
A BIJECTIVE PROOF OF THE HOOK-CONTENT

FORMULA FOR SUPER SCHUR FUNCTIONS

AND A MODIFIED JEU DE TAQUIN

C. Krattenthaler
†

Institut für Mathematik der Universität Wien,
Strudlhofgasse 4, A-1090 Wien, Austria.

e-mail: KRATT@Pap.Univie.Ac.At

Submitted: February 6, 1995; Accepted: July 25, 1995

Dedicated to Dominique Foata

��������� A bijective proof of the product formula for the principal specialization of super
Schur functions (also called hook Schur functions) is given using the combinatorial description
of super Schur functions in terms of certain tableaux due to Berele and Regev. Our bijective
proof is based on the Hillman–Grassl algorithm and a modified version of Schützenberger’s
jeu de taquin. We then explore the relationship between our modified jeu de taquin and a
modified jeu de taquin by Goulden and Greene. We define a common extension and prove
an invariance property for it, thus discovering that both modified jeu de taquins are, though
different, equivalent.

1. Introduction. Let λ be a partition, i.e. λ = (λ1, λ2, . . . , λr) is a sequence of integers
with λ1 ≥ λ2 ≥ · · · ≥ λr > 0. The super Schur function Sλ(x,y) (or hook Schur function),
where x = (x1, x2, . . .) and y = (y1, y2, . . .) are two sequences of indeterminates, is defined
by

Sλ(x,y) = det
1≤i,j≤r

(Sλi−i+j(x,y)), (1.1)

where the series Sm(x,y) are determined by their generating function

∑
m≥0

Sm(x,y)zm =
∏
i≥1

1 + yiz

1− xiz
. (1.2)

1991 Mathematics Subject Classification. Primary 05A15; Secondary 05A17, 05A30, 05E10, 05E15,
11P81.

Key words and phrases. Plane partitions, tableaux, hook-content formula, Hillman–Grassl algorithm,
jeu de taquin, super Schur function.
†Supported in part by EC’s Human Capital and Mobility Program, grant CHRX-CT93-0400 and the
Austrian Science Foundation FWF, grant P10191-PHY

1

�	

�
������ ������ �� ������������ � ��� ������� ���� 2

Super Schur functions appear naturally in the representation theory of Lie superalgebras
(cf. [2, 3, 9, 10, 11, 17]), and were also discovered independently under the name of
supersymmetric polynomials [14].

In order to be able to state the formula alluded to in the title, we have to recall some basic
notions from partition theory. The Ferrers diagram of a partition λ = (λ1, λ2, . . . , λr) is an
array of cells with r left-justified rows and λi cells in row i. Figure 1.a shows the Ferrers
diagram corresponding to (4, 3, 3, 1). The conjugate of λ is the partition (λ′1, . . . , λ′λ1

)
where λ′j is the length of the j-th column in the Ferrers diagram of λ. We label the cell
in the i-th row and j-th column of (the Ferrers diagram of) λ by the pair (i, j). Also, if
we write ρ ∈ λ we mean ‘ρ is a cell of λ’. The hook length hρ of a cell ρ = (i, j) of λ is
(λi − j) + (λ′j − i) + 1, the number of cells in the hook of ρ, which is the set of cells that
are either in the same row as ρ and to the right of ρ, or in the same column as ρ and below
ρ, ρ included. The content cρ of a cell ρ = (i, j) of λ is j − i.

1 3 3 3

2 1 3

4 2 3

2

a. Ferrers diagram b. super semistandard tableau

Figure 1

Now we are in the position to state the hook-content formula for the principal special-
ization of super Schur functions.

Theorem 1. Let λ = (λ1, λ2, . . . , λr) be a partition. For the specialization xi = aqi,
yi = bqi, i = 1, 2, . . . , in the super Schur function Sλ(x,y) there holds

Sλ((aq, aq2, aq3, . . .), (bq, bq2, bq3, . . .)) = q
�r
i=1 iλi

∏
ρ∈λ

a+ bqcρ

1− qhρ . (1.3)

Theorem 1 can be found, as everything about symmetric functions, in a slightly different,
but equivalent form, in Macdonald’s book [13, p. 27, Ex. 5, p. 45, Ex. 3].

For our bijective proof of this hook-content formula we use the combinatorial description
of super Schur functions in terms of what I call super semistandard tableaux (see section 2
for the definition), originally introduced by Berele and Regev [2] under the name of (k, l)-
semistandard tableaux , a name however which does not make sense in our context. Our
proof is based on the Hillman–Grassl algorithm [8] and on Schützenberger’s [18] jeu de
taquin. It is inspired by our bijective proof [12] of Stanley’s hook-content formula for
the generating function for column-strict reverse plane partitions of a given shape with
bounded entries. Though there are quite a few similarities with [12], it turns out that

�	

�
������ ������ �� ������������ � ��� ������� ���� 3

the algorithms and arguments in [12] have to be adapted quite a bit in order to provide a
bijective proof of (1.3).

We recall all the needed tableau and plane partition definitions in section 2. Then,
in section 3, we present our bijective proof of the hook-content formula (1.3) for super
Schur functions. In the appendix we carry out a complete example for our bijection. After
a first version of this article was written, I discovered that a jeu de taquin procedure
similar to ours already appeared in a paper by Goulden and Greene [7]. In fact, they are
different algorithms , but it turns out that as mappings they are the same. We explore the
relationship between the two algorithms in section 4. In order to prove the equivalence
of the two algorithms, we define a joint extension of the algorithms, and establish an
invariance property of the underlying modified jeu de taquin.

2. Super semistandard tableaux. Super semistandard tableaux are hybrids of
column-strict reverse plane partitions and row-strict reverse plane partitions. We are going
to define the latter first. Let λ = (λ1, λ2, . . . , λr) be a partition. A reverse plane partition
of shape λ is a filling of the cells of (the Ferrers diagram of) λ with entries from an ordered
alphabet such that the entries along rows and along columns are weakly increasing. A
reverse plane partition is called column-strict if in addition columns are strictly increas-
ing. Likewise, a reverse plane partition is called row-strict if rows are strictly increasing.
We will also consider skew shapes for row-strict reverse plane partitions and column-strict
reverse plane partitions. If λ and µ are two partitions with λ ≥ µ (i.e. the Ferrers dia-
gram of µ is contained in the Ferrers diagram of λ), then the skew shape λ/µ consists of
all cells that are contained in λ but not in µ. As expected, by a row-strict (respectively
column-strict) reverse plane partition of shape λ/µ we mean a filling of the cells of λ/µ
with entries from some ordered alphabet such that columns (respectively rows) are weakly
increasing and rows (respectively columns) are strictly increasing.

Now, a super semistandard tableau of shape λ is a filling S of the cells of λ with entries
from the ordered alphabet 1 < 2 < 3 < · · · < 1 < 2 < 3 < · · · such that

(SST1) the unbarred entries form a column-strict reverse plane partition of some shape ν,
where ν is a partition,

(SST2) the barred entries form a row-strict reverse plane partition of shape λ/ν.
Figure 1.b shows a super semistandard tableau of shape (4, 3, 3, 1). We call the part of a
super semistandard tableau S that is occupied by the unbarred entries the inner part of S
and denote it by SI . Likewise, we call the part of S that is occupied by the barred entries
the outer part of S and denote it by SO.

The combinatorial interpretation of the super Schur function Sλ(x,y) is (here SST is
short for ‘super semistandard tableau’)

Sλ(x,y) =
∑

S a SST
of shape λ

∏
i≥1

x#i’s in S
i y#ī’s in S

i , (2.1)

which can be proven combinatorially by the Gessel–Viennot method [5, 6] of nonintersect-
ing lattice paths as shown by Remmel [15, sec. 5] (see also Brenti [4, Theorem 3.4]).

For convenience, we introduce the following two terms. Given any filling P (a super
semistandard tableau, or a reverse plane partition, or . . .) of some (possibly skew) shape,

�	

�
������ ������ �� ������������ � ��� ������� ���� 4

we write Pρ, respectively Pρ, for the entry in cell ρ of P , depending on whether we mean
the unbarred or barred integer, respectively. Also, we call the sum of all the entries of P
(forgetting about all the bars when taking the sum) the norm of P , and denote it by n(P).
For example, the norm of the super semistandard tableau in Figure 1.b is 27.

