Efficient covering designs of the complete graph

Yair Caro *

and

Raphael Yuster[†] Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. **AMS Subject Classification:** 05B05,05B40 (primary), 05B30,51E05,94C30,62K05,62K10 (secondary).

Submitted: November 1, 1996; Accepted: February 3, 1997

Abstract

Let H be a graph. We show that there exists $n_0 = n_0(H)$ such that for every $n \ge n_0$, there is a covering of the edges of K_n with copies of H where every edge is covered at most twice and any two copies intersect in at most one edge. Furthermore, the covering we obtain is asymptotically optimal.

1 Introduction

All graphs considered here are finite, undirected and simple, unless otherwise noted. For the standard graph-theoretic notations the reader is referred to [5]. Let $H = (V_H, E_H)$ be a graph. An *H*-covering design of a graph $G = (V_G, E_G)$ is a set $L = \{G_1, \ldots, G_s\}$ of subgraphs of G such that each G_i is isomorphic to H and every edge $e \in E_G$ appears in at least one member of L. The *H*-covering number of G, denoted by cov(G, H), is the minimum number of members in an *H*-covering design of G. (If there is an edge of G which cannot be covered by a copy of H, we put $cov(G, H) = \infty$). Clearly, $cov(G, H) \ge |E_G|/|E_H|$. In case equality holds, the *H*-covering design is called an *H*-decomposition (or *H*-design) of G. Two trivial necessary conditions for a decomposition are that $|E_H|$ divides $|E_G|$ and that gcd(H) divides gcd(G) where the gcd of a graph

^{*}e-mail: zeac603@uvm.haifa.ac.il

[†]e-mail: raphy@math.tau.ac.il

is the greatest common divisor of the degrees of all the vertices. In case $G = K_n$, it was shown by Wilson in [17] that the two necessary conditions are also sufficient, provided $n \ge n_0(H)$, where $n_0(H)$ is a sufficiently large constant. If, however, the necessary conditions do not hold, the best one could hope for is an *H*-covering design of K_n where the following three properties hold:

- 1. 2-overlap: Every edge is covered at most twice.
- 2. 1-intersection: Any two copies of H intersect in at most one edge.
- 3. Efficiency: $s|E_H| < \binom{n}{2} + c(H) \cdot n$, where s is the number of members in the covering, and c(H) is some constant depending only on H.

The papers of Mills and Mullin [12] and of Brouwer [4], provide an excellent survey of covering designs. Covering designs with the 2-overlap property were first introduced in statistical designs by [10] and are also mentioned in [2], [6] and [11]. Covering designs with the 1-intersection property (also called super-simple designs) are mentioned by Adams et. al. in [1], Teirlinck [15, 16], Fort and Hedlund [8], Brouwer [3] and Schreiber [14]. The existence of efficient Covering designs of *complete hypergraphs* was first proved by Rödl in [13].

Our main result is that *H*-covering designs of K_n , having these three properties, exist for every fixed graph *H*, and for all $n \ge n_0(H)$:

Theorem 1.1 Let H be a fixed graph. There exists $n_0 = n_0(H)$ such that if $n \ge n_0$, K_n has an H-covering design with the 2-overlap, 1-intersection, and efficiency properties.

2 Proof of the main result

We shall prove Theorem 1.1 whenever $H = K_h$ is a complete graph. This suffices, since if H is not a complete graph, it is known by Wilson's theorem [17] that there exists an $h_0 = h_0(H)$ such that K_{h_0} has an H-decomposition. By applying Theorem 1.1 to K_{h_0} , we shall obtain an $n_0 = n_0(h_0) = n_0(H)$, such that if $n \ge n_0$, K_n has a K_{h_0} -covering design with the 2-overlap and 1-intersection properties and such that $\binom{h_0}{2}s < \binom{n}{2} + h_0^3 \cdot n$, where s is the number of members in the covering. Thus, there is an H-covering design of K_n with the 2-overlap and 1-intersection properties, and with $s\frac{\binom{h_0}{2}}{|E_H|}$ elements, such that $s\frac{\binom{h_0}{2}}{|E_H|}|E_H| < \binom{n}{2} + h_0^3 \cdot n = \binom{n}{2} + c(H) \cdot n$.

