ge 2$, $g_i \ge 2$ for $i = 1, \ldots, r$. Moreover, assume $gcd(g_i, g_j) = 2$ for every $i \ne j$, $i, j = 1, \ldots, r$. The system of congruences

$$x \equiv a_1 \mod g_1, \dots, x \equiv a_r \mod g_r$$
 (2)

is solvable, if and only if

$$a_i \equiv a_j \mod 2 \text{ for every } i, j = 1, \dots, r.$$
 (3)

If the system is solvable, then the solution consists of a unique residue class modulo $(g_1g_2\cdots g_r)/2^{r-1}$.

The electronic journal of combinatorics ${\bf 18}$ (2011), #P94

Proof. Suppose that x is a solution of (2). As every g_i is even, the necessity of condition (3) follows by

$$a_i \equiv x \mod 2$$
 for $i = 1, \ldots, r$.

Assume now that condition (3) is satisfied. We set $\kappa = 0$, if every a_i is even, and $\kappa = 1$, if every a_i is odd. By $x \equiv a_i \mod 2$ we have $x = 2y + \kappa$ for an integer y. The congruences (2) can be equivalently transformed to

$$y \equiv \frac{a_1 - \kappa}{2} \mod \frac{g_1}{2}, \dots, y \equiv \frac{a_r - \kappa}{2} \mod \frac{g_r}{2}.$$
 (4)

As $gcd((g_i/2), (g_j/2)) = 1$ for $i \neq j, i, j = 1, ..., r$, we know by the Chinese remainder theorem [14] that the system (4) has a unique solution $y \equiv h \mod (g_1 \cdots g_r)/2^r$. This implies for the solution x of (2):

$$x = 2y + \kappa \equiv 2h + \kappa \mod \frac{g_1 \cdots g_r}{2^{r-1}}.$$

Lemma 5. Let $a_1, \ldots, a_r, m_1, \ldots, m_r$ be integers, $r \ge 2$, $m_i \ge 2$ for $i = 1, \ldots, r$. Moreover, assume $gcd(m_i, m_j) \le 2$ for every $i \ne j$, $i, j = 1, \ldots, r$. The system of congruences

$$x \equiv a_1 \mod m_1, \dots, x \equiv a_r \mod m_r \tag{5}$$

is solvable, if and only if

$$a_i \equiv a_j \mod 2 \text{ for every } i \neq j, \ m_i \equiv m_j \equiv 0 \mod 2, \ i, j = 1, \dots, r.$$
 (6)

Proof. If at most one of the integers m_i , i = 1, ..., r, is even then $gcd(m_i, m_j) = 1$ for every $i \neq j$, i, j = 1, ..., r, and system (5) is solvable. Therefore, we may assume that $m_1, ..., m_k$ are even, $2 \leq k \leq r$, and $m_{k+1}, ..., m_r$ are odd, if k < r. Now we split system (5) into two systems.

$$x \equiv a_1 \mod m_1, \dots, x \equiv a_k \mod m_k \tag{7}$$

$$x \equiv a_{k+1} \mod m_{k+1}, \dots, x \equiv a_r \mod m_r \tag{8}$$

By Lemma 4 the solvability of (7) requires (6). If this condition is satisfied, then (7) has a unique solution $x \equiv b \mod (m_1 \cdots m_k)/2^{k-1}$ by Lemma 4. System (8) has a unique solution $x \equiv c \mod (m_{k+1} \cdots m_r)$ by the Chinese remainder theorem, because $gcd(m_i, m_j) = 1$ for $i \neq j, i, j = k + 1, \ldots, r$. So the original system (5) is equivalent to

$$x \equiv b \mod \frac{m_1 \cdots m_k}{2^{k-1}}$$
 and $x \equiv c \mod (m_{k+1} \cdots m_r).$ (9)

As $gcd((m_1 \cdots m_k), (m_{k+1} \cdots m_r)) = 1$, the Chinese remainder theorem can be applied once more to arrive at a unique solution $x \equiv h \mod (m_1 \cdots m_r)/2^{k-1}$ of (9) and (5). \Box **Theorem 2.** The abelian group $\Gamma = Z_{m_1} \otimes \cdots \otimes Z_{m_r}$ is a gcd-group, if and only if

$$gcd(m_i, m_j) \le 2 \text{ for every } i \ne j, \ i, j = 1, \dots, r.$$
(10)

Proof. As every cyclic group is a gcd-group by Lemma 2, we may assume $r \ge 2$. Then (10) necessarily holds for every gcd-group Γ by Lemma 3.

