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Abstract

It is shown that balanced n-bit Gray codes can be constructed for all positive integers
n. A balanced Gray code is one in which the bit changes are distributed as equally as
possible among the bit positions. The strategy used is to prove the existence of a certain
subsequence which will allow successful use of the construction proposed by Robinson
and Cohn in 1981. Although Wagner and West proved in 1991 that balanced Gray code
schemes exist when n is a power of 2, the question for general n has remained open
since 1980 when it first attracted attention.

1 Introduction

An n-bit binary Gray code is an exhaustive listing of n-bit strings in which successive strings

differ in exactly one bit position. Alternatively, an n-bit binary Gray code can be viewed as

a Hamilton path in the n-cube and a cyclic binary Gray code as a Hamilton cycle. One such

cyclic Gray code, the Binary Reflected Gray Code (BRGC), was patented by Frank Gray

[1] as a solution to a communications problem involving digitization of analogue data. Since
∗Supported in part by NSF grant DMS9302505
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then, binary Gray codes have been used in a wide variety of other applications including

databases, experimental design, and puzzle solving [4, 5, 6, 7, 8].

As discussed, for example, in [7] the BRGC scheme, though sufficient to solve the com-

munications problem, is not adequate for certain other applications because of its lack of

“uniformity”. The term “uniformity” refers to the manner in which the bits change in the

Gray code. Several different measures of uniformity and techniques to construct Gray codes

satisfying these measures have been proposed in literature. Two such measures are the dis-

tribution of “transition counts” [2, 5, 6, 8] and the “gap” [7] of a code. Gray codes which

are uniform with respect to the former measure are referred to as balanced Gray codes.

To make this notion precise, associate with an n-bit cyclic Gray code Ln = w1, w2, . . . w2n ,

the transition sequence of bit positions s = s1, s2, . . . , s2n , where for 1 ≤ i ≤ 2n − 1, si is

the bit position in which wi and wi+1 differ and s2n is the position in which w2n and w1

differ. The transition count of bit i, TC(i), in the Gray code Ln, is the number of times i

occurs in s.

For example, the BRGC is defined by: L1 = 0, 1; and for n > 1, Ln = Ln−1 · 0, L−1
n−1 · 1,

where ‘·’ denotes concatenation and L−1
n−1 lists the elements of Ln−1 from last to first.

So, L2 = 00, 10, 11, 01 and L3 = 000, 100, 110, 010, 011, 111, 101, 001. In Ln, the transition

counts are given by: TC(n) = 2 and TC(i) = 2n−i for 1 ≤ i ≤ n− 1.

A Gray code is called totally balanced if for any two bit positions i and j, TC(i) = TC(j).

A necessary condition for this to hold for an n-bit Gray code is that n is a power of 2. If

n is not a power of 2, following [2], we will call a Gray code balanced if for any two bit

positions i and j, |TC(i) − TC(j)| ≤ 2. Thus, the BRCG is totally balanced for n = 1, 2,

balanced for n = 1, 2, 3, but unbalanced for n ≥ 4.

It has been an open question whether balanced Gray codes exist for all values of n.

Several techniques for construction of balanced Gray codes have been proposed. These

techniques can broadly be classified into two types. Indirect methods [6, 8] involve the

transformation of an existing Gray code to obtain one with the required properties, but

they do not guarantee balanced Gray codes. Direct methods [2, 9] involve construction of

larger Gray codes from smaller ones. The construction of Wagner and West [9], guarantees a

balanced Gray code when the number of bits, n, is a power of two. An ingenious construction

proposed in [2] produces a Gray code for all n, but balancing the code requires, for each
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n, the existence of a subsequence of the transition sequence of a balanced (n− 2)-bit Gray

code satisfying certain constraints. Robinson and Cohn claim without proof in [2] that such

a subsequence can always be found.

In this paper, we re-examine the construction of Robinson and Cohn and prove that

for each n, we can satisfy the constraints required to produce a balanced n-bit Gray code.