3. Bijective proof of the hook-content formula for super Schur functions. In
view of (2.1), our bijective proof of the hook-content formula (1.3) will consist of proving

∑
S a SST
of shapeλ

a|S
I |b|S

O |qn(S) = q
�r
i=1 iλi

∏
ρ∈λ

1
1− qhρ

∏
ρ∈λ

(a+ bqcρ) (3.1)

bijectively, where, as expected, |SI | and |SO| denote the numbers of entries in the inner
part and outer part of S, respectively.

While it is obvious what the combinatorial interpretation of the left-hand side of (3.1)
is, we need to introduce yet a few more terms for being able to conveniently describe the
right-hand side of (3.1) in combinatorial terms. We call an arbitrary filling of the cells of
λ with nonnegative integers a tabloid of shape λ. We define the hook weight wh(T) of a
tabloid T of shape λ by

∑
ρ∈λ Tρ · hρ. Furthermore, we call a filling of the cells of λ with

only 0’s and 1’s a (0–1)-tabloid . We define the content weight wc(T) of a (0–1)-tabloid T
by
∑

ρ∈λ Tρ · cρ. Then the right-hand side of (3.1) is the generating function

∑
qn(P0)qwh(TR)qwc(UR)a#0’s in URb#1’s in UR ,

where the sum is over all triples (P0, TR, UR), with P0 being the “minimal” column-strict
reverse plane partition of shape λ with entries from 1 < 2 < 3 < · · · , i.e. the column-strict
reverse plane partition with all entries in row i equal to i for all i, with TR varying over all
tabloids of shape λ, and with UR varying over all (0–1)-tabloids of shape λ. So the task
is to set up a bijection that maps a super semistandard tableau SL of shape λ to such a
triple (P0, TR, UR), such that

n(SL) = n(P0) +wh(TR) +wc(UR) (3.2)

and

|(SL)I | = number of 0’s in UR, and |(SL)O| = number of 1’s in UR. (3.3)

One step in our bijection was already done much earlier. In their celebrated paper [8],
Hillman and Grassl constructed an algorithmic bijection between tabloids TR of shape λ
and reverse plane partitions P̃R of shape λ with entries from 0 < 1 < 2 < · · · such that
n(P̃R) = wh(TR). If we add such a reverse plane partition P̃R to P0 cell-wise, then we obtain
a column-strict reverse plane partition PR of shape λ with entries from 1 < 2 < 3 < · · · ,
and we have n(PR) = n(P0)+n(P̃R) = n(P0)+wh(TR). Therefore the new task is to set up
a bijection that maps a super semistandard tableau SL of shape λ to a pair (PR, UR), where

�	

�
������ ������ �� ������������ � ��� ������� ���� 5

PR is a column-strict reverse plane partition of shape λ with entries from 1 < 2 < 3 · · · ,
and where UR is a (0–1)-tabloid of shape λ, such that

n(SL) = n(PR) + wc(UR) (3.4)

and (3.3) hold.
We claim that the following algorithm performs this task.

Algorithm S. The input for the algorithm is a super semistandard tableau SL of shape
λ.

(S0) Set (S, U) := (SL, 0), where 0 denotes the (0–1)-tabloid of shape λ with 0 in each
cell.

(S1) If S does not contain any barred entry then stop. The output of the algorithm is
(S,U).

Otherwise, consider all inward corner cells of the outer part SO of S (which are the
cells in SO with left and upper neighbour cells in SI). Choose all such inward corner cells
that contain the minimal barred entry of S, and among all these pick the top-most, cell
ω say. (Note that the minimal barred entry of S must appear in an inward corner cell of
SO since SO is a row-strict reverse plane partition.) Replace the entry Sω in cell ω by
Sω − cω. (Note that we “unbarred” the entry in this cell. Also note that Sω − cω might
be nonpositive, which does not bother us at this point.) Call this entry special . Continue
with (S2).

(S2) If the special entry, s say, does not violate (SST1), i.e. if s does not violate weak
increase along rows and strict increase along columns (in the unbarred entries, of course),
then continue with (S3).

If it does, then we have the following situation,

y

x s
, (3.5)

where at least one of x > s and y ≥ s holds. (One of x or y is also allowed to be actually
not there.) If x > y then do the move

y

s+ 1 x
. (3.6)

If x ≤ y then do the move

s− 1

x y
. (3.7)

The new special entry in (3.6) is s+ 1, the new special entry in (3.7) is s−1. Repeat (S2).
(Note that always after either type of move the only possible violations of increase along
rows or strict increase along columns involve the new special entry and the entry to the
left or/and above.)

�	

�
������ ������ �� ������������ � ��� ������� ���� 6

(S3) Let S be the super semistandard tableau just obtained. (The fact that indeed a
super semistandard tableau is obtained will be proved right after Example S.) If we ended
up with the special entry in cell ρ then add 1 to the entry in cell ρ of U . The tabloid
thus obtained is the new U . (It will be proved in Lemma S below that U is in fact a
(0–1)-tabloid.) Continue with (S1). �

Example S. A complete example for Algorithm S can be found in the appendix. There
we map the super semistandard tableau of shape (4, 3, 3, 1) on the left of Figure 2 to the
pair on the right of Figure 2, consisting of a column-strict reverse plane partition of shape
(4, 3, 3, 1) with entries from 1 < 2 < 3 < · · · and a (0–1)-tabloid of shape (4, 3, 3, 1), such
that the weight properties (3.3) and (3.4) hold. In fact, the norm of the semistandard
tableau on the left of Figure 2 is 27, while the norm of the column-strict reverse plane
partition on the right is 31 and the content weight of the (0–1)-tabloid is −4, which
verifies (3.4) in this case. That (3.3) holds in our example is obvious.

1 3 3 3

2 1 3

4 2 3

2

←→

1 1 1 3

2 3 3

4 4 4

5

,

1 0 1 0

0 1 0

1 1 0

1

n(.) = 27

|inner part| = 5
|outer part| = 6

n(.) = 31 , wc(.) = −4
#0’s = 5
#1’s = 6

Figure 2

The appendix has to be read in the following way. First of all, ignore all double circles,
and all even rows in the right columns. What the left columns show is the pair (S,U) that
is obtained after each loop (S1)-(S2)-(S3). Together with the pair (S, U) a filling of the
shape (4, 3, 3, 1) is displayed that shows all values Sρ + cρ for all cells ρ with Uρ 6= 0. This
will be important for understanding Lemma S but can be ignored for the moment. At each
stage, the entry that is chosen by (S1) is circled. Then each intermediate step during the
loop (S1)-(S2)-(S3) is displayed in the odd rows of the right columns. The special entry
is always underlined. When a super semistandard tableau is reached, the special entry is
boxed. The entry in the corresponding cell of the (0–1)-tabloid is subsequently increased
by 1 in step (S3). �

It should be noticed that, aside from adding/subtracting 1 to/from the special entry,
what happens from (3.5) to (3.6), respectively (3.7), is a jeu de taquin forward move (cf.
[18, sec. 2; 16, pp. 120/169]).

We have to justify the claim in (S3) that when we arrive at (S3) we obtained a super
semistandard tableau. We do this by induction on the number of loops (S1)-(S2)-(S3). For
the induction hypothesis assume that we enter (S1) with a pair (S,U), where S is a super
semistandard tableau. (This is true for our initial pair (SL,0)). It is obvious that when
we arrive at (S3) that S was transformed into a filling that satisfies (SST1) (otherwise the
step (S2) was not finished) and (SST2) (because the only change in the outer part, the

�	

�
������ ������ �� ������������ � ��� ������� ���� 7

part containing the barred entries, was to remove an entry in an inward corner cell from it
and make the entry into an unbarred entry). Therefore the only problem that could arise
is when the special entry in the end is ≤ 0. However, when we arrive at (S3), a special
entry ≤ 0 can only occur in cell (1, 1), because otherwise step (S2) was not finished. Each
loop (S1)-(S2)-(S3) of the algorithm starts with some entry Sω ≥ 1 in an inward corner
cell ω of the outer part SO of S. It is replaced by Sω − cω. Then it is (possibly) moved
according to (3.6) and (3.7). It is easy to check that at each stage during performing the
steps (S2), the special entry, if located in cell ρ, will equal Sω − cρ. This is a property so
important that it has to be recorded for later use,

(special entry in ρ) = Sω − cρ. (3.8)

Suppose we reach cell (1, 1). When we arrive at (1, 1), by (3.8) and since c(1,1) = 0, our
special entry has become Sω. But this is ≥ 1 since Sω ≥ 1.