Suppose now that Γ satisfies (10). Let $a = (a_1, \ldots, a_r)$ and $b = (b_1, \ldots, b_r)$ be elements of Γ , $m = (m_1, \ldots, m_r)$, and

$$gcd(a,m) = d = (d_1,\ldots,d_r) = gcd(b,m).$$

$$(11)$$

According to Lemma 1 we have to show that b belongs to the cyclic group [a] generated by a. Now $b \in [a]$ is equivalent to the existence of an integer λ which solves the following system of congruences:

$$b_1 \equiv \lambda a_1 \mod m_1, \dots, b_r \equiv \lambda a_r \mod m_r.$$
 (12)

If $d_i = m_i$ then $a_i = b_i = 0$ and the congruence $b_i \equiv \lambda a_i \mod m_i$ becomes trivial. Therefore, we assume $1 \leq d_i < m_i$ for every $i = 1, \ldots, r$. By (11) we have $gcd(a_i, m_i) = gcd(b_i, m_i) = d_i$, which implies the existence of integers μ_i, ν_i satisfying

$$a_{i} = \mu_{i}d_{i}, \ 1 \le \mu_{i} < \frac{m_{i}}{d_{i}}, \ \gcd(\mu_{i}, \frac{m_{i}}{d_{i}}) = 1; \ b_{i} = \nu_{i}d_{i}, \ 1 \le \nu_{i} < \frac{m_{i}}{d_{i}}, \ \gcd(\nu_{i}, \frac{m_{i}}{d_{i}}) = 1.$$
(13)

Inserting a_i and b_i for i = 1, ..., r from (13) in (12) yields

$$\nu_1 d_1 \equiv \lambda \mu_1 d_1 \mod m_1, \dots, \nu_r d_r \equiv \lambda \mu_r d_r \mod m_r$$

We divide the i-th congruence by d_i and multiply with κ_i , the multiplicative inverse of μ_i modulo m_i/d_i . Thus each congruence is solved for λ and we arrive at the following system equivalent to (12).

$$\lambda \equiv \kappa_1 \nu_1 \mod \frac{m_1}{d_1}, \dots, \lambda \equiv \kappa_r \nu_r \mod \frac{m_r}{d_r}$$
 (14)

To prove the solvability of (14) by Lemma 5 we first notice that $gcd(m_i, m_j) \leq 2$ for $i \neq j$ implies $gcd((m_i/d_i), (m_j/d_j)) \leq 2$ for $i, j = 1, \ldots, r$. Suppose now that m_i/d_i is even. As $gcd(\mu_i, (m_i/d_i)) = 1$, see (13), μ_i must be odd. Also κ_i is odd because of $gcd(\kappa_i, (m_i/d_i)) = 1$. If for $i \neq j$ both m_i/d_i and m_j/d_j are even, then both $\kappa_i\nu_i$ and $\kappa_j\nu_j$ are odd, because all involved integers $\kappa_i, \nu_i, \kappa_j, \nu_j$ are odd. We conclude now by Lemma 5 that (14) is solvable, which finally confirms $b \in [a]$.

Lemma 6. Let $\Gamma = Z_{m_1} \otimes \cdots \otimes Z_{m_r}$ be isomorphic to $\Gamma' = Z_{n_1} \otimes \cdots \otimes Z_{n_s}$, $\Gamma \simeq \Gamma'$. Then Γ is a gcd-group, if and only if Γ' is a gcd-group.

Proof. We may assume $m_i \ge 2$ for i = 1, ..., r and $n_j \ge 2$ for j = 1, ..., s. For the following isomorphy and more basic facts about abelian groups we refer to Cohn [6].

$$Z_{pq} \simeq Z_p \otimes Z_q, \text{ if } \gcd(p,q) = 1$$
 (15)

The electronic journal of combinatorics ${\bf 18}$ (2011), $\# {\rm P94}$

If the positive integer m is written as a product of pairwise coprime prime powers, $m = u_1 \cdots u_h$, then

$$Z_m \simeq Z_{u_1} \otimes \dots \otimes Z_{u_h}.$$
 (16)

We apply the decomposition (16) to every factor Z_{m_i} , $i = 1, \ldots, r$, of Γ and to every factor Z_{n_j} , $j = 1, \ldots, s$, of Γ' . So we obtain the "prime power representation" Γ^* , which is the same for Γ and for Γ' , if the factors are e.g. arranged in ascending order.

$$\Gamma \simeq \Gamma^* = Z_{q_1} \otimes \cdots \otimes Z_{q_t} \simeq \Gamma', q_j \text{ a prime power for } j = 1, \dots, t$$

The following equivalences are easily checked.

$$gcd(m_i, m_j) \le 2 \text{ for every } i \ne j, \ i, j = 1, \dots, r$$

$$\Leftrightarrow gcd(q_k, q_l) \le 2 \text{ for every } k \ne l, \ k, l = 1, \dots, t$$

$$\Leftrightarrow gcd(n_i, n_j) \le 2 \text{ for every } i \ne j, \ i, j = 1, \dots, s$$
(17)

Theorem 2 and (17) imply that Γ is a gcd-group, if and only if Γ^* , respectively Γ' , is a gcd-group.

Every finite abelian group $\tilde{\Gamma}$ can be represented as the direct product of cyclic groups.

$$\tilde{\Gamma} \simeq Z_{m_1} \otimes \dots \otimes Z_{m_r} = \Gamma \tag{18}$$

We define $\tilde{\Gamma}$ to be a gcd-group, if Γ is a gcd-group. Although the representation (18) may not be unique, this definition is correct by Lemma 6.