When n is a power of 2, the resulting Gray code will be totally balanced.

We review the construction of Robinson and Cohn in Section 2. In Section 3, we show

how to find the subsequence which can be used with the Robinson-Cohn construction to

produced balanced Gray codes for all n. Suggestions for further investigation follow in

Section 4.

2 The Construction of Robinson and Cohn

We describe the direct technique suggested by Robinson and Cohn for the construction of

balanced Gray codes. The technique is an extension of Gilberts ultracomposite method [3]

for constructing the BRGC for n-cubes by combining Hamilton cycles from two (n − 1)-

cubes.

In Robinson and Cohn’s approach, a Hamilton path for an n-cube is constructed by

combining Hamilton paths from four copies of the (n− 2)-cube. A stepwise description of

the construction is as follows.

1. Consider the transition sequence

s = (s1, s2, . . . , s2n−2)

of an arbitrary (n− 2)-bit Gray code. Select a subsequence t = (t1, . . . , tl) of s, with

l even, such that t1 and t2 are consecutive elements of s, as are tl−1 and tl.

2. Let the four copies of the (n− 2)-cube from which the n-cube is composed be labeled

00, 01, 11, 10, according to the last two bits of their vertices. In each of the four

subcubes, consider the Gray codes defined, respectively, by the transition sequences

s(00) = s(01) = s(11) = s(10) = s. Delete transitions in the following fashion.
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Figure 1: The Robinson-Cohn construction (l = 8). Deleted ti transitions
are dotted. In color, added transitions are blue, included ti transitions are
green, excluded ti are red (and dotted), and original transitions are black.
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• From s(00), delete the elements corresponding to the odd-indexed transitions

t1, t3, . . . , tl−1 of the subsequence t selected in (1).

• From s(01), delete the elements corresponding to t2, t3, . . . , tl.

• From s(11), delete the elements corresponding to the even-indexed transitions

t2, t4, . . . , tl.

• From s(10), delete just the element corresponding to transition t1.

3. Now connect the four subcubes as shown in Figure 2.

It can be checked that the construction described above indeed gives an n-bit Gray code.

The distribution of the transition counts in this code depends on the choice of the selected

subsequence t. If TCn(i) denotes the transition count of bit position i in the n-bit Gray

code, it is clear that

TCn(n− 1) = TCn(n) = l, (1)

where l is the length of the subsequence t. Also, every transition in the subsequence t is

deleted once from two different sequences s(ij). For instance, t1 is deleted twice, once from

s(00) and once from s(10). Therefore, if a bit position i occurs b times in t, 2b transitions for

that particular bit position will be deleted. Consequently, the final transition count for bit

position i will be

TCn(i) = 4TCn−2(i)− 2b, (2)

where TCn−2(i) is the transition count for bit position i in the (n−2)-bit Gray code defined

by transition sequence s. So if the subsequence t is chosen strategically, it may be possible

that steps 1-3 will result in a balanced n-bit Gray code. The claim of Robinson and Cohn is

that if the original (n− 2)-bit binary code is balanced, then it is always possible to choose

such a subsequence.

3 Choosing the Subsequence

In this section, we will show how to use the construction of Robinson and Cohn to produce,

for all positive integers n, an n-bit Gray code in which every bit position has transition

count either an or an + 2.
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For n ≥ 1, let an be the unique even integer satisfying

an ≤
2n

n
< an + 2. (3)

Note that if m = b2n/nc is even, then an = m, otherwise, an = m− 1.

We begin by defining certain constants associated with the construction. Let cn, dn de-

note the number of bit positions which would have transition counts an, an+2, respectively,

in the required Gray code. Note that the unique integers satisfying both

cn + dn = n (4)

and

cnan + dn(an + 2) = 2n (5)

are

cn = n− dn; dn =
2n − nan

2
. (6)

Since an = 2b2n−1/nc, dn is just the residue of 2n−1 modulo n, so

cn > 0. (7)

In the proof of the construction, we make use of one further constant, for n ≥ 3:

kn =
4an−2 − an

2
. (8)

Values of these constants are shown in Table 1 for n = 1, . . . , 10.

