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Abstract

Let H be a graph. We show that there exists n0 = n0(H) such that for every n ≥ n0,

there is a covering of the edges of Kn with copies of H where every edge is covered at most

twice and any two copies intersect in at most one edge. Furthermore, the covering we obtain is

asymptotically optimal.

1 Introduction

All graphs considered here are finite, undirected and simple, unless otherwise noted. For the

standard graph-theoretic notations the reader is referred to [5]. Let H = (VH , EH) be a graph.

An H-covering design of a graph G = (VG, EG) is a set L = {G1, . . .Gs} of subgraphs of G such

that each Gi is isomorphic to H and every edge e ∈ EG appears in at least one member of L.

The H-covering number of G, denoted by cov(G,H), is the minimum number of members in an

H-covering design of G. (If there is an edge of G which cannot be covered by a copy of H, we

put cov(G,H) = ∞). Clearly, cov(G,H) ≥ |EG|/|EH |. In case equality holds, the H-covering

design is called an H-decomposition (or H-design) of G. Two trivial necessary conditions for a

decomposition are that |EH | divides |EG| and that gcd(H) divides gcd(G) where the gcd of a graph
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is the greatest common divisor of the degrees of all the vertices. In case G = Kn, it was shown

by Wilson in [17] that the two necessary conditions are also sufficient, provided n ≥ n0(H), where

n0(H) is a sufficiently large constant. If, however, the necessary conditions do not hold, the best

one could hope for is an H-covering design of Kn where the following three properties hold:

1. 2-overlap: Every edge is covered at most twice.

2. 1-intersection: Any two copies of H intersect in at most one edge.

3. Efficiency: s|EH | <
(n

2

)
+ c(H) · n, where s is the number of members in the covering, and

c(H) is some constant depending only on H.

The papers of Mills and Mullin [12] and of Brouwer [4], provide an excellent survey of covering

designs. Covering designs with the 2-overlap property were first introduced in statistical designs by

[10] and are also mentioned in [2], [6] and [11]. Covering designs with the 1-intersection property

(also called super-simple designs) are mentioned by Adams et. al. in [1], Teirlinck [15, 16], Fort and

Hedlund [8], Brouwer [3] and Schreiber [14]. The existence of efficient Covering designs of complete

hypergraphs was first proved by Rödl in [13].

Our main result is that H-covering designs of Kn, having these three properties, exist for every

fixed graph H, and for all n ≥ n0(H):

Theorem 1.1 Let H be a fixed graph. There exists n0 = n0(H) such that if n ≥ n0, Kn has an

H-covering design with the 2-overlap, 1-intersection, and efficiency properties.

2 Proof of the main result

We shall prove Theorem 1.1 whenever H = Kh is a complete graph. This suffices, since if H

is not a complete graph, it is known by Wilson’s theorem [17] that there exists an h0 = h0(H)

such that Kh0 has an H-decomposition. By applying Theorem 1.1 to Kh0, we shall obtain an

n0 = n0(h0) = n0(H), such that if n ≥ n0, Kn has a Kh0-covering design with the 2-overlap and

1-intersection properties and such that
(h0

2

)
s <

(n
2

)
+ h3

0 · n, where s is the number of members

in the covering. Thus, there is an H-covering design of Kn with the 2-overlap and 1-intersection

properties, and with s
(h0

2 )
|EH |

elements, such that s
(h0

2 )
|EH |
|EH | <

(n
2

)
+ h3

0 · n =
(n

2

)
+ c(H) · n.

Fix Kh, where h ≥ 3 (for h = 2 the result is trivial), and let h1 be the minimum positive

integer such that whenever n ≥ h1 and
(h

2

)
divides

(n
2

)
, and h − 1 divides n − 1, Kn has a Kh-

decomposition. As mentioned before, the existence of h1 is guaranteed by Wilson’s Theorem [17].