Theorem 3. The finite abelian group Γ is a gcd-group, if and only if Γ is cyclic or Γ is isomorphic to a group Γ' of the form

$$\Gamma' = Z_2 \otimes \cdots \otimes Z_2 \otimes Z_n, \ n \ge 2.$$

Proof. If Γ is isomorphic to a group Γ' as stated in the theorem, then Γ is a gcd-group by Theorem 2.

To prove the converse, let Γ be a gcd-group. We may assume that Γ is not cyclic. The prime power representation Γ^* of Γ is established as described in the proof of Lemma 6. We start this representation with those orders which are a power of 2, followed possibly by odd orders.

$$\Gamma \simeq \Gamma^* = Z_2 \otimes \cdots \otimes Z_2 \otimes Z_{2^{\alpha}} \otimes Z_{u_1} \otimes \cdots \otimes Z_{u_s}, \quad \alpha \ge 1, \ u_i \text{ odd for } i = 1, \dots, s \quad (19)$$

Theorem 2 implies that there is at most one order 2^{α} with $\alpha \geq 2$. Moreover, all odd orders u_1, \ldots, u_s must be pairwise coprime. As $2^{\alpha}, u_1, \ldots, u_s$ are pairwise coprime integers, we deduce from (15) that

$$Z_{2^{\alpha}} \otimes Z_{u_1} \otimes \cdots \otimes Z_{u_s} \simeq Z_n$$
 for $n = 2^{\alpha} u_1 \cdots u_s$.

Now (19) implies

$$\Gamma \simeq \Gamma' = Z_2 \otimes \cdots \otimes Z_2 \otimes Z_n.$$

3 Integral Cayley graphs over gcd-groups

The following method to determine the eigenvectors and eigenvalues of Cayley graphs over abelian groups is due to Lovász [13], see also our description in [10]. We outline the main features of this method, which will be applied in this section.

The finite, additive, abelian group Γ , $|\Gamma| = n \ge 2$, is represented as the direct product of cyclic groups,

$$\Gamma = Z_{m_1} \otimes \cdots \otimes Z_{m_r}, \ m_i \ge 2 \text{ for } 1 \le i \le r.$$
(20)

We consider the elements $x \in \Gamma$ as elements of the cartesian product $Z_{m_1} \times \cdots \times Z_{m_r}$,

$$x = (x_i), x_i \in Z_{m_i} = \{0, 1, \dots, m_i - 1\}, 1 \le i \le r.$$

Addition is coordinatewise modulo m_i . A character ψ of Γ is a homomorphism from Γ into the multiplicative group of complex *n*-th roots of unity. Denote by e_i the unit vector with entry 1 in position *i* and entry 0 in every position $j \neq i$. A character ψ of Γ is uniquely determined by its values $\psi(e_i)$, $1 \leq i \leq r$.

$$x = (x_i) = \sum_{i=1}^r x_i e_i, \quad \psi(x) = \prod_{i=1}^r (\psi(e_i))^{x_i}$$
(21)

The value of $\psi(e_i)$ must be an m_i -th root of unity. There are m_i possible choices for this value. Let ζ_i be a fixed primitive m_i -th root of unity for every $i, 1 \leq i \leq r$. For every $\alpha = (\alpha_i) \in \Gamma$ a character ψ_{α} can be uniquely defined by

$$\psi_{\alpha}(e_i) = \zeta_i^{\alpha_i}, \ 1 \le i \le r.$$
(22)

Combining (21) and (22) yields

$$\psi_{\alpha}(x) = \prod_{i=1}^{r} \zeta_{i}^{\alpha_{i}x_{i}} \text{ for } \alpha = (\alpha_{i}) \in \Gamma \text{ and } x = (x_{i}) \in \Gamma.$$
(23)

Thus all $|\Gamma| = m_1 \cdots m_r = n$ characters of the abelian group Γ can be obtained.

Lemma 7. Let $\psi_0, \ldots, \psi_{n-1}$ be the distinct characters of the additive abelian group $\Gamma = \{w_0, \ldots, w_{n-1}\}, S \subseteq \Gamma, 0 \notin S, -S = S$. Assume that $A(G) = A = (a_{i,j})$ is the adjacency matrix of $G = Cay(\Gamma, S)$ with respect to the given ordering of the vertex set $V(G) = \Gamma$.

$$a_{i,j} = \begin{cases} 1, & \text{if } w_i \text{ is adjacent to } w_j \\ 0, & \text{if } w_i \text{ and } w_j \text{ are not adjacent} \end{cases}, & 0 \le i \le n-1, & 0 \le j \le n-1 \end{cases}$$

Then the vectors $(\psi_i(w_j))_{j=0,\dots,n-1}$, $0 \leq i \leq n-1$, represent an orthogonal basis of \mathbb{C}^n consisting of eigenvectors of A. To the eigenvector $(\psi_i(w_j))_{j=0,\dots,n-1}$ belongs the eigenvalue

$$\psi_i(S) = \sum_{s \in S} \psi_i(s).$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), #P94