Lemma 1 For n ≥ 7, an−2 ≥ kn + 2.

Proof. Using (8),

an−2 − kn − 2 = an−2 − (4an−2 − an)/2− 2 = an/2− an−2 − 2.

From (3), an > 2n/n − 2 and an−2 ≤ 2n−2/(n− 2), so

an−2 − kn − 2 >
2n−1

n
− 2n−2

n− 2
− 3 =

2n−2(n− 4)
n(n− 2)

− 3.

which is greater than −1 for n ≥ 7. 2
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n 2n an kn cn dn

1 2 2 1 0
2 4 2 2 0
3 8 2 3 2 1
4 16 4 2 4 0
5 32 6 1 4 1
6 64 10 3 4 2
7 128 18 3 6 1
8 256 32 4 8 0
9 512 56 8 5 4

10 1024 102 13 8 2

Table 1: Values of constants.

4-bit Balanced Gray Code 5-bit Balanced Gray Code

0000 00000 10111
1000 10000 10101
1100 11000 10001
1101 11100 11001
1111 11110 11101
1110 11111 01101
1010 01111 01100
0010 01110 01000
0110 00110 01010
0100 00010 11010
0101 00011 11011
0111 01011 10011
0011 01001 10010
1011 00001 10110
1001 00101 10100
0001 00111 00100

Figure 2: Balanced Gray codes for n = 4, 5.
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Lemma 2 If for each n ≥ 6 we can find integers vn, yn satisfying both conditions

(A) 0 ≤ vn ≤ cn−2; 0 ≤ yn ≤ dn−2

and

(B) (cn−2 − vn)kn + vn(kn − 1) + (dn−2 − yn)(kn + 3) + yn(kn + 4) = l ∈ {an, an + 2},

then for all n ≥ 1, there is an n-bit Gray code in which every bit position changes an or

an + 2 times.

Proof. For n = 1, 2, 3, the BRGC scheme gives a Gray code satisfying this property. In

Figure 2 we exhibit Gray codes for n = 4, 5 in which every bit position has transition count

an or an + 2. Let n ≥ 6 and assume inductively that an (n− 2)-bit Gray code exists with

transition sequence s = s1, s2, . . . , s2n−2 , in which every bit position occurs either an−2 or

an−2 + 2 times. Further assume the existence of integers vn, yn satisfying conditions (A)

and (B) of the lemma. By (5), cn−2 of the bit positions 1, . . . , n− 2 have transition count

an−2 and dn−2 have transition count an−2 + 2. Partition the bit positions with transition

count an−2 into two sets, Un, Vn, of sizes cn−2 − vn and vn, respectively. Partition the bit

positions with transition count an−2 + 2 into two sets, Xn, Yn, of sizes dn−2 − yn and yn,

respectively.

We claim that one can construct a subsequence t = t1, . . . , tl of s so that for each bit

position i ∈ {1, . . . , n− 2}, the number of occurrences of i in t is

kn if i ∈ Un;
kn − 1 if i ∈ Vn;
kn + 3 if i ∈ Xn;
kn + 4 if i ∈ Yn;

(9)

and furthermore so that t includes the first two and last two elements of s:

t1 = s1; t2 = s2; tl−1 = s2n−2−1; tl = s2n−2. (10)

We can guarantee that (9) is satisfied if, when i ∈ Un ∪ Vn,

TCn−2(i) = an−2 ≥ kn

and otherwise, if i ∈ Xn ∪ Yn,

TCn−2(i) = an−2 + 2 ≥ kn + 4.
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Note from Table 1 that for n = 6, dn−2 = 0, so that only an−2 ≥ kn need be satisfied, which

it is. For n ≥ 7, we have an−2 ≥ kn + 2 by Lemma 1. To see that (10) can be satisfied as

well, note that no bit position appears more than twice among {s1, s2, s2n−2−1, s2n−2}. It

can be checked from (3), (8), and Table 1 that for n ≥ 6, we have kn ≥ 3. Thus, each bit

position is required by (9) to appear at least kn − 1 ≥ 2 times in the subsequence t. So,

there is no difficulty in arranging for t to satisfy (10) as well as (9), as claimed.