Now let n ≥ max{h8, h1 +h(h−1)}. We will show that Kn has a Kh-covering design, as required in
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Theorem 1.1. Let k be the minimum positive integer such that
(h

2

)
divides

(n−k
2

)
and h− 1 divides

n− k− 1. It is easy to see that 0 ≤ k < h(h− 1). If k = 0 we are done, since in this case n satisfies

the conditions in Wilson’s Theorem, and there is a Kh-decomposition of Kn. Assume, therefore,

that 1 ≤ k < h(h− 1), and put r = n− k. Note that r > h1. Partition the vertices of Kn into two

subsets. The big subset has r vertices, namely B = {a1, . . . , ar}. The small subset has k vertices,

namely S = {b1, . . . , bk}. We create the members of our efficient covering design in three stages.

Stage 1: Let B0 be the subgraph induced by the vertices {a1, . . . , ar−1}. Note that B0 is a

complete graph on r − 1 vertices, and since h − 1 divides r − 1, there exists a Kh−1-factor in

B0. (Recall that an X-factor of a graph is a set of vertex-disjoint copies of X which cover all the

vertices of the graph). Let F1 be such a factor. We repeat the following process for i = 2, . . . , k.

Let Bi−1 be the graph obtained from Bi−2 after the edges of the members of Fi−1 have been

removed. Let Fi be a Kh−1-factor in Bi−1. In order to show that our process works, we need

to show that a Kh−1-factor exists in Bi−1. We prove this by induction on i. For i = 1, this is

simply the factor F1 defined above. Assume the claim holds for all j < i. This implies that Bi−1

is regular of degree (r− 2)− (i− 1)(h− 2). According to the theorem of Hajnal and Szemerédi [9]

if (r − 2)− (i− 1)(h− 2) ≥ h−2
h−1 (r − 1) then Bi−1 has a Kh−1-factor. Indeed,

(r − 2)− (i− 1)(h− 2) ≥ (r − 2)− (k − 1)(h− 2) > (r − 2)− h(h− 1)(h− 2) > r − h3.

Since r− r−1
h−1 >

h−2
h−1 (r−1) it suffices to show that r−h3 ≥ r− r−1

h−1 and this holds since r = n−k > h4.

Having defined the Kh−1-factors F1, . . . , Fk, we now define a set L1 of edge-disjoint copies of Kh in

our Kn, which cover all the edges between S and {a1, . . . , ar−1}. This is done by joining the vertex

bi to every member of Fi, for i = 1, . . . , k. Note that whenever we join bi to a member of Fi we

obtain a copy of Kh. Note also that L1 has exactly k(r − 1)/(h− 1) members.

Stage 2: Since r ≥ h1, and since h − 1 divides r − 1 and
(h

2

)
divides

(r
2

)
, we have by Wilson’s

Theorem that the subgraph induced by B (which is a Kr), has a Kh-decomposition. Fix a labeled

Kh-decomposition D of this Kr. That is, D is a set of
(r
2

)
/
(h

2

)
h-subsets of {a1, . . . , ar}, where for

each 1 ≤ i < j ≤ r, the pair (ai, aj) appears in exactly one member of D. If π is any permutation

of {1, . . . , r} then let Dπ be the labeled Kh-decomposition obtained from D by replacing each

appearance of ai in any member of D with π(ai), for i = 1, . . . , r. Our aim is to show that there

exists a permutation π, and a set L∗ of less than h5 members of L1 (recall that L1 is constructed in

stage 1), such that every member of Dπ intersects every member of L1 \L∗ in at most one edge. In

order to achieve this goal, we pick π randomly, where each of the r! permutations is equally likely.

Consider two distinct edges (ai, aj) and (ak, al) which both appear in the same member of L1 (note

that when h = 3, there is no such pair, since every member of L1 contains only two vertices of

B). We call such a pair of edges Dπ-bad if they both appear in the same member of Dπ . We shall
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compute the probability that two fixed edges (ai, aj) and (ak, al) are Dπ-bad. Consider first the

case where (ai, aj) and (ak, al) share an endpoint, say ak = ai. Since π is random, the probability

that (ai, aj) and (ai, al) appear in the same member of Dπ is exactly h−2
r−2 . To see this, fix π(ai)

and π(aj), and let Q denote the unique member of D which contains both π(ai) and π(aj). There

are r− 2 possible choices for π(al), where h− 2 of them result in a member of Q. Thus, Dπ is bad

with probability h−2
r−2 , given that π(ai) and π(aj) are known. Note, however, that the expression

h−2
r−2 does not depend on the specific choices for π(ai) and π(aj). Now consider the case where

(ai, aj) and (ak, al) are two independent edges (this is possible only if h − 1 ≥ 4, since every

member of L1 contains only h − 1 vertices from B). By a similar reasoning to the above, the

probability that both these edges appear in the same member of Dπ is exactly h−2
r−2

h−3
r−3 . There are

(h− 1)(h− 2)(h− 3)/2 pairs of adjacent edges of the form (ai, aj), (ai, al) in every member of L1.