There is a unique character ψ_{w_i} associated with every $w_i \in \Gamma$ according to (23). So we may assume in Lemma 7 that $\psi_i = \psi_{w_i}$ for $i = 0, \ldots, n-1$. Let us call the $n \times n$ -matrix

$$H(\Gamma) = (\psi_{w_i}(w_j)), \ 0 \le i \le n - 1, \ 0 \le j \le n - 1,$$

the character matrix of Γ with respect to the given ordering of the elements of Γ . Here we always assume that Γ is represented by (20) as a direct product of cyclic groups and that the elements of Γ are ordered lexicographically increasing. Then w_0 is the zero element of Γ . Moreover, by (23) the character matrix $H(\Gamma)$ becomes the Kronecker product of the character matrices of the cyclic factors of Γ ,

$$\Gamma = Z_{m_1} \otimes \cdots \otimes Z_{m_r} \text{ implies } H(\Gamma) = H(Z_{m_1}) \otimes \cdots \otimes H(Z_{m_r}).$$
(24)

We remind that the Kronecker product $A \otimes B$ of matrices A and B is defined by replacing the entry $a_{i,j}$ of A by $a_{i,j}B$ for all i, j. For every Cayley graph $G = Cay(\Gamma, S)$ the rows of $H(\Gamma)$ represent an orthogonal basis of \mathbb{C}^n consisting of eigenvectors of G, respectively A(G). The corresponding eigenvalues are obtained by $H(\Gamma)c_{S,\Gamma}$, the product of $H(\Gamma)$ and the characteristic (column) vector $c_{S,\Gamma}$ of S in Γ ,

$$c_{S,\Gamma}(i) = \begin{cases} 1, \text{ if } w_i \in S \\ 0, \text{ if } w_i \notin S \end{cases}, \quad 0 \le i \le n-1.$$

Consider the situation, when Γ is a cyclic group, $\Gamma = Z_n$, $n \ge 2$. Let ω_n be a primitive *n*-th root of unity. Setting r = 1 and $\zeta_1 = \omega_n$ in (23) we establish the character matrix $H(Z_n) = F_n$ according to the natural ordering of the elements $0, 1, \ldots, n-1$.

$$F_n = ((\omega_n)^{ij}), \ 0 \le i \le n-1, \ 0 \le j \le n-1$$

Observe that all entries in the first row and in the first column of F_n are equal to 1. For a divisor δ of n, $1 \leq \delta \leq n$, we simplify the notation of the characteristic vector of the gcd-set $S_{Z_n}(\delta)$ in Z_n to $c_{\delta,n}$,

$$c_{\delta,n}(i) = \begin{cases} 1, \text{ if } \gcd(i,n) = \delta \\ 0, \text{ otherwise} \end{cases}, \quad 0 \le i \le n-1.$$

For $\delta < n$ we have $0 \notin S_{Z_n}(\delta)$. So the Cayley graph $Cay(Z_n, S_{Z_n}(\delta))$ is well defined. It is integral by Corollary 1. The eigenvalues of this graph are the entries of $F_n c_{\delta,n}$. Therefore, this vector is integral, which is also trivially true for $\delta = n$,

$$F_n c_{\delta,n} \in Z^n$$
 for every positive divisor δ of n . (25)

The only quadratic primitive root is -1. This implies that $H(Z_2) = F_2$ is the elementary Hadamard matrix (see [12])

$$F_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} .$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), #P94

By (24) the character matrix of the *r*-fold direct product $Z_2 \otimes \cdots \otimes Z_2 = Z_2^r$ is

$$H(Z_2^r) = F_2 \otimes \cdots \otimes F_2 = F_2^{(r)},$$

the r-fold Kronecker product of F_2 with itself, which is also a Hadamard matrix consisting of orthogonal rows with entries ± 1 .

From now on let Γ be a gcd-group. By Theorem 3 we may assume

$$\Gamma = Z_2^r \otimes Z_n, \ r \ge 0, \ n \ge 2.$$
(26)

If we set p = n - 1 and $q = 2^r - 1$, then we have $|\Gamma| - 1 = 2^r n - 1 = qn + p$. We order the elements of Z_2^r , and Γ lexicographically increasing.

$$Z_{2}^{r} = \{a_{0}, a_{1}, \dots, a_{q}\},\$$

$$a_{0} = (0, \dots, 0, 0), a_{1} = (0, \dots, 0, 1), \dots, a_{q} = (1, \dots, 1, 1);$$

$$\Gamma = \{w_{0}, w_{1}, \dots, w_{qn+p}\},\$$

$$w_{0} = (a_{0}, 0), w_{1} = (a_{0}, 1), \dots, w_{p} = (a_{0}, p),$$

$$\dots$$

$$w_{qn} = (a_{q}, 0), w_{qn+1} = (a_{q}, 1), \dots, w_{qn+p} = (a_{q}, p).$$
(27)