We henceforth assume that t has been chosen to satisfy (9) and (10). By condition (B),

t has length l ∈ {an, an + 2}. Now, from the sequences s and t, use the construction of

Robinson and Cohn to construct an n-bit Gray code. By (1) and (2), in the resulting Gray

code, the transition counts of the bit positions are given by

TCn(i) =



4an−2 − 2kn = an if i ∈ Un
4an−2 − 2(kn − 1) = an + 2 if i ∈ Vn
4(an−2 + 2)− 2(kn + 3) = an + 2 if i ∈ Xn

4(an−2 + 2)− 2(kn + 4) = an if i ∈ Yn
l ∈ {an, an + 2} if i ∈ {n− 1, n},

(11)

which are all in {an, an + 2}. It is straightforward to confirm that
∑n
i=1 TCn(i) = 2n. 2

It remains to show that the hypotheses of Lemma 2 can be satisfied.

Theorem 1 For all n ≥ 1, there is an n-bit Gray code in which every bit position changes

an or an + 2 times.

Proof. This is clear for n = 1, 2, 3 and, from Figure 2, for n = 4, 5. For n ≥ 6, we show

that there exist integers vn, yn satisfying both (A) and (B) of Lemma 2.

Condition (B) simplifies via (6) and (8) to

an + dn − dn−2 − vn + yn ∈ {an, an + 2}

which is equivalent to

dn−2 + vn − yn ∈ {dn, dn − 2}. (12)

To satisfy condition (A), we are free to select vn ∈ {0, 1, . . . , cn−2} and yn ∈ {0, 1, . . . , dn−2}.
Thus, dn−2 +vn−yn can assume any integer value in the closed interval [dn−2−dn−2, dn−2 +

cn−2] = [0, n− 2]. It remains to show that either dn or dn − 2 lies in this interval, but this

follows immediately from 0 ≤ dn ≤ n− 1.

Specifically, vn and yn can be chosen as follows:
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• If dn−2 ≥ dn then set vn = 0 and yn = dn−2 − dn;

• otherwise, if cn−2 + dn−2 − dn ≥ 0 then set yn = 0 and vn = dn − dn−2;

• otherwise, set yn = 0 and vn = dn − dn−2 − 2.

In each case, it can be checked that (12) is satisfied and that vn ∈ {0, 1, . . . , cn−2} and

yn ∈ {0, 1, . . . , dn−2}. We use the fact that cn > 0 from (7), so

cn−2 + dn−2 − dn = n− 2− dn = cn − 2 ≥ −1

Thus, if neither of the first two cases hold,

dn − dn−2 = cn−2 + 1 ≥ 2.

2

We note that the last case in the proof of Theorem 1 can occur only if n− 2− dn = −1,

that is, only if the residue of 2n−1 modulo n is −1. We suspect that this never happens for

n ≥ 1.

Note from (3) and (6) that when n is a power of 2, dn = 0, so the Gray code of our

construction is totally balanced. This gives an alternative to the construction of [9] when

n is a power of 2.

Corollary 1 For all n ≥ 1, if n is a power of two, the construction of Lemma 2 and

Theorem 1 gives an n-bit Gray code in which every bit position changes 2n/n times.

4 Concluding Remarks

Is it possible, for all n, to construct a Gray code in which, for any bit positions i and j,

|TC(i)− TC(j)| ≤ 1? Another problem, suggested by one of the referees, is to determine

under what conditions a given partition of 2n − 1 into n positive integers can represent the

transition counts of a Gray code (or, a partition of 2n into n even integers for a cyclic Gray

code.)
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