Fix K_h , where $h \ge 3$ (for h = 2 the result is trivial), and let h_1 be the minimum positive integer such that whenever $n \ge h_1$ and $\binom{h}{2}$ divides $\binom{n}{2}$, and h - 1 divides n - 1, K_n has a K_h decomposition. As mentioned before, the existence of h_1 is guaranteed by Wilson's Theorem [17]. Now let $n \ge \max\{h^8, h_1 + h(h-1)\}$. We will show that K_n has a K_h -covering design, as required in Theorem 1.1. Let k be the minimum positive integer such that $\binom{h}{2}$ divides $\binom{n-k}{2}$ and h-1 divides n-k-1. It is easy to see that $0 \le k < h(h-1)$. If k=0 we are done, since in this case n satisfies the conditions in Wilson's Theorem, and there is a K_h -decomposition of K_n . Assume, therefore, that $1 \le k < h(h-1)$, and put r = n - k. Note that $r > h_1$. Partition the vertices of K_n into two subsets. The big subset has r vertices, namely $B = \{a_1, \ldots, a_r\}$. The small subset has k vertices, namely $S = \{b_1, \ldots, b_k\}$. We create the members of our efficient covering design in three stages. **Stage 1:** Let B_0 be the subgraph induced by the vertices $\{a_1, \ldots, a_{r-1}\}$. Note that B_0 is a complete graph on r-1 vertices, and since h-1 divides r-1, there exists a K_{h-1} -factor in B_0 . (Recall that an X-factor of a graph is a set of vertex-disjoint copies of X which cover all the vertices of the graph). Let F_1 be such a factor. We repeat the following process for i = 2, ..., k. Let B_{i-1} be the graph obtained from B_{i-2} after the edges of the members of F_{i-1} have been removed. Let F_i be a K_{h-1} -factor in B_{i-1} . In order to show that our process works, we need to show that a K_{h-1} -factor exists in B_{i-1} . We prove this by induction on *i*. For i = 1, this is simply the factor F_1 defined above. Assume the claim holds for all j < i. This implies that B_{i-1} is regular of degree (r-2) - (i-1)(h-2). According to the theorem of Hajnal and Szemerédi [9] if $(r-2) - (i-1)(h-2) \ge \frac{h-2}{h-1}(r-1)$ then B_{i-1} has a K_{h-1} -factor. Indeed,

$$(r-2) - (i-1)(h-2) \ge (r-2) - (k-1)(h-2) > (r-2) - h(h-1)(h-2) > r - h^3.$$

Since $r - \frac{r-1}{h-1} > \frac{h-2}{h-1}(r-1)$ it suffices to show that $r-h^3 \ge r - \frac{r-1}{h-1}$ and this holds since $r = n-k > h^4$. Having defined the K_{h-1} -factors F_1, \ldots, F_k , we now define a set L_1 of edge-disjoint copies of K_h in our K_n , which cover all the edges between S and $\{a_1, \ldots, a_{r-1}\}$. This is done by joining the vertex b_i to every member of F_i , for $i = 1, \ldots, k$. Note that whenever we join b_i to a member of F_i we obtain a copy of K_h . Note also that L_1 has exactly k(r-1)/(h-1) members.