The character matrix $H(\Gamma)$ with respect to the given ordering of elements becomes the Kronecker product of the character matrix $F_2^{(r)}$ of Z_2^r and the character matrix F_n of Z_n ,

$$H(\Gamma) = F_2^{(r)} \otimes F_n.$$

This means that $H(\Gamma)$ consists of disjoint submatrices $\pm F_n$, because $F_2^{(r)}$ has only entries ± 1 . The structure of $H(\Gamma)$ is displayed in Figure 1. Rows and columns are labelled with the elements of Γ . Observe that a label α at a row stands for the unique character ψ_{α} . The sign $\epsilon(j,l) \in \{1,-1\}$ of a submatrix F_n is the entry of $F_2^{(r)}$ in position $(j,l), 0 \leq j \leq q, 0 \leq l \leq q$.

	$(a_0,0)\cdots(a_0,p)$	•••	$(a_l,0)\cdots(a_l,p)$	•••	$(a_q, 0) \cdots (a_q, p)$
$(a_0, 0)$		•••		• • •	
	$\epsilon(0,0)F_n$	•••	$\epsilon(0,l)F_n$	• • •	$\epsilon(0,q)F_n$
(a_0, p)		•••		•••	
• • •		•••		• • •	•••
$(a_j, 0)$		•••		• • •	
	$\epsilon(j,0)F_n$	• • •	$\epsilon(j,l)F_n$	• • •	$\epsilon(j,q)F_n$
(a_j, p)		•••		•••	
• • •		•••		• • •	
$(a_q, 0)$		•••		• • •	
	$\epsilon(q,0)F_n$	•••	$\epsilon(q,l)F_n$	•••	$\epsilon(q,q)F_n$
(a_q, p)		•••		•••	

Figure 1: The structure of $H(Z_2^r \otimes Z_n)$.

Let $m = (m_1, \ldots, m_r, m_{r+1}), m_1 = \ldots = m_r = 2, m_{r+1} = n$. Suppose that $d = (d_1, \ldots, d_{r+1})$ is a tuple of positive divisors of $m_1, \ldots, m_{r+1}, d_i \in \{1, 2\}$ for $i = 1, \ldots, r, d_{r+1} = \delta$ divides n. If $x = (x_1, \ldots, x_{r+1}) \in \Gamma = Z_2^r \otimes Z_n$ and gcd(x, m) = d, then x_1, \ldots, x_r are uniquely determined,

$$x_i = \begin{cases} 1, \text{ if } d_i = 1 \\ 0, \text{ if } d_i = 2 \end{cases}$$
 for $i = 1, \dots, r$.

This means that the divisor tuple d of m determines a unique element $a_l \in \mathbb{Z}_2^r$ such that

$$S_{\Gamma}(d) = \{(a_l, b) : b \in Z_n, \ \gcd(b, n) = \delta\} \\ = \{w_i \in \Gamma : i = ln + b, \ 0 \le b \le p = n - 1, \ \gcd(b, n) = \delta\}.$$

The characteristic vector $c_{d,\Gamma}$ of $S_{\Gamma}(d)$ in Γ may have nonzero entries only for positions $i = ln + b, \ b \in Z_n$. Its restriction to these positions is $x_{\delta,n}$, the characteristic vector of $S_{Z_n}(\delta)$ in Z_n . The vector $H(\Gamma)c_{d,\Gamma}$ is composed of 2^r disjoint vectors $\pm F_n c_{\delta,n}$, which by (25) have only integral entries. So $H(\Gamma)c_{d,\Gamma}$ has also only integral entries,

$$H(\Gamma)c_{d,\Gamma} \in Z^{|\Gamma|}$$
 for every divisor tuple d of m . (28)

For different divisor tuples $d^{(1)}, \ldots, d^{(k)}$ of m the sets of positions of $c_{d^{(1)},\Gamma}, \ldots, c_{d^{(k)},\Gamma}$ with entries 1 are pairwise disjoint. Therefore, these vectors are linearly independent in the rational space $\mathbb{Q}^{|\Gamma|}$.

From now on we abbreviate $H(\Gamma) = H$, $H = (h_{\alpha,\beta})$, $0 \le \alpha \le |\Gamma| - 1$, $0 \le \beta \le |\Gamma| - 1$. We continue to use the notation established for (27). By \tilde{D} we denote the set of all positive divisor tuples of m = (2, ..., 2, n). The transpose of a vector v is v^T . It is easily verified that

$$\mathcal{A} = \{ v \in \mathbb{Q}^{|\Gamma|} : Hv \in \mathbb{Q}^{|\Gamma|} \}$$

is a subspace of the rational space \mathbb{Q}^{Γ} . By (28) we see that

$$\mathcal{D} = \operatorname{span}\{c_{d,\Gamma}: \ d \in D\} \subseteq \mathcal{A}.$$
(29)

As $\{c_{d,\Gamma}: d \in \tilde{D}\}$ is a basis of \mathcal{D} , we have $\dim(\mathcal{D}) = |\tilde{D}| = 2^r \tau(n)$, where $\tau(n)$ is the number of positive divisors of n. The next lemma will enable us to show $\mathcal{D} = \mathcal{A}$.

