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Abstract

We give the first complete combinatorial proof of the fact that the number
of domino tilings of the 2n × 2n square grid is of the form 2n(2k + 1)2, thus
settling a question raised in [4] . The proof lends itself naturally to some inter-
esting generalizations, and leads to a number of new conjectures.
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1 Introduction

The number of domino tilings of the n×m square grid was first calculated in a seminal
paper by Kasteleyn [6] . He showed that, for n, m even, the number of tilings N(n, m)
is given by

N(n, m) =

n
2∏

j=1

m
2∏

k=1

(4 cos2 πj

n + 1
+ 4 cos2 πk

m + 1
). (1)

This result, while interesting in its own right, does not reveal all of the properties
of N(n, m) at first glance. For example, N(2n, 2n) is either a perfect square or twice
a perfect square (this was first proved by Montroll [7] using linear algebra and later
proved by Jokusch [5] and others). Another interesting observation is that

N(2n, 2n) = 2n(2k + 1)2. (2)
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A derivation of this fact from (1) has been obtained independently by a number of
authors; we refer the reader to [4] . A combinatorial proof of (2) has proved more
elusive, although partial results have been established [2] . As we shall show, a direct
combinatorial proof of (2) illuminates the combinatorics behind N(2n, 2n) and leads
directly to generalizations.

Interestingly, perhaps because of the closed form of equation (1), observations
other than the ones mentioned above have been scarce. Propp has remarked [9] that
“Aztec diamonds and their kin have (so far) been much more fertile ground for exact
combinatorics than the seemingly more natural rectangles”.

We hope to show that there is a rich source of problems to be found in the
enumeration of perfect matchings of rectangular grids. In fact, it seems that the tools
needed to resolve many of the problems have yet to be discovered.

2 The square grid

Theorem 1 Let N(2n, 2n) be the number of domino tilings of the 2n × 2n square
grid.

N(2n, 2n) = 2n(2k + 1)2. (3)

Our proof is broken down into two parts. The first part is not new, in fact it
appears as a very special case in a theorem in [2] . Since we are interested in this
special case only, we provide a simplified version of the proof in [2] that sacrifices much
of the generality but illustrates the elegant combinatorial nature of the argument.

We begin by introducing the notation we will use. Rather than discussing perfect
matchings of graphs, we will use the dual graph and think of edges in the perfect
matching as dominoes covering two adjacent squares. We will, on occasion, use the
two descriptions interchangeably. For an arbitrary region R, we will use the notation
# R for the number of domino tilings of R. For example,

# = 3.

We will use the notation #2R for the parity of the number of domino tilings of R.
The direction of a domino from a fixed square is either up, down, left or right.

We shall say that a domino is oriented in the positive (resp. negative) direction
from a given square if its direction is up or to the right (resp. down or to the left).
For example, in the tiling below, the top left square has a domino that is positively
oriented and whose direction is right.

Lemma 1 Label the diagonal squares on the 2n × 2n square grid from the bottom
left to the top right with the labels a1, b1, a2, b2, . . . , an, bn. The number of domino
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tilings of the square grid with dominoes placed at a1, a2, . . . , an is dependent only on
the orientation of the dominoes and not their direction.

Figure 1 illustrates the labeling of the diagonal for the 8 × 8 square grid:

b4
a4

b3
a3

b2
a2

b1
a1

Figure 1

Proof of lemma: Let M be any domino tiling of the 2n × 2n square grid. Let
M ′ be the tiling obtained by reflecting M across the diagonal and define D = M ∪M ′

(D is allowed to consist of multiple dominoes). Notice that in the dual graph of the
2n × 2n square grid, D is a 2-factor and is therefore a disjoint union of even-length
cycles. Furthermore, since D is symmetric across across the diagonal, any cycle maps
to another cycle under the reflection.

Now define C ′
i to be the cycle containing ai. C ′

i can have at most one other vertex
on the diagonal because every vertex in C ′

i has degree 2. Furthermore, such a vertex
must be of the type bj, for otherwise the number of vertices enclosed by C is odd
(contradicting the fact that D is a disjoint union of even length cycles). It follows
that all the cycles C ′

i are distinct.
Finally, let Ci = C ′

i ∩ M be the alternating cycles (cycles in the dual graph
alternating between edges in the tiling and edges not in the tiling) in M obtained
from C ′

i. By the above arguments, the alternating cycles Ci are disjoint. Thus, there is
a bijection between any two sets of tilings with fixed dominoes of the same orientation
on the ai’s. We simply select all the dominoes on the ai’s that have switched direction
and rotate the appropriate alternating cycles.