Stage 2: Since $r \ge h_1$, and since h - 1 divides r - 1 and $\binom{h}{2}$ divides $\binom{r}{2}$, we have by Wilson's Theorem that the subgraph induced by B (which is a K_r), has a K_h -decomposition. Fix a labeled K_h -decomposition D of this K_r . That is, D is a set of $\binom{r}{2}/\binom{h}{2}$ h-subsets of $\{a_1, \ldots, a_r\}$, where for each $1 \le i < j \le r$, the pair (a_i, a_j) appears in exactly one member of D. If π is any permutation of $\{1, \ldots, r\}$ then let D_{π} be the labeled K_h -decomposition obtained from D by replacing each appearance of a_i in any member of D with $\pi(a_i)$, for $i = 1, \ldots, r$. Our aim is to show that there exists a permutation π , and a set L^* of less than h^5 members of L_1 (recall that L_1 is constructed in stage 1), such that every member of D_{π} intersects every member of $L_1 \setminus L^*$ in at most one edge. In order to achieve this goal, we pick π randomly, where each of the r! permutations is equally likely. Consider two distinct edges (a_i, a_j) and (a_k, a_l) which both appear in the same member of L_1 (note that when h = 3, there is no such pair, since every member of L_1 contains only two vertices of B). We call such a pair of edges D_{π} -bad if they both appear in the same member of D_{π} . We shall compute the probability that two fixed edges (a_i, a_j) and (a_k, a_l) are D_{π} -bad. Consider first the case where (a_i, a_j) and (a_k, a_l) share an endpoint, say $a_k = a_i$. Since π is random, the probability that (a_i, a_j) and (a_i, a_l) appear in the same member of D_{π} is exactly $\frac{h-2}{r-2}$. To see this, fix $\pi(a_i)$ and $\pi(a_j)$, and let Q denote the unique member of D which contains both $\pi(a_i)$ and $\pi(a_j)$. There are r-2 possible choices for $\pi(a_l)$, where h-2 of them result in a member of Q. Thus, D_{π} is bad with probability $\frac{h-2}{r-2}$, given that $\pi(a_i)$ and $\pi(a_j)$ are known. Note, however, that the expression $\frac{h-2}{r-2}$ does not depend on the specific choices for $\pi(a_i)$ and $\pi(a_j)$. Now consider the case where (a_i, a_j) and (a_k, a_l) are two independent edges (this is possible only if $h-1 \geq 4$, since every member of L_1 contains only h-1 vertices from B). By a similar reasoning to the above, the probability that both these edges appear in the same member of D_{π} is exactly $\frac{h-2}{r-2}\frac{h-3}{r-3}$. There are (h-1)(h-2)(h-3)/2 pairs of adjacent edges of the form (a_i, a_j) , (a_i, a_l) in every member of L_1 . There are $3(\frac{h-1}{4})$ pairs of two independent edges of the form (a_i, a_j) , (a_k, a_l) in every member of L_1 . Thus there are $3k\frac{r-1}{h-1}\binom{h-1}{4}$ such pairs in all the members of L_1 . There are $3k\frac{r-1}{h-1}\binom{h-1}{4}$ such pairs in all the members of L_1 . Thus there are $3k\frac{r-1}{h-1}\binom{h-1}{4}$ such pairs in all the members of L_1 . Thus there are $3k\frac{r-1}{h-1}\binom{h-1}{4}$ such pairs in all the members of L_1 . There fore, if μ is the expected number of D_{π} -bad pairs, then

$$\begin{split} \mu = k \frac{r-1}{h-1} \frac{(h-1)(h-2)(h-3)}{2} \frac{h-2}{r-2} + k \frac{r-1}{h-1} 3 \binom{h-1}{4} \frac{h-2}{r-2} \frac{h-3}{r-3} < \\ \frac{h^5}{2} + \frac{3}{24} h^7 \frac{r-1}{(r-2)(r-3)} < h^5. \end{split}$$

Thus, there exists a permutation π such that the number of D_{π} -bad pairs is less than h^5 . Fix such a permutation, and let $L_2 = D_{\pi}$. Let L^* be the set of all members of L_1 which contain a D_{π} -bad pair. Clearly, $|L^*| < h^5$. Thus, every member of L_2 intersects every member of $L_1 \setminus L^*$ in at most one edge. Put $L_3 = L_2 \cup (L_1 \setminus L^*)$.

Stage 3: Every edge of K_n appears in at most two members of L_3 and any two members of L_3 intersect in at most one edge. However, there may still be uncovered edges. In fact, all the $\binom{k}{2}$ edges connecting two members of S are not covered, and all the k edges of the form (b_i, a_r) , for $i = 1, \ldots, k$, are not covered. Furthermore, each member of L^* covers h - 1 edges connecting some $b_i \in S$ to a subset of h - 1 vertices of $\{a_1, \ldots, a_{r-1}\}$, and these edges are uncovered in L_3 . Thus there are $|L^*|(h-1)$ uncovered edges of this form. Hence, if M denotes the set of uncovered edges, we have that

$$|M| = \binom{k}{2} + k + |L^*|(h-1) < h^6.$$

The crucial point is that the number of uncovered edges is bounded by a constant depending only on h. We shall show how to sequentially create a set L_4 of copies of K_h , beginning with $L_4 = \emptyset$, where at each stage, a new copy of K_h containing at least one non-covered edge by members of $L_3 \cup L_4$, is added to L_4 (thus $|L_4| < h^6$) and such that the following three invariants are maintained:

- 1. Every edge is covered at most twice by members of $L_3 \cup L_4$.
- 2. Any two members of $L_3 \cup L_4$ intersect in at most one edge.
- 3. If L_4 already contains j members, then any vertex of $B \cup S$ is adjacent to at most $jh + h^3$ edges which are covered twice by members of $L_3 \cup L_4$.