Lemma 8. Let the elements of $\Gamma = Z^r \otimes Z_n$ be ordered as in (27), $\Gamma = \{w_0, \ldots, w_{qn+p}\}$, $q = 2^r - 1$, p = n - 1, and let the character matrix $H = (h_{\alpha,\beta})$ of Γ be established with respect to this ordering of the elements (Figure 1). Moreover, let $v = (v_0, \ldots, v_{qn+p})^T \in \mathcal{A}$, $u = (u_0, \ldots, u_{qn+p})^T = Hv$. Then

$$gcd(w_s, m) = gcd(w_t, m)$$
 implies $u_s = u_t$ for every $s, t \in \{0, 1, \dots, qn + p\}$.

Proof. Notice that $v \in \mathcal{A}$ and u = Hv implies that the entries of v and u are rationals. Suppose $gcd(w_s, m) = gcd(w_t, m) = d$, $d = (d_1, \ldots, d_{r+1})$, $d_i \in \{1, 2\}$ for $i = 1, \ldots, r$, $d_{r+1} = \delta$ a positive divisor of n. As explained earlier, d uniquely determines elements $a_l \in Z_2^r$ and $b_1, b_2 \in Z_n$ such that

$$w_s = (a_l, b_1), \ w_t = (a_l, b_2), \ s = ln + b_1, \ t = ln + b_2, \ \gcd(b_1, n) = \gcd(b_2, n) = \delta.$$
 (30)

Rows s and t of H belong to the same row of submatrices $\epsilon(l, g)F_n$, $0 \le g \le q$ in Figure 1. We remind that $F_n = (\omega_n^{ij})$, ω_n a primitive n-th root of unity, $0 \le i \le p$, $0 \le j \le p$, p = n - 1.

$$u_{s} = \sum_{k=0}^{qn+p} h_{s,k} v_{k} = \sum_{g=0}^{q} \sum_{f=0}^{p} h_{ln+b_{1},gn+f} v_{gn+f} ,$$
$$u_{s} = \sum_{g=0}^{q} \epsilon(l,g) \sum_{f=0}^{p} \omega_{n}^{b_{1}f} v_{gn+f} .$$
(31)

Similarly we deduce

$$u_t = \sum_{g=0}^{q} \epsilon(l,g) \sum_{f=0}^{p} \omega_n^{b_2 f} v_{gn+f} .$$
 (32)

Setting $\omega_n^{b_1} = x$ in (31) shows that $\omega_n^{b_1}$ is a root of the rational polynomial

$$\psi(x) = \sum_{g=0}^{q} \epsilon(l,g) \sum_{f=0}^{p} x^{f} v_{gn+f} - u_{s}.$$

As $gcd(b_1, n) = \delta$ by (30), we know that $\omega_n^{b_1}$ is an $(n/\delta) = \delta'$ -th root of unity. The irreducible polynomial over the rationals for a δ' -th root of unity is the cyclotomic polynomial $\Phi_{\delta'}$ (see [6]). Therefore, we have $\psi(x) = M(x)\Phi_{\delta'}(x)$ with a rational polynomial M(x). Now we see by (30), $gcd(b_2, n) = \delta$, that $\omega_n^{b_2}$ is also a δ' -th root of unity. So $\omega_n^{b_2}$ is also a root of $\Phi_{\delta'}(x)$ and consequently also of $\psi(x)$.

$$\psi(\omega_n^{b_2}) = \sum_{g=0}^q \epsilon(l,g) \sum_{f=0}^p \omega_n^{b_2f} v_{gn+f} - u_s = 0.$$

Finally, (32) implies $u_s = u_t$.

Corollary 2. Assume that the conditions of Lemma 8 are satisfied. Let \tilde{D} be the set of all positive divisor tuples of m = (2, ..., 2, n). For $d \in \tilde{D}$ denote by $c_{d,\Gamma}$ the characteristic vector of $S_{\Gamma}(d) = \{w \in \Gamma : \gcd(w, m) = d\}$ in Γ , $\mathcal{D} = span\{c_{d,\Gamma} : d \in \tilde{D}\}$. Then we have

$$u = Hv \in \mathcal{D}$$
 for every $v \in \mathcal{A}$.

Proof. Suppose $d \in \tilde{D}$. By Lemma 8 the vector u = Hv has the same entry λ_d in every position $j, w_j \in S_{\Gamma}(d)$. The sets $S_{\Gamma}(d), d \in \tilde{D}$ induce a partition of the set of all possible positions $\{0, 1, \ldots, |\Gamma| - 1\} = Z_{|\Gamma|}$ into disjoint subsets.

$$S_{|\Gamma|} = \bigcup_{d \in \tilde{D}} \{ j \in Z_{|\Gamma|} : w_j \in S_{\Gamma}(d) \}$$

The electronic journal of combinatorics $\mathbf{18}$ (2011), #P94

This implies

$$u = \sum_{d \in \tilde{D}} \lambda_d c_{d,\Gamma} \in \mathcal{D}.$$

Lemma 9. With the notations introduced for Lemma 8 and its corollary we have $\mathcal{D} = \mathcal{A}$.