Thus, there are k r−1
h−1(h− 1)(h− 2)(h− 3)/2 such pairs in all the members of L1. There are 3

(h−1
4

)
pairs of two independent edges of the form (ai, aj), (ak, al) in every member of L1. Thus there are

3k r−1
h−1

(h−1
4

)
such pairs in all the members of L1. Therefore, if µ is the expected number of Dπ-bad

pairs, then

µ = k
r − 1

h− 1

(h− 1)(h− 2)(h− 3)

2

h− 2

r − 2
+ k

r − 1

h− 1
3

(
h− 1

4

)
h− 2

r − 2

h− 3

r − 3
<

h5

2
+

3

24
h7 r − 1

(r − 2)(r − 3)
< h5.

Thus, there exists a permutation π such that the number of Dπ-bad pairs is less than h5. Fix such

a permutation, and let L2 = Dπ. Let L∗ be the set of all members of L1 which contain a Dπ-bad

pair. Clearly, |L∗| < h5. Thus, every member of L2 intersects every member of L1 \ L∗ in at most

one edge. Put L3 = L2 ∪ (L1 \ L∗).

Stage 3: Every edge of Kn appears in at most two members of L3 and any two members of L3

intersect in at most one edge. However, there may still be uncovered edges. In fact, all the
(k

2

)
edges connecting two members of S are not covered, and all the k edges of the form (bi, ar), for

i = 1, . . . , k, are not covered. Furthermore, each member of L∗ covers h− 1 edges connecting some

bi ∈ S to a subset of h− 1 vertices of {a1, . . . , ar−1}, and these edges are uncovered in L3. Thus

there are |L∗|(h− 1) uncovered edges of this form. Hence, if M denotes the set of uncovered edges,

we have that

|M | =

(
k

2

)
+ k + |L∗|(h− 1) < h6.

The crucial point is that the number of uncovered edges is bounded by a constant depending only

on h. We shall show how to sequentially create a set L4 of copies of Kh, beginning with L4 = ∅,
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where at each stage, a new copy of Kh containing at least one non-covered edge by members of

L3∪L4, is added to L4 (thus |L4| < h6) and such that the following three invariants are maintained:

1. Every edge is covered at most twice by members of L3 ∪L4.

2. Any two members of L3 ∪L4 intersect in at most one edge.

3. If L4 already contains j members, then any vertex of B ∪ S is adjacent to at most jh+ h3

edges which are covered twice by members of L3 ∪ L4.

Note that at the beginning of the process, when L4 = ∅, the first two invariants hold, since they

hold for L3. We must show that the third invariant holds initially, when j = 0. Indeed, in L3, all

the edges adjacent to a vertex of S are either non-covered, or covered once in L1. Now consider a

vertex ai ∈ B. If i < r, ai is adjacent to exactly (h−2)k edges which are covered twice by members

of L1 ∪L2 (recall that ar is not adjacent to any edge which is covered in L1). Since L3 ⊂ L1 ∪L2,

we have that any vertex in B ∪ S is adjacent to at most (h − 2)k < h3 edges which are covered

twice by members of L3.

Suppose L4 already contains j members, and there still exists an uncovered edge e = (q1, q2) in M .