Note that at the beginning of the process, when $L_4 = \emptyset$, the first two invariants hold, since they hold for L_3 . We must show that the third invariant holds initially, when j = 0. Indeed, in L_3 , all the edges adjacent to a vertex of S are either non-covered, or covered once in L_1 . Now consider a vertex $a_i \in B$. If i < r, a_i is adjacent to exactly (h-2)k edges which are covered twice by members of $L_1 \cup L_2$ (recall that a_r is not adjacent to any edge which is covered in L_1). Since $L_3 \subset L_1 \cup L_2$, we have that any vertex in $B \cup S$ is adjacent to at most $(h-2)k < h^3$ edges which are covered twice by members of L_3 .

Suppose L_4 already contains j members, and there still exists an uncovered edge $e = (q_1, q_2)$ in M. We shall find a set $Q = \{q_3, \ldots, q_h\}$ of h - 2 vertices in $B \cup S$, and add the complete graph K_h induced by $\{q_1, q_2, \ldots, q_h\}$ to L_4 , while maintaining our three invariants. We select the elements of Q sequentially. The first element, q_3 , needs to have the property that (q_1, q_3) is not covered twice, and (q_2, q_3) is not covered twice. Indeed there are at most $2(jh + h^3)$ vertices of $(B \cup S) \setminus \{q_1, q_2\}$ which are ruled out as candidates for q_3 . Since

$$2(jh+h^3) < 2(h^7+h^3) \le h^8 - 2 \le n-2$$

we can find the desired q_3 . It is important to note that there does not exist any member of $L_3 \cup L_4$ which contains both (q_1, q_3) and (q_2, q_3) , since this would require it to contain (q_1, q_2) which we assume to be uncovered. Therefore, invariants 1 and 2 still hold. Suppose we have already found appropriate vertices q_3, \ldots, q_i , where i < h, and we wish to find q_{i+1} . Our requirements of q_{i+1} are as follows: All the edges (q_t, q_{i+1}) for $t = 1, \ldots, i$ should each be covered at most once, and for each once-covered edge (q_t, q_p) where $1 \le t , <math>q_{i+1}$ does not appear in the unique copy of $L_3 \cup L_4$ containing (q_t, q_p) . These requirements rule out at most

$$i \cdot (jh+h^3) + \binom{i}{2}(h-2)$$

possible candidates for q_{i+1} from $(B \cup S) \setminus \{q_1, \ldots, q_i\}$. In order to show that q_{i+1} can be selected we need to show that

$$n-i > i(jh+h^3) + \binom{i}{2}(h-2).$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 4 (1997), $\#R10^-$

Indeed,

$$i(jh+h^3) + \binom{i}{2}(h-2) \le (h-1)(h^7+h^3) + \binom{h-1}{2}(h-2) < h^8 - (h-1) \le n-i.$$

Our construction of Q shows that after adding the K_h subgraph induced by $\{q_1, \ldots, q_h\}$ as the j + 1'th element to L_4 , invariants 1 and 2 still hold. Note also that invariant 3 holds as any vertex may only have at most h - 1 edges which are now covered twice, and which were not covered twice prior to this stage. (The only vertices for which this may happen are q_1, \ldots, q_h).

In order to complete our proof we only need to show that if $L = L_3 \cup L_4$ contains s elements then $s\binom{h}{2} < \binom{n}{2} + h^3 n$. Clearly, it suffices to show that

$$sh(h-1) < n(n-1) + h^3(n-1).\psi$$
 (1)

 L_4 contains less than h^6 members. L_1 contains exactly k(r-1)/(h-1) members, and L_2 contains exactly $\binom{r}{2}/\binom{h}{2}$ members. Thus,

$$s < h^6 + k \frac{r-1}{h-1} + \frac{\binom{r}{2}}{\binom{h}{2}}. \psi$$
 (2)

We shall prove (1) using (2) and using the facts that k < h(h-1), r = n - k and $n \ge h^8$. Indeed $sh(h-1) < h^7(h-1) + hk(r-1) + r(r-1) = h^8 - h^7 + hkn - hk^2 - hk + n^2 - 2kn + k^2 - n + k < h^8 - h^3 + hkn + n^2 - 2kn - n < n(n-1) + h^3(n-1).$