Proof. By (29) \mathcal{D} is a subspace of the linear space $\mathcal{A} \subseteq \mathbb{Q}^{|\Gamma|}$. Consider the mapping Δ defined by $\Delta(v) = Hv$ for $v \in \mathcal{A}$. Corollary 2 shows that Δ maps \mathcal{A} in \mathcal{D} . As the rows of H are pairwise orthogonal and nonzero, this matrix is regular. Therefore, Δ is bijective, $\dim(\mathcal{D}) = \dim(\mathcal{A}), \mathcal{D} = \mathcal{A}$.

As before let \tilde{D} be the set of all positive divisor tuples d of m = (2, ..., 2, n). Remember that $\{c_{d,\Gamma}: d \in \tilde{D}\}$ is a basis of $\mathcal{D} = \mathcal{A}$, $\dim(\mathcal{A}) = |\tilde{D}|$.

Lemma 10. Let $\Gamma = Z_2^r \otimes Z_n$, $S \subseteq \Gamma$, $0 \notin S$, -S = S. The Cayley graph $G = Cay(\Gamma, S)$ is integral, if and only $S = \emptyset$ or if there are positive divisor tuples $d^{(1)}, \ldots, d^{(k)}$ of $m = (2, \ldots, 2, n)$ such that $S = S_{\Gamma}(D)$ for $D = \{d^{(1)}, \ldots, d^{(k)}\}$.

Proof. For $S = S_{\Gamma}(D)$ the Cayley graph $G = Cay(\Gamma, S)$ is a gcd-graph, which is integral by Corollary 1.

To prove the converse, we skip the trivial case of G being edgeless and assume that G is integral, $S \neq \emptyset$. Let $c_{S,\Gamma}$ be the characteristic vector of S with respect to the same ordering of the elements of Γ which we used to establish the character matrix $H = H(\Gamma)$, see Figure 1. By Lemma 7 the entries of $Hc_{S,\Gamma}$ are the eigenvalues of G, which are integral. This means $c_{S,\Gamma} \in \mathcal{A}$. Lemma 9 implies that there are positive, distinct divisor tuples $d^{(1)}, \ldots, d^{(k)}$ of m such that

$$c_{S,\Gamma} = \lambda_1 c_{d^{(1)},\Gamma} + \dots + \lambda_k c_{d^{(k)},\Gamma}, \ \lambda_j \in \mathbb{Q}, \ \lambda_j \neq 0 \text{ for } j = 1,\dots,k.$$

All vectors $c_{d^{(1)},\Gamma}, \ldots, c_{d^{(k)},\Gamma}$ have only 0,1-entries and their sets of positions with entries 1 are pairwise disjoint. As $c_{S,\Gamma}$ has also only 0,1-entries, we must have $\lambda_1 = \cdots = \lambda_k = 1$. Then S becomes the disjoint union

$$S = S_{\Gamma}(d^{(1)}) \cup \dots \cup S_{\Gamma}(d^{(k)}) = S_{\Gamma}(D)$$

Theorem 4. Let Γ be a gcd-group, $S \subseteq \Gamma$, $0 \notin S$, -S = S. The Cayley graph $G = Cay(\Gamma, S)$ is integral, if and only if S belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of Γ .

Proof. In [10] we showed that $S \in B(\Gamma)$ implies that G is integral.

To prove the converse, we assume $S \neq \emptyset$ and $G = Cay(\Gamma, S)$ integral. By Theorem 3 we know that there is a group $\Gamma' = Z_2^r \otimes Z_n$ and a group isomorphism $\varphi : \Gamma \to \Gamma'$. If we set $S' = \varphi(S)$ and $G' = Cay(\Gamma', S')$, then φ becomes also a graph isomorphism $\varphi : G \to G'$. Therefore, G' is integral and S' is a gcd-set of Γ' by Lemma 10, $S' \in B_{gcd}(\Gamma') = B(\Gamma')$. The group isomorphism φ provides a bijection between the sets in $B(\Gamma')$ and in $B(\Gamma)$. So we conclude $S \in B(\Gamma)$.

Example. We have shown that for a gcd-group Γ the integral Cayley graphs over Γ are exactly the gcd-graphs over Γ . For an arbitrary group Γ the number of integral Cayley graphs over Γ may be considerably larger than the number of gcd-graphs over Γ .