So we have an algorithm that maps a super semistandard tableau SL to a pair (PR, UR),
where PR is a super semistandard tableau without any barred entry, or in plain words, a
column-strict reverse plane partition, and where UR, thanks to Lemma S (cf. the Remark
after Lemma S), is a (0–1)-tabloid. Stated in different terms, the algorithm maps left-hand
side objects of (3.1) to right-hand side objects of (3.1). Besides, this mapping satisfies the
weight properties (3.3) and (3.4). While (3.3) is trivially satisfied, (3.4) follows from (3.8).

What remains is to establish that our algorithm is actually a bijection between left-hand
side and right-hand side objects. This will be accomplished by constructing an algorithm,
Algorithm S* below, that will turn out to be the inverse of Algorithm S. To motivate the
definition of Algorithm S*, we note the following lemma.

Lemma S. Let (S,U) be obtained after some loop (S1)-(S2)-(S3) during Algorithm S.
Suppose that the loop terminated in cell γ when reaching (S3). Then γ cannot be reached
by a special entry during succeeding loops (S1)-(S2)-(S3). Also, among all cells ρ with
Uρ 6= 0, γ is a cell for which the value Sρ + cρ attains its maximum, and if there are
several cells ρ with Uρ 6= 0 where the maximum is attained, then γ is the left-most and
bottom-most of those. Besides, there holds

Sγ + cγ ≤ min{entries in SO}. (3.9)

Remark. Note that the property that γ cannot be reached by “later” special entries
inductively implies that after each loop (S1)-(S2)-(S3) the tabloid U is in fact a (0–1)-
tabloid.

Proof of the Lemma. We prove the assertions by induction on the number of loops
(S1)-(S2)-(S3).

For the start of the induction it will suffice to recall that we start Algorithm S with the
pair (SL,0), where SL is a super semistandard tableau.

As induction hypothesis we assume that (S,U) is either the initial pair (SL,0), or
obtained after some loop (S1)-(S2)-(S3) in which case all the assertions of the Lemma are
assumed to be true. Let ω be the cell where the next loop starts, i.e. the inward corner cell

�	

�
������ ������ �� ������������ � ��� ������� ���� 8

of SO chosen by (S1), and let ζ be the cell where this next loop terminates at (S3). Let
(S̃, Ũ) be the outcome after this loop. Note that by construction the cells ρ with Ũρ 6= 0
are ζ and the cells with Uρ 6= 0. In particular, Uρ 6= 0 implies Ũρ 6= 0.

First we prove (3.9) for S̃ and ζ. By (3.8), the entry of S̃ in cell ζ is

S̃ζ = Sω − cζ . (3.10)

Since by definition of (S1) we have Sω = min{entries in SO}, this immediately implies

S̃ζ + cζ = Sω = min{entries in SO} ≤ min{entries in S̃O}. (3.11)

The last inequality is due to the fact that the multiset of entries in S̃O comes out of the
multiset of entries in SO by removing Sω. Obviously, (3.11) proves (3.9) for S̃ and ζ, as
desired.

Next we prove that the cell ζ cannot be reached during a “later” loop (S1)-(S2)-(S3).
We distinguish between two cases. Namely, by definition of (S1), a “later” loop (S1)-(S2)-
(S3) starts either at a cell, κ say, strictly to the right of ω or weakly to the left and strictly
below of ω.

In the former case, by definition of (S1) and the fact that the outer part SO of S is a
row-strict reverse plane partition, we have

S̃κ = Sκ > Sω. (3.12)

Then, when performing the loop (S1)-(S2)-(S3), first S̃κ is replaced by S̃κ − cκ and then
(possibly) moved inwards according to (3.6) and (3.7). If we want to reach ζ, we have
to reach the neighbour cell to the right or the neighbour cell below first. By (3.8) we
would reach the neighbour cell to the right of ζ with the special entry being equal to
S̃κ − (cζ + 1). By (3.12) this is ≥ Sω − cζ = S̃ζ , the latter equality holding because of
(3.10). Therefore, by definition of (S2), the loop either already stops here or continues
with an upward move (3.7), and so does not reach ζ in any case. On the other hand, if we
reach the neighbour cell below ζ, by (3.8) the special entry would equal S̃κ− (cζ − 1). By
(3.12) this is > Sω − cζ = S̃ζ . Again, by definition of (S2), this says that the loop either
already stops here or continues with a left move (3.6), so it cannot reach ζ in any case.

The second case is that we start our “later” loop in a cell κ that is located weakly to
the left and strictly below of ω. By definition of (S1) we have

S̃κ = Sκ ≥ Sω. (3.13)

Again, if we want to reach ζ, we have to reach either the neighbour cell to the right or the
neighbour cell below of ζ first. We claim that it cannot happen that the cell to the right
is reached. This would follow immediately from the following easy-to-check property of
our modified forward jeu de taquin (S2): If the second “jeu de taquin path” is below the
first “jeu de taquin path” somewhere, then it has to stay below from thereon. To make
this precise, suppose that during the first loop the special entry, s1 say, went to the left by

�	

�
������ ������ �� ������������ � ��� ������� ���� 9

(3.7), see the left half of Figure 3. (The arrows mark the direction of move of the special
entry.)

y s1

z ∗

during
first loop−→ ∗←y

z ∗
∗ y

z s2

during
second loop−→ ∗ y

∗←z
Figure 3

Since columns are strictly increasing in the inner part, we have y < z. Suppose that during
the second loop we reach the cell neighbouring y and z with a special entry s2, see the
right half of Figure 3. Then by definition of the algorithm we have to stop here or, if not,
we are forced to move left in the next step (S2). It is our assumption that the second “jeu
de taquin path” starts below the first, therefore it has to stay below always.

Now we know that the only possibility to reach cell ζ is by reaching the neighbour cell
below first. However, when we reach this neighbour cell below of ζ, by (3.8) the special
entry equals S̃κ − (cζ − 1). By (3.13) this is > Sω − cζ = S̃ζ . Once more, by definition of
(S2), this says that the loop either already stops here or continues with a left move (3.6),
so it cannot reach ζ in any case.

Next we show that S̃ρ + cρ, evaluated at cells ρ with Ũρ 6= 0, attains its maximal value
at ζ. This is evident if (S,U) is the initial pair (SL,0), i.e. if (S̃, Ũ) is the pair obtained by
applying one loop (S1)-(S2)-(S3) to (SL,0), because then ζ is the only cell with Ũζ 6= 0.
So, let us assume that (S,U) is obtained after some loop (S1)-(S2)-(S3). Let γ be the cell
where the next-to-last loop, which gave rise to (S,U), terminated at (S3).

Let ρ be any cell with Ũρ 6= 0. Recall that this means ρ = ζ or Uρ 6= 0. We want to
show

S̃ρ + cρ ≤ S̃ζ + cζ . (3.14)

If ρ = ζ then there is nothing to show. So let ρ 6= ζ. Then we have Uρ 6= 0. By
induction hypothesis for γ, we have Sγ + cγ ≥ Sρ + cρ for all cells with Uρ 6= 0. Also by
induction hypothesis, we know that ρ cannot be reached during a “later” loop (S1)-(S2)-
(S3), therefore we have S̃ρ = Sρ. And, again by induction hypothesis, (3.9) holds for S
and γ. Hence we have

Sγ + cγ ≤ min{entries in SO} = Sω = S̃ζ + cζ ,

the equalities holding because of (3.11). Combining everything, we conclude

S̃ρ + cρ = Sρ + cρ ≤ Sγ + cγ ≤ S̃ζ + cζ, (3.15)

which verifies (3.14).