We shall find a set Q = {q3, . . . , qh} of h − 2 vertices in B ∪ S, and add the complete graph Kh

induced by {q1, q2, . . . , qh} to L4, while maintaining our three invariants. We select the elements of

Q sequentially. The first element, q3, needs to have the property that (q1, q3) is not covered twice,

and (q2, q3) is not covered twice. Indeed there are at most 2(jh+ h3) vertices of (B ∪ S) \ {q1, q2}

which are ruled out as candidates for q3. Since

2(jh+ h3) < 2(h7 + h3) ≤ h8 − 2 ≤ n− 2

we can find the desired q3. It is important to note that there does not exist any member of L3 ∪L4

which contains both (q1, q3) and (q2, q3), since this would require it to contain (q1, q2) which we

assume to be uncovered. Therefore, invariants 1 and 2 still hold. Suppose we have already found

appropriate vertices q3, . . . , qi, where i < h, and we wish to find qi+1. Our requirements of qi+1 are

as follows: All the edges (qt, qi+1) for t = 1, . . . , i should each be covered at most once, and for each

once-covered edge (qt, qp) where 1 ≤ t < p ≤ i, qi+1 does not appear in the unique copy of L3 ∪L4

containing (qt, qp). These requirements rule out at most

i · (jh+ h3) +

(
i

2

)
(h− 2)

possible candidates for qi+1 from (B ∪ S) \ {q1, . . . , qi}. In order to show that qi+1 can be selected

we need to show that

n− i > i(jh+ h3) +

(
i

2

)
(h− 2).



the electronic journal of combinatorics 4 (1997), #R10 6

Indeed,

i(jh+ h3) +

(
i

2

)
(h− 2) ≤ (h− 1)(h7 + h3) +

(
h− 1

2

)
(h− 2) < h8 − (h− 1) ≤ n− i.

Our construction of Q shows that after adding the Kh subgraph induced by {q1, . . . , qh} as the

j + 1’th element to L4, invariants 1 and 2 still hold. Note also that invariant 3 holds as any vertex

may only have at most h− 1 edges which are now covered twice, and which were not covered twice

prior to this stage. (The only vertices for which this may happen are q1, . . . , qh).

In order to complete our proof we only need to show that if L = L3 ∪ L4 contains s elements then

s
(h

2

)
<
(n

2

)
+ h3n. Clearly, it suffices to show that

sh(h− 1) < n(n− 1) + h3(n− 1).ψ (1)

L4 contains less than h6 members. L1 contains exactly k(r− 1)/(h− 1) members, and L2 contains

exactly
(r
2

)
/
(h

2

)
members. Thus,

s < h6 + k
r − 1

h− 1
+

(r
2

)(h
2

) . ψ (2)

We shall prove (1) using (2) and using the facts that k < h(h− 1), r = n− k and n ≥ h8. Indeed

sh(h− 1) < h7(h− 1) +hk(r− 1) + r(r− 1) = h8−h7 + hkn− hk2−hk+n2− 2kn+ k2−n+ k <

h8 − h3 + hkn+ n2 − 2kn− n < n(n− 1) + h3(n− 1).

3 Concluding remarks and an open problem

When H = Kh, the constant n0(H) in Theorem 1.1 is shown in the proof to be no larger than

max{h8, h1 + h(h − 1)}, where h1 = h1(h) is the corresponding constant in Wilson’s Theorem.

However, the best known bound for h1 (and, consequently, for n0(H)), is rather large, and highly

exponential in h [7]. It is plausible, however, that the statement of Theorem 1.1 is still valid for

n0(H) which is much smaller. In fact, we conjecture the following:

Conjecture 3.1 There exists a positive constant C such that for all h ≥ 2, if n ≥ Ch2 then Kn

has a Kh covering design where each edge is covered at most twice and any two copies intersect in

at most one edge.
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Note that a positive answer to Conjecture 3.1 requires a proof which does not use Wilson’s Theorem,

as improving Wilson’s constant to O(h2) is unlikely. The h2 factor in Conjecture 3.1 cannot

be reduced since we have the following simple 0.25h2 lower bound: Assume that h ≥ 10. If

n = b0.25h2c then any Kh-covering of Kn contains
(n

2

)
/
(h

2

)
> h/2 members. However, the union of

t Kh-subgraphs with the 1-intersection property contains at least h+ (h− 2) + . . . + (h− 2t+ 2)

vertices. For t = dh/2e this sum is greater than 0.25h2 ≥ n. Thus, any Kh-covering of Kn does not

have the 1-intersection property.
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