Let p be a prime number, $p \ge 5$. We determine the number of nonisomorphic gcdgraphs over $\Gamma = Z_p \otimes Z_p$. There are three possible divisor tuples of (p, p) for the construction of a gcd-graph over Γ : (1, 1), (1, p), (p, 1). From these tuples we can form 8 sets of divisor tuples:

$$D_1 = \emptyset, \ D_2 = \{(1,1)\}, \ D_3 = \{(1,p)\}, \ D_4 = \{(p,1)\}, \ D_5 = \{(1,1), (1,p)\}, \ D_6 = \{(1,1), (p,1)\}, \ D_7 = \{(1,p), (p,1)\}, \ D_8 = \{(1,1), (1,p), (p,1)\}.$$

Obviously, D_3 and D_4 generate isomorphic gcd-graphs over Γ , so do D_5 and D_6 . Therefore, we cancel D_4 and D_6 . The cardinalities $|S_{\Gamma}(D_i)|$ for $i \in \{1, 2, 3, 5, 7, 8\} = M$ are in ascending order:

0,
$$p-1$$
, $2(p-1)$, $(p-1)^2$, $p(p-1)$, p^2-1 .

These are the degrees of regularity of the corresponding gcd-graphs $Cay(\Gamma, S_{\Gamma}(D_i)), i \in M$. As the above degree sequence is strictly increasing for $p \geq 5$, there are exactly 6 nonisomorphic gcd-graphs over $\Gamma = Z_p \otimes Z_p$.

Every element of $\Gamma = Z_p \otimes Z_p$ has order p except for the zero element (0,0). Denote by [a] the cyclic subgroup generated by a. There are nonzero elements a_1, \ldots, a_{p+1} in Γ such that

$$\Gamma = U_1 \cup \cdots \cup U_{p+1}, \ U_i = [a_i], \ U_i \cap U_j = \{(0,0)\} \text{ for } i \neq j.$$

The sets

$$S_0 = \emptyset, \ S_i = (U_1 \cup \dots \cup U_i) \setminus \{(0,0)\}, \ 1 \le i \le p+1,$$

belong to the Boolean algebra $B(\Gamma)$. Therefore, the Cayley graphs $G_i = Cay(\Gamma, S_i), 0 \le i \le p + 1$, are integral. They are nonisomorphic, because they have pairwise distinct degrees of regularity: degree $(G_i) = i(p-1), 0 \le i \le p + 1$. As there are exactly 6 nonisomorphic gcd-graphs over Γ , we conclude that there are at least (p+2) - 6 = p - 4 nonisomorphic integral Cayley graphs over Γ , which are not gcd-graphs. An interesting task would be to determine for every prime number p the number of all nonisomorphic integral Cayley graphs over $\Gamma = Z_p \otimes Z_p$.

References

- [1] ABDOLLAHI, A., AND VATANDOOST, E. Which Cayley graphs are integral? *Electronic J. Comb.* 16(1) (2009), R122, 1–17.
- [2] AHMADI, O., ALON, N., BLAKE, L. F., AND SHPARLINSKI, I. E. Graphs with integral spectrum. *Linear Alg. Appl.* 430 (2009), 547–552.
- [3] BALINSKA, K., CVETKOVIĆ, D., RODOSAVLJEVIĆ, Z., SIMIĆ, S., AND STE-VANOVIĆ, D. A survey on integral graphs. Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat 13 (2003), 42–65.

- [4] BASIĆ, M., PETKOVIĆ, M., AND STEVANOVIĆ, D. Perfect state transfer in integral circulant graphs. *Appl. Math. Letters* 22 (2009), 1117–1121.
- BIGGS, N. Algebraic graph theory. Second Edition. Cambridge Mathematical Library. Cambridge University Press, 1993.
- [6] COHN, P. M. Basic Algebra. Springer, London, 2003.
- [7] GODSIL, C., AND ROYLE, G. Algebraic graph theory. Graduate Texts in Mathematics. Vol 207. Springer, 2001.
- [8] HARARY, F., AND SCHWENK, A. J. Which graphs have integral spectra? *Lecture* Notes in Mathematics 406, Springer Verlag (1974), 45–50.
- [9] ILIĆ, A. The energy of unitary cayley graphs. *Linear Algebra and its Applications* 431 (2009), 1881–1889.
- [10] KLOTZ, W., AND SANDER, T. Integral Cayley graphs over abelian groups. *Electronic J. Combinatorics* 17 (2010), R81, 1–13.
- [11] KLOTZ, W., AND SANDER, T. Some properties of unitary Cayley graphs. *Electronic J. Combinatorics* 14 (2007), R45, 1–12.
- [12] VAN LINT, J. H., AND WILSON, R. M. A course in combinatorics. Cambridge University Press, 1992.
- [13] LOVÁSZ, L. Spectra of graphs with transitive groups. Priodica Mathematica Hungarica 6 (1975), 191–195.
- [14] ROSE H. E. A course in number theory. Oxford Science Publications. Oxford University Press, 1994.
- [15] SAXENA, N., SEVERINI, S., AND SHPARLINSKI, I. Parameters of integral circulant graphs and periodic quantum dynamics. *Intern. Journ. of Quantum Information 5* (2007), 417–430.
- [16] So, W. Integral circulant graphs. Discrete Mathematics 306 (2005), 153–158.