Finally we show that ζ is the left-most and bottom-most among all cells ρ with Ũρ 6= 0
where S̃ρ + cρ attains its maximal value. Again, this is trivially satisfied if (S,U) is the
initial pair (SL,0) since then ζ is the only cell with Ũζ 6= 0. So, let us assume that (S,U) is
obtained after some loop (S1)-(S2)-(S3). Also here, let γ be the cell where the next-to-last

�	

�
������ ������ �� ������������ � ��� ������� ���� 10

loop, which gave rise to (S,U), terminated at (S3). Let ρ be a cell with Ũρ 6= 0 where
S̃ρ + cρ attains its maximal value. In particular, we have

S̃ρ + cρ = S̃ζ + cζ . (3.16)

Of course, nothing is to show for ρ = ζ, so we may assume ρ 6= ζ. This implies Uρ 6= 0.
We already observed that then the relations (3.15) hold. Combining (3.15) and (3.16) we
are forced to conclude

Sρ + cρ = Sγ + cγ = S̃ζ + cζ . (3.17)

We shall show that ζ has to lie in the region (weakly) to the left and (weakly) below
of γ. Since γ was the left-most and bottom-most of all the cells ρ with Uρ 6= 0 where the
maximal value of Sρ + cρ is attained, and since Sρ + cρ = S̃ρ + cρ for all cells with Uρ 6= 0,
this would establish that ζ is the left-most and bottom-most of all the cells ρ with Ũρ 6= 0
where the maximal value of S̃ρ + cρ is attained, as desired.

We prove the claim of the previous paragraph by excluding the other three quarter
regions that are determined by the horizontal line and the vertical line running through γ.

First, suppose that ζ lies in the region strictly to the right and weakly below of γ. For
these cells there holds the following basic computation. For convenience, let γ = (i1, j1)
and ζ = (i2, j2), where ζ is located in this region strictly to the right and weakly below of
γ, i.e. i1 ≤ i2 and j1 < j2. Then, since the inner part S̃I of S̃ is a column-strict reverse
plane partition, we have

S̃ζ + cζ = S̃ζ + (j2 − i2)

≥ (S̃γ + i2 − i1) + (j2 − i2) = S̃γ + j2 − i1
> S̃γ + j1 − i1 = S̃γ + cγ . (3.18)

This contradicts (3.17) because of Sγ = S̃γ , which again follows from the induction hy-
pothesis that γ cannot be reached during “later” loops (S1)-(S2)-(S3). Thus, this region
is excluded.

Next we show that ζ cannot lie in the region (weakly) to the right and (weakly) above
γ, γ excluded. This would follow immediately from the claim that if two successive loops
(S1)-(S2)-(S3) start with the same size of entry in the inward corner cells chosen by (S1)
(which applies in our case since the loop that lead to S started with an entry Sγ + cγ in
some inward corner cell, and the loop that lead from S to S̃ started with S̃ζ + cζ , both
quantities being the same by (3.17)) then the second path of moves has to stay below the
first path of moves.

To check this claim, once again note that both loops started with the same size of entries
in the cells chosen by (S1). By the rules in (S1), and because the outer part SO of S is a
row-strict reverse plane partition, this means that the second loop started strictly to the
left and strictly below of the first. We already proved that our modified forward jeu de
taquin (S2) has the property that if the second “jeu de taquin path” is below of the first
“jeu de taquin path” somewhere, then it has to stay below from thereon. So the region
(weakly) to the right and (weakly) above γ can never be reached.

�	

�
������ ������ �� ������������ � ��� ������� ���� 11

Finally, we examine if ζ could be located in the region strictly to the left and weakly
above of γ. Since Sγ = S̃γ , once more the computation (3.18), with γ and ζ interchanged
applies, implying S̃γ+cγ > S̃ζ+cζ, which contradicts (3.17) because of Sγ = S̃γ. Therefore
we cannot reach the region under consideration.

This completes the proof of the Lemma. �

¿From Lemma S it is pretty obvious what the inverse algorithm of Algorithm S could
be.

Algorithm S*. The input for the algorithm is a pair (PR, UR), where PR is a column-
strict reverse plane partition of shape λ with entries from 1 < 2 < 3 < · · · , and where UR
is a (0–1)-tabloid of shape λ.

(S*0) Set (S, U) := (PR, UR).
(S*1) If U = 0 then stop. The output of the algorithm is S.
Otherwise, consider all cells ρ with Uρ 6= 0. Among these choose the cells for which

Sρ + cρ is maximal, and among all these pick the left-most and bottom-most, cell ζ say.
(Observe that among two different cells attaining the same value of Sρ + cρ one is always
weakly to the left and strictly below of the other, again because of the computation (3.18),
with S̃ replaced by S. So the left-most and bottom-most of these does exist.) Replace the
entry Sζ in cell ζ by Sζ + cζ . (Note that we “barred” the entry.) Call this entry special .
Continue with (S*2).

(S*2) If the special entry, s say, does not have a right or bottom neighbour entry that
is unbarred, then continue with (S*3).

If the special entry does have a right or bottom neighbour entry that is unbarred, then
we have the following situation,

s x

y
, (3.19)

where at least one of x or y is an unbarred entry. (One of x or y is also allowed to be
actually not there.) If x < y (in particular, this is the case if y is a barred entry) then do
the move

x s

y
. (3.20)

If x ≥ y (in particular, this is the case if x is a barred entry) then do the move

y x

s
. (3.21)

The new special entry in either case is s. Repeat (S*2).
(S*3) Let S be the super semistandard tableau just obtained. (The fact that indeed

a super semistandard tableau is obtained will be proved in the subsequent Lemma S*.)
Replace the entry 1 in cell ζ of U by 0. The (0–1)-tabloid thus obtained is the new U .
Continue with (S*1). �

�	

�
������ ������ �� ������������ � ��� ������� ���� 12

Example S*. A complete example for Algorithm S* can be found in the appendix.
There we map the pair on the right of Figure 2, consisting of a column-strict reverse plane
partition of shape (4, 3, 3, 1) with entries from 1 < 2 < 3 < · · · and a (0–1)-tabloid of shape
(4, 3, 3, 1), to the super semistandard tableau of shape (4, 3, 3, 1) on the left of Figure 2,
such that the weight properties (3.3) and (3.4) hold. It is simply the inverse of the example
for Algorithm S given in Example S. Therefore, here the appendix has to be read in the
reverse direction, and in the following way. First of all, ignore all single circles, and all odd
rows in the right columns. What the left columns show is the pair (S,U) that is obtained
after each loop (S*1)-(S*2)-(S*3) together with a filling of the shape (4, 3, 3, 1) that shows
all values Sρ + cρ for all cells ρ with Uρ 6= 0. At each stage, the entry that is chosen by
(S*1) is doubly circled. Then each intermediate step during the loop (S*1)-(S*2)-(S*3)
is displayed in the even rows of the right columns. The special entry is always doubly
underlined. When a super semistandard tableau is reached, the special entry is doubly
boxed. The entry in the corresponding cell of the (0–1)-tabloid is subsequently decreased
by 1 in step (S*3). �

Again, it should be noticed that (3.20) and (3.21) are exactly jeu de taquin backward
moves (cf. [18, sec. 2; 16, pp. 120/169]), which reverse the forward moves (3.6) and (3.7),
respectively, except for the subtraction/addition of 1 in (3.6) and (3.7).

In order to show that Algorithm S* is always well-defined, we have to confirm that when
arriving at (S*3) we always obtained a super semistandard tableau. This is established in
the following lemma. Besides, this lemma contains the facts about Algorithm S* that are
needed to prove that the Algorithms S and S* are inverses of each other.

Lemma S*. Let (S,U) be obtained after some loop (S*1)-(S*2)-(S*3) during Algo-
rithm S*. Then for all cells ρ with Uρ 6= 0 there holds

Sρ + cρ ≤ min{entries in SO}. (3.22)

Also, S is a super semistandard tableau. Besides, if ω is the inward corner cell of SO that
contained the special entry at the end of the loop (S*1)-(S*2)-(S*3) that lead to S, then
ω is the top-most inward corner cell of SO that contains the minimal entry of SO.