3- Concluding remarks and an open problem

When $H = K_h$, the constant $n_0(H)$ in Theorem 1.1 is shown in the proof to be no larger than $\max\{h^8, h_1 + h(h-1)\}$, where $h_1 = h_1(h)$ is the corresponding constant in Wilson's Theorem. However, the best known bound for h_1 (and, consequently, for $n_0(H)$), is rather large, and highly exponential in h [7]. It is plausible, however, that the statement of Theorem 1.1 is still valid for $n_0(H)$ which is much smaller. In fact, we conjecture the following:

Conjecture 3.1 There exists a positive constant C such that for all $h \ge 2$, if $n \ge Ch^2$ then K_n has a K_h covering design where each edge is covered at most twice and any two copies intersect in at most one edge.

Note that a positive answer to Conjecture 3.1 requires a proof which does not use Wilson's Theorem, as improving Wilson's constant to $O(h^2)$ is unlikely. The h^2 factor in Conjecture 3.1 cannot be reduced since we have the following simple $0.25h^2$ lower bound: Assume that $h \ge 10$. If $n = \lfloor 0.25h^2 \rfloor$ then any K_h -covering of K_n contains $\binom{n}{2} / \binom{h}{2} > h/2$ members. However, the union of $t K_h$ -subgraphs with the 1-intersection property contains at least $h + (h - 2) + \ldots + (h - 2t + 2)$ vertices. For $t = \lceil h/2 \rceil$ this sum is greater than $0.25h^2 \ge n$. Thus, any K_h -covering of K_n does not have the 1-intersection property.

4 Acknowledgment

The authors wish to thank T. Etzion and A. Rosa for useful discussions.

References

- P. Adams, E. Bryant and A. Khodkar, On the existence of super-simple designs with block-size 4, Aequationes Mathematicae 51 (1996), 230-246.
- [2] N. Alon, Y. Caro and R. Yuster, *Covering the edges of a graph by a prescribed tree with minimum overlap*, submitted.
- [3] A. E. Brouwer, On the packing of quadruples without common triples, Ars Combinatoria 5 (1978), 3-6.
- [4] A. E. Brouwer, *Block Designs*, in: Chapter 14 in "Handbook of Combinatorics", R. Graham, M. Grötschel and L. Lovász Eds. Elsevier, 1995.
- [5] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, Macmillan Press, London, 1976.
- [6] Y. Caro, Y. Roditty and Y. Schonheim, *Covering the edges of the complete graph with minimum overlap*, Manuscript.
- [7] Y. Chang, A bound for Wilson's Theorem III, J. Combinatorial Designs 4 (1996), 83-93.
- [8] M. K. Fort and G. A. Hedlund, Minimal covering of pairs by triples, Pacific J. Math. 8 (1958), 709-719.

- [9] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdös, in: Combinatorial Theory and its Applications, Vol. II (P. Erdös, A. Renyi and V. T. Sós eds.), Colloq. Math. Soc. J. Bolyai 4, North Holland, Amsterdam 1970, 601-623.
- [10] J. A. John and T. J. Mitchell, Optimal incomplete block designs J. Roy. Statist. Soc. 39B (1977) 39-43.
- [11] D. L. Kreher, G. F. Royle and W. D. Wallis, A family of resolvable regular graph designs, Discrete Math. 156 (1996), 269-275.
- [12] W. H. Mills and R. C. Mullin, *Coverings and packings*, in: Contemporary Design Theory: A collection of Surveys, 371-399, edited by J. H. Dinitz and D. R. Stinson. Wiley, 1992.
- [13] V. Rödl, On a packing and covering problem, Europ. J. of Combin. 6 (1985), 69-78.
- [14] S. Schreiber, Covering all triples on n marks by disjoint Steiner systems, J. Combin. Theory, Ser. A 15 (1973), 347-350.
- [15] L. Teirlinck, On making two Steiner triple systems disjoint, J. Combin. Theory, Ser. A 23 (1977), 349-350.
- [16] L. Teirlinck, On large sets of disjoint quadruple systems, Ars Combinatoria 17 (1984), 173-176.
- [17] R. M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph, Congressus Numerantium XV (1975), 647-659.