Example 1 Changing the direction of the domino at a2 we have

→
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We now define a class of grids, Hn (first introduced by Ciucu [2] ), as follows:

H1 =

H2 =

H3 =

H4 =

...
...

Hn is defined from Hn−1 by adding a grid of size 2 × (2n − 1) to the left of Hn−1.

Lemma 2 The number of domino tilings of the square grid is given by

N(2n, 2n) = 2n(#Hn)2. (4)

Proof of lemma: Consider a fixed orientation for the dominoes covering the ai’s.
We can assume (using Lemma 1) that the directions of the dominoes are all either
down or to the right (call such a configuration reduced). Notice that the square grid
decomposes naturally into two halves. Figure 2 illustrates an example of a reduced
configuration.

U U U U U U U U
U U U U U U
U U U U U U
U U U U
U U U U
U U
U U

Figure 2
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Notice that the region filled with U is equivalent to Hn, as is its complement.
Now consider the standard checkerboard 2-coloring of the square grid. All the U ’s
which are adjacent to empty squares have the same color. It follows that in any
reduced configuration, every domino covers either two U ’s or none at all. We have
from Lemma 1 that

N(2n, 2n) = 2n
∑

C

#C (5)

where C ranges over all reduced configurations. From the remarks above it follows
that ∑

C

#C = (#Hn)2, (6)

which completes the proof of the lemma.

Lemma 3 #Hn is odd.

Proof of lemma: Our proof is by induction. The case when n = 1, 2 is trivial.
We illustrate the general case by showing the step n = 3 ⇒ n = 4.

Begin by observing that

# =

# + # + #

(7)

The first two terms in (7) are equal, so we have

#2 = #2

X X
X X
X X

(8)
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where the X’s denote squares that cannot be used.

We now begin removing shapes of the form
X X

X
X

from the diagonal, using a

similar idea:

#

X X
X X
X X

=

#

X X
X X
X X

+ #

X X
X X
X X

+ #

X X
X X
X X

(9)

Hence, we can conclude that

#2

X X
X X
X X

= #2

X X
X X
X X X X

X
X

= #2

X X
X X
X X X X

X
X X X

X
X

(10)

Our last shape is Hn−1 (minus the forced domino on the bottom right), flipped
and rotated by 90◦! It follows that

#2Hn = #2Hn−1. (11)

Proof of theorem: The theorem follows immediately by applying Lemmas 2 and
3.

3 Rectangular Grids

The exact formula for the largest power of 2 appearing in N(2n, 2n) suggests an
investigation of the same question for n × m rectangular grids.

We use the notation (a, b) to denote the greatest common divisor of a and b.
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Problem 1 Let N(n, m) be the number of domino tilings of the n × m rectangular
grid. Prove combinatorially that

N(2n, 2m) = 2
(2n+1,2m+1)−1

2 (2r1 + 1) (12)

N(2n + 1, 2m) = 2
(n+1,2m+1)−1

2 (3+j)(2r2 + 1) (13)

where j is defined by n + 1 = 2j(2t + 1). (In the above r1, r2, t are natural numbers
that may vary for different n, m.)

Equation (12) [4] . (This has been observed by Saldanha [10] ). Indeed, the other
case should follow by similar methods. A combinatorial proof is not known for either
case. Combinatorial proofs are important in this context because other methods fail
for regions that are more complicated. Section 4 contains numerous examples where
an analogous formula to (1) is lacking, and therefore there is no closed form formula
from which to work.

Stanley [11] has conjectured that for fixed m (and n varying), N(n, m) satisfies a
linear recurrence with constant coefficients that is of order 2

m+1
2 (he established this

when m + 1 is an odd prime). Such recurrences have been obtained for small m and
can be used to provide proofs of special cases of Problem 1. Indeed, Bao [1] has used
such recurrences together with the reduction techniques we use above to establish
combinatorial proofs for the formulas in Problem 1for n ≤ 2. Unfortunately, the
difficulty in establishing recurrences for N(n, m) combinatorially probably precludes
the general applicability of the above method for finding combinatorial proofs for (12)
and (13).