Proof. We prove the assertions by induction on the number of loops (S*1)-(S*2)-
(S*3). To be precise, we prove the following (slightly stronger) statement inductively: All
the assertions of the Lemma hold. Besides, during the loop (S*1)-(S*2)-(S*3) that leads
to (S,U) the special entry never occupies a cell ρ with Uρ 6= 0.

To begin with, we know that when we start with Algorithm S* we have a pair (S,U),
where S is a super semistandard tableau (since S = PR is a column-strict reverse plane
partition in 1 < 2 < 3 < · · ·). Also, (3.22) is vacuously satisfied (there is no barred entry
in S = PR). This will suffice for the start of the induction.

As induction hypothesis let us assume that the assertions of the Lemma and the assertion
that the special entry never occupies a cell ρ with Uρ 6= 0 are true for (S,U) and all
preceding pairs occuring in step (S*3) during the process of the algorithm, except of course
that the assertion about the inward corner cell ω and the assertion about the special entry
do not hold for the initial pair (because they do not make sense for the initial pair).

�	

�
������ ������ �� ������������ � ��� ������� ���� 13

Let ζ be the cell where the loop (S*1)-(S*2)-(S*3) starts from (S,U), i.e. the cell that
is chosen by applying (S*1) to (S,U), and let κ be the cell where the loop stops at (S*3).
Furthermore, let (S̃, Ũ) be the outcome after this loop. Then, by definition of the algorithm
we have

S̃κ = Sζ + cζ . (3.23)

Note that, also by definition of the algorithm, the cells ρ with Ũρ 6= 0 are those with
Uρ 6= 0, excluding ζ. In particular, Ũρ 6= 0 implies Uρ 6= 0.

First we prove that during the loop (S*1)-(S*2)-(S*3) leading from (S,U) to (S̃, Ũ) the
special entry never occupies a cell ρ with Ũρ 6= 0. Recall that, by definition of (S*1), the
cell ζ, the cell where the loop starts, is the left-most and bottom-most cell among the
cells with Uζ 6= 0 where the value Sζ + cζ is maximal. Let the special entry be located
in some cell ρ with Ũρ 6= 0, at some stage during the performance of the loop. Clearly,
ρ is located (weakly) to the right and (weakly) below of ζ. Since, by definition of (S*3),
we have Ũζ = 0, cell ρ is different from ζ. If ρ were located strictly to the right of ζ,
then the computation (3.18), with S̃ replaced by S, ζ replaced by ρ, and γ replaced by ζ,
would imply that Sρ + cρ > Sζ + cζ . But this contradicts the definition of ζ. So the only
other possibility is that ρ is located in the same column as ζ and strictly below ζ. Then a
computation similar to (3.18) would show that Sρ + cρ = Sζ + cζ , which again contradicts
the definition of ζ. Therefore the special entry can only meet cells ρ with Ũρ = 0. In
particular, this implies that the entries in cells ρ with Ũρ 6= 0 do not change during the
loop. Therefore we have

S̃ρ = Sρ (3.24)

for all cells ρ with Ũρ 6= 0.

Now we prove (3.22) for S̃. Let ρ be any cell with Ũρ 6= 0. This implies Uρ 6= 0.
Therefore, by (3.24) and by construction of ζ in (S*1), we have

S̃ρ + cρ = Sρ + cρ ≤ Sζ + cζ . (3.25)

Also by construction of ζ, we have Uζ 6= 0, and hence by induction hypothesis (3.22) that
Sζ + cζ ≤ min{entries in SO}. This implies that Sζ + cζ = min{entries in S̃O}, since the
multiset of entries of S̃O equals the multiset of entries in SO, with the special entry Sζ + cζ ,
created in (S*1) and finally located in cell κ in S̃, added. Hence, (3.25) proves (3.22) with
S replaced by S̃, as desired.

Now we prove that S̃ is a super semistandard tableau. By construction of Algorithm S*,
the inner part S̃I of S̃ automatically is a column-strict reverse plane partition. Therefore,
it is only to prove that the outer part S̃O of S̃ is a row-strict reverse plane partition. If
Sζ + cζ < min{entries in SO} then this assertion certainly holds, since S̃κ = Sζ + cζ is the
only new entry in S̃, and it is located in an inward corner cell of S̃O. Note in particular,
that we are in this case at the very beginning.

By induction hypothesis, (3.22) holds for ζ, so the only other case is

Sζ + cζ = min{entries in SO}. (3.26)

�	

�
������ ������ �� ������������ � ��� ������� ���� 14

Observe that the only difficulty arises when we reach the cell κ at the end of a loop (S*1)-
(S*2)-(S*3), and the neighbour cell to the right of κ contains the entry Sζ + cζ . In this
case row-strictness of the outer part S̃O of S̃ would be violated. We have to show that
this case cannot occur.

Let (S′, U ′) be the pair preceding (S,U), i.e. (S, U) is obtained by applying one loop
(S*1)-(S*2)-(S*3) to (S′, U ′). As we just noted, (S′, U ′) exists, since if (S,U) were the
initial pair we would not be in this case. Furthermore, let γ be the cell where this loop
starts, and let ω be the corner cell where it stops. By definition of the algorithm we have

Sω = S′γ + cγ . (3.27)

Now, by induction hypothesis and the definition of the algorithm, there holds

S′γ + cγ = min{entries in SO}. (3.28)

Furthermore, there holds S′ζ = Sζ , since by induction hypothesis the cell ζ (which is a
cell with Uζ 6= 0) was not met by the special entry during the loop (S*1)-(S*2)-(S*3) that
lead from (S′, U ′) to (S, U). Hence, by definition of (S*1), S′γ + cγ ≥ S′ζ + cζ = Sζ + cζ .
Combining this with (3.26) and (3.28), we are forced to conclude

S′γ + cγ = S′ζ + cζ (= Sζ + cζ). (3.29)

Therefore, again by definition of (S*1), ζ lies weakly to the right and strictly above γ.
It is an easy-to-check property of backward jeu de taquin (S*2) that if the second “jeu

de taquin path” is above the first “jeu de taquin path” somewhere, then it has to stay
above from thereon. To be precise, suppose that during the first loop (S*1)-(S*2)-(S*3)
the special entry, s1 say, went to the right by (3.20), see the left half of Figure 4. (Again,
the arrows mark the direction of move of the special entry.)

∗ y

s1 z

during
first loop−→ ∗ y

z→∗
s2 y

z ∗

during
second loop−→ y→∗

z ∗
Figure 4

Since columns are strictly increasing in the inner part, we have y < z. Suppose that during
the second loop we reach the cell neighbouring y and z with a special entry s2, see the
right half of Figure 4. Then by definition of the algorithm we have to stop here or, if not,
we are forced to move right in the next step (S*2).

We know that the second “jeu de taquin path” starts at ζ, which is weakly to the right
and strictly above of γ, the starting cell of the first “jeu de taquin path”. Therefore the
second path has to stay above the first path always. Hence κ, the cell where the second
path terminates, cannot be the left neighbour cell of ω. Therefore, κ is in a row above
ω. By induction hypothesis, ω is the top-most inward corner cell of SO that contains the
minimal entry of SO. This implies that the cell to the right of κ contains and entry that

�	

�
������ ������ �� ������������ � ��� ������� ���� 15

is > Sω = S̃κ, the equality following from a combination of (3.27), (3.29), and (3.23). As
noted above, this guarantees that S̃ is a super semistandard tableau.