Equation (13), which remains to be verified using algebraic methods, was checked
extensively for various values of n with m ≤ 10.

4 Conjectures
4.1 Deleting From Diagonals

We begin with an intriguing “power of 2” conjecture for a new type of region we call
the spider.

The (5, 2) spider
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Define the (n, k) spider to be the region obtained by deleting k consecutive squares
(from the corner) along each diagonal of the 2n × 2n square grid.

Conjecture 1 Let S(n, k) be the number of domino tilings of the (n, k) spider.

S(n, k) = 2n+k(2k−1)(2r + 1), k ≤ bn

2
c. (14)

When k > bn
2 c the region reduces to an Aztec diamond after the removal of forced

dominoes (for a definition and extensive discussion of Aztec diamonds see [3] ). If n is
even we see that (14) reduces to the formula for the number of domino tilings of the
Aztec diamond when k = n

2 . Conjecture 1 has been checked numerically for n ≤ 10.

Values of S(n, k) for n = {2, . . . , 6}, k ≤ bn
2 c

n/k 2 3 4 5 6
0 2232 23292 24172532 2524123732 26543125327012

1 23 2472 25134 26341121392 27527443972

2 − − 210 211312 21236172

3 − − − − − 221

4.2 Deleting From Step Diagonals

The acute reader will have noticed that the arguments in Lemma 1 establish that
any domino tiling of the 2n × 2n square grid contains at least n disjoint alternating
cycles. The tiling in Example 1 illustrates that this is the best result possible (for
other results along these lines see [8] ). Figure 3 shows how to place n dominoes so
as to ensure the remaining figure has only one tiling (the n dominoes “block” the n
cycles).

Figure 3

We shall call the set of the first n stepwise horizontal edges in the 2n × 2n square
grid the step-diagonal.

The above observation has led Propp [9] to ask whether removal of only half the
dominoes from the bottom of the step diagonal results in a graph whose number of
tilings is interesting. Indeed, drawing on his idea, we have formulated the following
remarkable conjecture:
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Conjecture 2 Let G be the grid obtained after the removal of any k edges from the
step-diagonal of the 2n × 2n square grid. Then the number of domino tilings of G is
of the form

#G = 2n−k(2r + 1). (15)
In addition, if the k edges removed are consecutive from the lower left corner then
2r + 1 is a perfect square.

Also related to the step-diagonal is the following conjecture:

Conjecture 3 Let G be the grid obtained after the removal of one edge from the step-
diagonal of the 2n×2n square grid. Using the notation that N(2n, 2n) = 2n(2k +1)2,
the number of domino tilings of G satisfies:

#G = c(2k + 1) (16)

where c is a constant which depends upon which edge was removed.

Conjecture 2 was checked extensively for n ≤ 10 (the exponential growth of the
number of configurations to be tested precluded exhaustive checking of this conjec-
ture). Conjecture 3 was checked for all n ≤ 10.

Edward Early has considered the number of tilings of holey squares. The holey
square H(n, m) is a 2n × 2n square with a hole of size 2m × 2m removed from the
center. He has conjectured

Conjecture 4
#H(n, m) = 2n−m(2k + 1)2. (17)

The fact that 2n−m|H(n, m) is easily obtained using Lemma 1 (the fact that
H(n, m) is either a perfect square or twice a perfect square also follows). The fact
that n − m is the highest power of 2 dividing H(n, m) does not follow inductively in
this case. Bao [1] has established that the conjecture is true for m = 1, 2 by showing
that a region similar to Hn has an odd number of domino tilings. Unfortunately,
algebraic methods using (1) fail in this case since no analogous formulas from which
to work are known.

Finally, based on numerical evidence, we present our grand conjecture:

Conjecture 5 Conjecture 2 is true for all holey squares (with n replaced by n−m in
(15)). Conjecture 3 is true for all holey squares (with (2k + 1) replaced by the square
root of the odd part of #H(n, m)).

5 Conclusion

The results and conjectures of the previous sections point to an underlying combi-
natorial principle which is most likely the basis of the nice patterns of powers of 2.
While such a result eludes us, the following old (somewhat forgotten) result which
appears in [7] may hint at an algebraic approach to “power of 2” conjectures:

Proposition 1 A graph G has an even number of perfect matchings iff there is a
non-empty set S ⊆ V (G) such that every point is adjacent to an even number of
points of S.
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