Finally, we prove that κ is the top-most inward corner cell in S̃O that contains the
minimal entry in S̃O. This is trivially true if Sζ + cζ < min{entries in SO}, again by
remembering (3.23). Note that this inequality is in particular true at the very beginning of
Algorithm S*. Because of the induction hypothesis (3.22), the only other case is Sζ + cζ =
min{entries in SO}. Since we are not at the very beginning, we are allowed to assume that
this last assertion of Lemma S* holds for S and ω. However, we already considered the case
Sζ + cζ = min{entries in SO} before (see (3.26)) and showed that the “jeu de taquin path”
leading from ζ to κ has to stay above of the “jeu de taquin path” leading from γ to ω. Hence
κ is strictly above ω. By induction hypothesis, ω was the top-most corner cell containing
the minimal entry of SO. So κ, which by (3.23) contains Sζ + cζ = min{entries in SO} in
S̃, is the top-most corner cell of S̃ containing min{entries in S̃O} (= min{entries in SO}),
as desired.

This completes the proof of the Lemma. �

¿From Lemmas 1 and 2 it is abundantly clear that the Algorithms S and S* are inverses
of each other. This finishes the bijective proof of (3.1).

4. More on modified jeu de taquin. In this section we explore the relations between
our modified jeu de taquin in Algorithm S and a modified jeu de taquin in a paper of
Goulden and Greene [7, sec. 3]. The main result of this section is an invariance property
(Theorem SG) of modified jeu de taquin, which somehow is the analogue of the invariance
of standard jeu de taquin (see [18; 16, Theorem 3.9.7]).

Super Schur functions are also defined for skew shapes λ/µ. For the purposes of
this section, we assume that x and y are doubly infinite sequences of variables, x =
(. . . , x−1, x0, x1, . . .) and y = (. . . , y−1, y0, y1, . . .). Then, the skew super Schur function
Sλ/µ(x,y) is defined by

Sλ/µ(x,y) = det
1≤i,j≤r

(Sλi−i−µj+j(x,y)), (4.1)

where the series Sm(x,y) are determined by their generating function

∑
m≥0

Sm(x,y)zm =
∞∏

i=−∞

1 + yiz

1− xiz
,

(note the difference to (1.2) in the range of the product). The combinatorial description
(2.1) extends to skew super Schur functions. Namely, if we extend the definition of super
semistandard tableau by saying that it is a filling of some skew shape with entries from the
ordered alphabet · · · < −1 < 0 < 1 < · · · < −1 < 0 < 1 < · · · satisfying (SST1) (but the
shape ν replaced by ν/µ) and (SST2), then (again SST is short for ‘super semistandard
tableau’)

Sλ/µ(x,y) =
∑

S a SST
of shape λ/µ

∞∏
i=−∞

x#i’s in S
i y#ī’s in S

i . (4.2)

�	

�
������ ������ �� ������������ � ��� ������� ���� 16

As in the nonskew case (4.2) can be proven combinatorially by the Gessel–Viennot method
of nonintersecting lattice paths, see [15, sec. 5; 4, Theorem 3.4].

Algorithm S was defined for super semistandard tableaux of a nonskew shape λ. How-
ever, everything can be defined and works fine also for a skew shape λ/µ. To be precise, it
is readily checked that Algorithm S for a skew shape λ/µ proves the following alternative
combinatorial desription for (skew) super Schur functions due to Goulden and Greene [7,
Theorem 1.1] (here CRPP is short for column-strict reverse plane partition with integer
entries)

Sλ/µ(x,y) =
∑

P a CRPP
of shape λ/µ

∏
ρ∈λ/µ

(xPρ + yPρ+cρ). (4.3)

(In fact, we needed the restriction of a nonskew shape only at one place, namely, in the
second paragraph after Example S, when showing that all the entries are at least 1 when
arriving at (S3). But now we are considering alphabets that are unbounded above and
below, so this step is superfluous in this context.) Goulden and Greene also construct a
bijection for proving that the representations (4.2) and (4.3) for Sλ/µ(x,y) agree. This
bijection is based on a generalization of Bender and Knuth’s involution [1, pp. 46/47; 16,
pp. 152/153] that proves the symmetry of Schur functions combinatorially. In passing,
they provide (without proof) an alternative description of this bijection, in terms of a
jeu de taquin-like procedure. Though similar, this procedure is different from ours. To
understand the relationship between the two procedures, we introduce a nondeterministic
jeu de taquin procedure which contains both Algorithm S and Goulden and Greene’s
algorithm as special cases.

The following (nondeterministic) algorithm maps a super semistandard tableau S of
shape λ/µ to an array A of shape λ/µ containing unbarred and barred positive integers
such that

(A1) the multiset of entries in S and A agree,
(A2) if in A each barred entry, ȳ say, contained in cell ρ, is replaced by y − cρ, then A

becomes a column-strict reverse plane partition.
It should be observed that such an array A is exactly equivalent to a pair (P, U) of a
column-strict reverse plane partition P and a (0–1)-tabloid U , the latter pairs occuring as
output of Algorithm S. Given such an array A the corresponding pair (P,U) is obtained by
defining P to be the column-strict reverse plane partition constructed in (A2) above, and
by defining U to be the (0–1)-tabloid with 1 in each cell that contains a barred entry in A
and with 0 in each cell that contains an unbarred entry in A. Clearly, this correspondence
is a bijection.

Algorithm SG. The input for the algorithm is a super semistandard tableau S of shape
λ/µ.

(SG0) Set A := S.

(SG1) Consider all pairs (x1, ȳ1), where x1 is an unbarred entry and ȳ1 is a barred entry
located in cell ρ1, x1 being the left neighbour of ȳ1, and all pairs (x2, ȳ2), where x2 is an
unbarred entry and ȳ2 is a barred entry located in cell ρ2, x2 being the top neighbour of

�	

�
������ ������ �� ������������ � ��� ������� ���� 17

ȳ2. If for all such pairs there holds

x1 ≤ y1 − cρ1 (4.4)

and
x2 < y2 − cρ2 , (4.5)

then stop. The output of the algorithm is A. (Observe that (4.4) and (4.5) are required
for A to satisfy property (A2) above.)

Otherwise, do one of the following two steps B or U.
B. Consider all violations of (4.4) or (4.5). Let ȳ be the top-most among the minimal

barred entries involved. (From Lemma 1, (2), it will follow that ȳ is unique.) Let ȳ be
located in cell ρ. Then we have the following situation,

xt

xl ȳ
, (4.6)

where at least one of xl > y − cρ and xt ≥ y − cρ holds. (One of xl or xt is also allowed
to be actually not there, or, in abuse of notation, to be a barred entry. In the latter case,
by convention the corresponding inequality does not hold.) If xl > xt (or if xt is a barred
entry) then do the move

xt

ȳ xl
. (4.7)

If xl ≤ xt (or if xl is a barred entry) then do the move

ȳ

xl xt
. (4.8)

U. Consider all violations of (4.4) or (4.5). Let x be the right-most among the maximal
unbarred entries involved. (From Lemma 1, (1), it will follow that x is unique.) Let the
cell to the right of x be ρr and the cell below of x be ρb. Then we have the following
situation,

x ȳr

ȳb
, (4.9)

where at least one of x > yr − cρr and x ≥ yb − cρb holds. (One of ȳr or ȳb is also allowed
to be actually not there, or, in abuse of notation, to be an unbarred entry. In the latter
case, by convention the corresponding inequality does not hold.) If ȳr ≤ ȳb (or if ȳb is an
unbarred entry) then do the move

ȳr x

ȳb
. (4.10)

�	

�
������ ������ �� ������������ � ��� ������� ���� 18

If ȳr > ȳb (or if ȳr is an unbarred entry) then do the move

ȳb ȳr

x
. (4.11)

Let the new A be the array of shape λ/µ just obtained. Repeat (SG1). �

The output of the algorithm trivially satisfies condition (A1) above. It will follow from
Lemma 1 that the output also satisfies (A2), see the Remark after Lemma 1.

It is an easy observation that when always choosing step B in Algorithm SG we basically
do the same as in Algorithm S. The only difference is that in Algorithm SG we do not
subtract the content from the barred entries and keep the barred entries as such, unlike in
Algorithm S. The translation of an output of Algorithm SG into the corresponding output
of Algorithm S was described in the paragraph preceding the description of Algorithm SG.
Similarly, when always choosing step U in Algorithm SG we (basically) do the same as in
Goulden and Greene’s algorithm. So, roughly speaking, what we do in Algorithm S is to
move the barred entries, one after the other, “into” the unbarred entries, while Goulden
and Greene move the unbarred entries, one after the other, “into” the barred entries.
Nevertheless, both procedures turn out to be equivalent, i.e. the final result is the same in
both cases. In fact, the main result of this section (Theorem SG below) is that, regardless
which choices we take in step (SG1), the final result will be the same. Therefore, though
Goulden and Greene write that, unlike the standard jeu de taquin, their algorithm is
deterministic and different sequences of moves may give different results, there is some
freedom in choosing the order of moves. But there is not as much freedom as in standard
jeu de taquin where there is complete freedom.

Theorem SG. The output of Algorithm SG applied to some given super semistandard
tableau S is independent of the choices between B and U that are taken in step (SG1).

The proof of Theorem SG is based on the following two Lemmas.

Lemma 1. After each application of (SG1) during Algorithm SG, the obtained array
A has the following properties.

(1) Let x be an unbarred entry located (weakly) to the left and (weakly) above the
unbarred entry y. Then x ≤ y. Also, each column is strictly increasing in the
unbarred entries.

(2) Let x̄ be a barred entry located (weakly) to the left and (weakly) above the barred
entry ȳ. Then x̄ ≤ ȳ. Also, each row is strictly increasing in the barred entries.

(3) For all pairs (x̄1, y1), where x̄1 is a barred entry located in cell ρ1 and y1 is an
unbarred entry, x̄1 being the left neighbour of y1, there holds

x1 − cρ1 ≤ y1. (4.12)

For all pairs (x̄2, y2), where x̄2 is a barred entry located in cell ρ2 and y2 is an
unbarred entry, x̄2 being the top neighbour of y2, there holds

x2 − cρ2 < y2. (4.13)

�	

�
������ ������ �� ������������ � ��� ������� ���� 19

Remark. Clearly, this implies that the output of Algorithm SG satisfies (A2). For, in
addition to the properties (1)–(3) of the Lemma, the output satisfies also (4.4) and (4.5)
since otherwise the step (SG1) was not finished.

Proof. We prove the Lemma by induction on the number of applications of (SG1).
The claim of the Lemma is certainly true at the very beginning since we start with a super
semistandard tableau.

For the induction step a careful case-by-case analysis has to be performed. We consider
just one case out of four (two cases each for steps B and U, depending on whether moving
horizontally or vertically), the others are similar.

Suppose that by performing step U, (4.11), an unbarred entry, x say, is moved down
one row. Figure 5 displays the generic situation before and after the move. Here, m,n, s, t
can be any nonnegative integers.

cell ρ
/

cell ω
\

. . . b̄ x−m . . . x−2 x−1 x x1 x2 . . . xs z̄ . . .

. . . a ȳ−n . . . ȳ−2 ȳ−1 ȳ ȳ1 ȳ2 . . . ȳt u . . .

cell ρ
/

cell ω
\

. . . b̄ x−m . . . x−2 x−1 ȳ x1 x2 . . . xs z̄ . . .

. . . a ȳ−n . . . ȳ−2 ȳ−1 x ȳ1 ȳ2 . . . ȳt u . . .

a. before the move b. after the move

Figure 5

The pictures have to be taken symbolically in the sense that all combinations of n > m or
n ≤m, and s > t or s ≤ t are possible.

By definition of step U, x is the right-most among the maximal unbarred entries that
violate (4.4) or (4.5) in Figure 5.a. Moreover, since we moved down by (4.11), we have
(for the definition of ω see Figure 5)

x ≥ y − cω. (4.14)

Of course, by induction hypothesis, nothing has to be shown for entries that did not move.
In fact, it suffices to prove

ad (1): a ≤ x ≤ u (4.15)

ad (2): b̄ < ȳ < z̄ (4.16)

ad (3): y − cρ < x, y − cρ ≤ x1 and y−1 − cω−1 ≤ x, (4.17)

where we assume that ȳi is located in cell ωi, i = −n, . . . ,−1, 1, . . . , t.
In order to prove a ≤ x, we distinguish between two cases. First suppose a > y−n−cω−n .

This is a violation of (4.4). Since x is the right-most among the maximal unbarred entries
that violate (4.4) or (4.5) in Figure 5.a, we must have x ≥ a. On the other hand, suppose
a ≤ y−n − cω−n . Then, by induction hypothesis (2) (applied to Figure 5.a of course), and
by (4.14), we have

a ≤ y−n − cω−n ≤ y−n+1 − cω−n+1 ≤ · · · ≤ y−1 − cω−1 ≤ y − cω ≤ x.

�	

�
������ ������ �� ������������ � ��� ������� ���� 20

The inequality x ≤ u follows from the induction hypothesis (1).
For proving b̄ < ȳ, we first note that by induction hypothesis (2) we have b̄ ≤ ȳ. So,

we only have to show that b̄ 6= ȳ. By way of contradiction, let us assume b̄ = ȳ. Then, by
induction hypothesis (2), it is impossible that there are any barred entries to the left of ȳ
in Figure 5.a. This means that n = 0, and that a is the left neighbour of ȳ in Figure 5.a.
At the very beginning the entry b̄ was strictly above and weakly to the right of the entry ȳ,
because otherwise b̄ and ȳ would have been in the same row at some stage, contradicting
induction hypothesis (2). For similar reasons it is impossible that a rectangle determined
by b̄ as its top-left corner and ȳ as its bottom-right corner contained another barred entry
at any time. Finally, because of the argument visualized in Figure 3, the path of entry ȳ
always stays below the path of entry b̄. Therefore b̄ must have passed all the way through
from cell ρ to the cell that it is now occupying in Figure 5. Moreover, x−m, . . . , x−1, x and
a did not move after b̄ passed through. But then, at some point, we must have considered
the situation

x b̄

a

before. By induction hypothesis (1), this implies x < a. This contradicts x ≥ a which was
already established.

Next we show ȳ < z̄. Let z̄ be located in cell ζ. If s = 0, i.e. if z̄ is the right neighbour
of x in Figure 5.a, then ȳ < z̄ holds by definition of step U, (4.11). If s > 0, then we must
have xs ≤ z− cζ . For, otherwise (4.4) would be violated. Besides, by induction hypothesis
(1) we have x ≤ xs, and so x would not be the right-most among the maximal unbarred
entries that violate (4.4) or (4.5) in Figure 5.a. Combining this with (4.14), we conclude
y − cω ≤ x ≤ xs ≤ z − cζ and hence y ≤ z − s− 2 < z.

All three inequalities in (4.17) follow directly from (4.14), x ≤ x1, and ȳ−1 < ȳ, the
latter two being due to the induction hypothesis (1), (2). �

Lemma 2. Suppose that A is an array satisfying (1)–(3) in Lemma 1. Furthermore
suppose that the right-most among the maximal unbarred entries that violate (4.4) or (4.5)
is not the left or top neighbour of the top-most among the minimal barred entries that
violate (4.4) or (4.5). Then the steps U and B commute,

U(B(A)) = B(U(A)).

Proof. This is established by a straight-forward case-by-case analysis, utilizing Lem-
ma 1. �

Finally we are in the position to prove Theorem SG.

Proof of Theorem SG. Suppose that during Algorithm SG we applied the sequence
W (U,B) of steps U and B to the initial semistandard tableau S. One should think of
W (U,B) as a word in U’s and B’s. Let the length of W (U,B) be L. We shall show that

W (U,B)(S) = BL(S), (4.18)

�	

�
������ ������ �� ������������ � ��� ������� ���� 21

i.e. that the result is the same when we apply step B all the time (which is basically
the same as Algorithm S, as we already noted). Clearly this would suffice to prove the
Theorem.

We establish (4.18) by successively changing U’s in W (U,B) into B’s and by applying
the commutation rule in Lemma 2. First we claim that there is a word W1(U,B) such that

W (U,B)(S) = BW1(U,B)(S). (4.19)

This is trivially true if W (U,B) already has the form BW1(U,B). So let us assume that
W (U,B) has the form UW1(U,B). Consider the array W1(U,B)(S), the array obtained
before the final step. Since W (U,B)(S) = UW1(U,B)(S) satisfies (4.4) and (4.5), it is
obvious that the right-most among the maximal unbarred entries that violate (4.4) or
(4.5) in W1(U,B)(S) is the left or top neighbour of the top-most among the minimal
barred entries that violate (4.4) or (4.5) in W1(U,B)(S). Hence, it does not make any
difference whether we apply U or B to W1(U,B)(S). This settles (4.19) also in this case.

Now we use the commutation rule in Lemma 2 to move the left B in the right-hand
side of (4.19) inside the word W1(U,B). The only problem arises, when we arrive at
W2(U,B) B UW3(U,B)(S), where W3(U,B)(S) is an array in which the right-most among
the maximal unbarred entries that violate (4.4) or (4.5) is the left or top neighbour of
the top-most among the minimal barred entries that violate (4.4) or (4.5). In this case
Lemma 2 does not apply. But then we have UW3(U,B)(S) = BW3(U,B)(S), and therefore

W (U,B)(S) = W2(U,B) B BW3(U,B). (4.20)

We continue by moving this “new” B inside the word W3(U,B), until we arrive at

W (U,B)(S) =
(
W4(U,B) B

)
(S), (4.21)

for some word W4(U,B). By iterating the process (4.19)-(4.20)-(4.21) we finally obtain
(4.18). �

Acknowledgement. This work was carried out while the author visited the Univer-
sity of California at San Diego. He thanks the University of California and in particular
Adriano Garsia for making this visit possible. Besides, he is indebted to Adriano Garsia
for drawing his attention to the problem of finding “nice” combinatorial proofs of hook
formulas.

Appendix. The appendix contains a complete example for Algorithms S and S* for
λ = (4, 3, 3, 1), setting up a mapping between the two sides of Figure 2. See the specific
descriptions given in Examples 1 and 2 of how to read the following tables.

�	

�
������ ������ �� ������������ � ��� ������� ���� 22

1 3 3 3

2 1i3
4 2 3

2

0 0 0 0

0 0 0

0 0 0

0

(S1)
−→

1 3 3 3

2 1 3

4 2 3

2

(3.7)
−→

1 0 3 3

2 3 3

4 2 3

2

(3.6)
−→

1 1 3 3

2 3 3

4 2 3

2

(S3)
−→

− − − −

− − −

− − −

−

(S*3)
←−

1 3 3 3

2 1 3

4 2 3

2

(3.21)
←−

1 1 3 3

2 3 3

4 2 3

2

(3.20)
←−

1 1 3 3

2 3 3

4 2 3

2

(S*1)
←−

1li 1 3 3

2 3 3

4 2i3
2

1 0 0 0

0 0 0

0 0 0

0

(S1)
−→

1 1 3 3

2 3 3

4 3 3

2

(3.6)
−→

1 1 3 3

2 3 3

4 4 3

2

(S3)
−→

1 − − −

− − −

− − −

−

(S*3)
←−

1 1 3 3

2 3 3

4 2 3

2

(3.20)
←−

1 1 3 3

2 3 3

2 4 3

2

(S*1)
←−

1 1 3 3

2 3 3

4li 4 3

2i
1 0 0 0

0 0 0

1 0 0

0

(S1)
−→

1 1 3 3

2 3 3

4 4 3

5

(S3)
−→

1 − − −

− − −

2 − −

−

(S*3)
←−

1 1 3 3

2 3 3

4 4 3

2

(S*1)
←−

�	

�
������ ������ �� ������������ � ��� ������� ���� 23

1 1 3 3i
2 3 3

4 4 3

5li
1 0 0 0

0 0 0

1 0 0

1

(S1)
−→

1 1 3 0

2 3 3

4 4 3

5

(3.6)
−→

1 1 1 3

2 3 3

4 4 3

5

(S3)
−→

1 − − −

− − −

2 − −

2

(S*3)
←−

1 1 3 3

2 3 3

4 4 3

5

(3.20)
←−

1 1 3 3

2 3 3

4 4 3

5

(S*1)
←−

1 1 1li 3

2 3 3i
4 4 3

5

1 0 1 0

0 0 0

1 0 0

1

(S1)
−→

1 1 1 3

2 3 2

4 4 3

5

(3.6)
−→

1 1 1 3

2 3 3

4 4 3

5

(S3)
−→

1 − 3 −

− − −

2 − −

2

(S*3)
←−

1 1 1 3

2 3 3

4 4 3

5

(3.20)
←−

1 1 1 3

2 3 3

4 4 3

5

(S*1)
←−

1 1 1 3

2 3li 3

4 4 3i
5

1 0 1 0

0 1 0

1 0 0

1

(S1)
−→

1 1 1 3

2 3 3

4 4 3

5

(3.6)
−→

1 1 1 3

2 3 3

4 4 4

5

(S3)
−→

1 − 3 −

− 3 −

2 − −

2

(S*3)
←−

1 1 1 3

2 3 3

4 4 3

5

(3.20)
←−

1 1 1 3

2 3 3

4 3 4

5

(S*1)
←−

�	

�
������ ������ �� ������������ � ��� ������� ���� 24

1 1 1 3

2 3 3

4 4li 4

5

1 0 1 0

0 1 0

1 1 0

1

1 − 3 −

− 3 −

2 3 −

2

�
�
�
�
�

1. E. A. Bender and D. E. Knuth, Enumeration of plane partitions, J. Combin. Theory A 13 (1972),
40—54.

2. A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and representations
of Lie superalgebras, Adv. in Math. 44 (1987), 118–175.

3. A. Berele and J. B. Remmel, Hook flag characters and their combinatorics, J. Pure Appl. Algebra 35
(1985), 225–245.

4. F. Brenti, Determinants of super-Schur functions, lattice paths, and dotted plane partitions, Adv. in
Math. 98 (1993), 27–64.

5. I. M. Gessel and X. Viennot, Binomial determinants, paths, and hook length formulae, Adv. in Math.
58 (1985), 300—321.

6. I. M. Gessel and X. Viennot, Determinants, paths, and plane partitions, preprint (1989).
7. I. Goulden and C. Greene, A new tableau representation for supersymmetric Schur functions, J. Al-

gebra 170 (1994), 687–703.
8. A. P. Hillman and R. M. Grassl, Reverse plane partitions and tableau hook numbers, J. Combin.

Theory Ser. A 21 (1976), 216–221.
9. V. G. Kac, Lie superalgebras, Adv. in Math. 26 (1977), 8–96.

10. V. G. Kac, Characters of typical representations of classical Lie superalgebras, Comm. Algebra 5
(1977), 889–897.

11. V. G. Kac, Representations of classical Lie superalgebras, Differential geometrical methods in mathe-
matical physics II, Lecture Notes in Math., vol. 676, Springer–Verlag, Berlin, 1978, pp. 597–626.

12. C. Krattenthaler, An involution principle-free bijective proof of Stanley’s hook-content formula, pre-
print.

13. I. G. Macdonald, Symmetric Functions and Hall Polynomials, second edition, Oxford University Press,
New York/London, 1995.

14. N. Metropolis, G. Nicoletti and G.-C. Rota, A new class of symmetric functions, Math. Anal. Appl.
Part B, Adv. in Math. Suppl. Stud. 7 (1981), 563–575.

15. J. B. Remmel, The combinatorics of (k, l)-hook Schur functions, Combinatorics and algebra (C.
Greene, ed.), Contemporary Math., vol. 34, Amer. Math. Soc., Providence, R.I., 1984, pp. 253–287.

16. B. E. Sagan, The symmetric group, Wadsworth & Brooks/Cole, Pacific Grove, California, 1991.
17. M. Scheunert, The theory of Lie superalgebras, Lecture Notes in Math., vol. 716, Springer–Verlag,

Berlin, 1979.
18. M.-P. Schützenberger, La correspondance de Robinson, Combinatoire et Représentation du Groupe

Symétrique, Lecture Notes in Math., vol. 579, Springer–Verlag, Berlin–Heidelberg–New York, 1977,
pp. 59–113.

������� ���� ��	
����! "
� #�$
������� %�
� &���"�	��'���
 �� �(�)�) %�
� ��������

