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Abstract

For every positive integer m, we construct a symmetric (v, k, λ)-design with parameters
v = h((2h−1)2m−1)

h−1 , k = h(2h − 1)2m−1, and λ = h(h − 1)(2h − 1)2m−2, where h = ±3 · 2d

and |2h − 1| is a prime power. For m ≥ 2 and d ≥ 1, these parameter values were previously
undecided. The tools used in the construction are balanced generalized weighing matrices and
regular Hadamard matrices of order 9 · 4d.
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1 Introduction

Let v > k > λ ≥ 0 be integers. A symmetric (v, k, λ)-design is an incidence structure
(P, B), where P is a set of cardinality v (the point-set) and B is a family of v k-subsets
(blocks) of P such that any two distinct points are contained in exactly λ blocks. If
P = {p1, ..., pv} and B = {B1, ..., Bv}, then the (0, 1)-matrix M = [mij] of order
v, where mij = 1 if and only if pj ∈ Bi, is the incidence matrix of the design. A
(0, 1)-matrix X of order v is the incidence matrix of a symmetric (v, k, λ)-design if
and only if it satisfies the equation XXT = (k − λ)I + λJ , where I is the identity
matrix and J is the all-one matrix of order v. For references, see [1] or [3, Chapter
5].

A Hadamard matrix of order n is an n by n matrix H with entries equal to ±1
satisfying HHT = nI. A Hadamard matrix is regular if its row and column sums
are constant. This sum is always even and if we denote it 2h, then the order of the
matrix is equal to 4h2. Replacing −1s in a regular Hadamard matrix of order 4h2

by 0s yields the incidence matrix of a symmetric (4h2, 2h2 − h, h2 − h)-design usually
∗The author acknowledges with thanks the Central Michigan University Research Professor award.
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called a Menon design. Conversely, replacing 0s by −1s in the incidence matrix of
a symmetric (4h2, 2h2 − h, h2 − h)-design yields a regular Hadamard matrix of order
4h2. For references, see [9]. In this paper, we will be interested in regular Hadamard
matrices of order 9 · 4d, where d is a positive integer. If H is such a matrix, then
the Kronecker product of a regular Hadamard matrix of order 4 and H is a regular
Hadamard matrix of order 9 · 4d+1. Therefore, one can obtain a family of regular
Hadamard matrices of order 9 · 4d, starting with a regular Hadamard matrix of order
36.

A balanced generalized weighing matrix BGW(v, k, λ) over a (multiplicatively writ-
ten) group G is a matrix W = [ωij] of order v with entries from the set G ∪ {0} such
that (i) each row and each column of W contain exactly k non-zero entries and (ii)
for any distinct rows i and h, the multiset

{ω−1
hj ωij : 1 ≤ j ≤ v, ωij 6= 0, ωhj 6= 0}

contains exactly λ/|G| copies of every element of G.
In this paper, we will use a balanced generalized weighing matrix BGW(qm +

qm−1 + · · · + q + 1, qm, qm − qm−1) over a cyclic group G of order t, where q is a
prime power, m is a positive integer, and t is a divisor of q − 1. Such matrices are
known to exist [3, IV.4.22] and have been applied to constructing symmetric designs
by Rajkundlia [8], Brouwer [2], Fanning [4], and the author [5, 6]. If M is a set of m
by n matrices, G is a group of bijections M → M, and W is a balanced generalized
weighing matrix over G, then, for any P ∈ M, W ⊗ P denotes the matrix obtained
by replacing every entry σ in W by the matrix σP . In Section 2 (Lemma 2.1), we
will prove the following modification of a result from [6]:

Let M be a set of matrices of order v containing the incidence matrix M of a
symmetric (v, k, λ)-design with q = k2

k−λ
a prime power. Let G be a finite cyclic group

of bijections M → M such that (i) (σP )(σQ)T = PQT for any P, Q ∈ M and σ ∈ G,
(ii)

∑
σ∈G σM = k|G|

v
J , and (iii) |G| divides q − 1. If W is a balanced generalized

weighing matrix BGW(qm + · · · + q + 1, qm, qm − qm−1) over G, then W ⊗ M is the
incidence matrix of a symmetric (v(qm + qm−1 + · · · + q + 1), kqm, λqm)-design.

In order to apply this lemma, we need a symmetric (v, k, λ)-design to start with.
In the paper [6], we have shown that the designs corresponding to certain McFarland
and Spence difference sets (or their complements) serve as such starters. In Section
3 of this paper, we show that for h = ±3 · 2d, if |2h − 1| is a prime power, then there
is a symmetric (4h2, 2h2 − h, h2 − h)-design, which can also serve as a starter. As a
result, we show that for any positive integers m and d, if h = ±3 · 2d and |2h − 1| is
a prime power, then there exists a symmetric (v, k, λ)-design with

v =
h((2h − 1)2m − 1)

h − 1
, k = h(2h − 1)2m−1, λ = h(h − 1)(2h − 1)2m−2.

These parameters are new, except m = 1 (Menon designs) and d = 0 (constructed by
the author in [6]).



the electronic journal of combinatorics 5 (1997), #R1 3

2 Preliminaries

Throughout this paper, we will denote identity, zero, and all-one matrices of suitable
orders by I, O, and J , respectively.

If W is a balanced generalized weighing matrix of order w over a group G of
bijections on a set M of matrices of order n, then, for any P ∈ M, we will denote by
W ⊗ P the matrix of order nw obtained by replacing every nonzero entry σ in W by
the matrix σP and every zero entry in W by the zero matrix of order n.

The following lemma represents a slight modification of a result proven in [6]. Since
it is crucial for this paper and the proof is short, we will repeat it here.

Lemma 2.1 Let v > k > λ ≥ 0 be integers. Let M be a set of matrices of order v
and G a finite group of bijections M → M satisfying the following conditions:

(i) M contains the incidence matrix M of a symmetric (v, k, λ)-design;
(ii) for any P, Q ∈ M and σ ∈ G,

(σP )(σQ)T = PQT ;

(iii)
∑

σ∈G σM = k|G|
v

J ;
(iv) q = k2

k−λ
is a prime power;

(v) G is cyclic and |G| divides q − 1.
Then, for any positive integer m, there exists a symmetric (vw, kqm, λqm)-design,

where w = qm+1−1
q−1 .

Proof. Let W = [ωij], i, j = 1, 2, . . . , w be a balanced generalized weighing matrix
BGW(w, qm, qm − qm−1) over G. We claim that W ⊗ M is the incidence matrix of a
symmetric (vw, kqm, λqm)-design. It suffices to show that, for i, h = 1, 2, . . . , w,

w∑
j=1

(ωijM)(ωhjM)T =

{
(k − λ)qmI + λqmJ if i = h,

λqmJ if i 6= h.

If i = h, we have for some σj ∈ G,

w∑
j=1

(ωijM)(ωhjM)T =
qm∑
j=1

(σjM)(σjM)T =
qm∑
j=1

MMT = (k − λ)qmI + λqmJ.

If i 6= h, we have for some σj, τj ∈ G,

w∑
j=1

(ωijM)(ωhjM)T =
qm−qm−1∑

j=1

(σjM)(τjM)T =
qm−qm−1∑

j=1

(τ−1
j σjM)MT

=
qm − qm−1

|G|
( ∑

σ∈G

σM
)
MT =

k(qm − qm−1)
v

JMT =
k2(qm − qm−1)

v
J = λqmJ.
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Definition 2.2 Let v > k > λ > 0 be integers. A (v, k, λ)-difference set is a k-subset
of an (additively written) group Γ of order v such that the multiset {x − y : x, y ∈ Γ}
contains exactly λ copies of each nonzero element of Γ.

Several infinite families of difference sets are known (see [3] or [7] for references).
We will mention the McFarland family having parameters (pd+1(r+1), pdr, pd−1(r−1)),
where p is a prime power, d is a positive integer, and r = pd+1−1

p−1 , and the Spence family
having parameters (3d+1(3d+1−1)/2, 3d(3d+1+1)/2, 3d(3d+1)/2), where d is a positive
integer.

If ∆ is a (v, k, λ)-difference set in a group Γ and B = {∆ + x : x ∈ Γ}, then
dev(∆) = (Γ, B) is a symmetric (v, k, λ)-design.

In order to apply Lemma 2.1, we need a symmetric (v, k, λ)-design with q = k2

k−λ
a prime power, a set M of matrices of order v containing the incidence matrix this
design, and a cyclic group G satisfying conditions (ii), (iii), and (v) of Lemma 2.1. In
the paper [6], we have shown that (v, k, λ) can be the parameters of any McFarland
or Spence difference set or their complement with q = k2

k−λ
a prime power. In this

paper, we will use the Spence (36, 15, 6)-difference set in Γ = Z3 ⊕ Z3 ⊕ Z4 and the
complementary (36, 21, 12)-difference set. In the next section, we will reproduce the
construction of the corresponding M and G given in [6]

3 (36, 15, 6)- and (36, 21, 12)-difference sets

We start with a brief description of the Spence (36, 15, 6)-difference set in Γ = Z3 ⊕
Z3 ⊕ Z4.

We consider Γ as the set of triples (x1, x2, x3), where x1, x2 ∈ {0, 1, 2} and x3 ∈
{0, 1, 2, 3} with the mod 3 and the mod 4 addition, respectively. Consider Z3 ⊕ Z3

as a 2-dimensional vector space over the field GF(3). Let L1, L2, L3, L4 be its 1-
dimensional subspaces. Put D1 = {(x1, x2, 0) ∈ Γ: (x1, x2) 6∈ L1} and, for i = 2, 3, 4,
Di = {(x1, x2, i−1) ∈ Γ: (x1, x2) ∈ Li}. Then D = D1 ∪D2 ∪D3 ∪D4 is a (36, 15, 6)-
difference set in Γ [7, Theorem 11.2].

In order to obtain the incidence matrix of the corresponding symmetric design, we
have to select an order on Γ. We will assume that (x1, x2, x3) precedes (y1, y2, y3) in
Γ if and only if there is i such that xi < yi and xj = yj whenever j > i. Let M be
the (0, 1)-matrix of order 36 whose rows and columns are indexed by elements of Γ
in this order and (x, y)-entry is equal to 1 if and only if y − x ∈ D. Then M is the
incidence matrix of a symmetric (36, 15, 6)-design. In order to describe the structural
properties of M which will be important in the sequel, we introduce the following
operation ρ on the set of 3 by 3 block-matrices.

Definition 3.1 Let P = [Pij] be a 3 by 3 block-matrix with square blocks (in partic-
ular, P can be a 3 by 3 matrix). Denote by ρP the matrix obtained by applying the
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cyclic permutation ρ = (123) of degree 3 to the set of columns of P , i.e.,

ρ


P11 P12 P13

P21 P22 P23

P31 P32 P33


 =


P13 P11 P12

P23 P21 P22

P33 P31 P32


 .

The above incidence matrix M of a symmetric (36, 15, 6)-design can be represented
as a 4 by 4 block-matrix

M =




M1 M2 M3 M4

M4 M1 M2 M3

M3 M4 M1 M2

M2 M3 M4 M1


 ,

where each Mi is a 9 by 9 matrix. Further, each Mi can be represented as a 3 by 3
block-matrix

Mi =


Mi1 Mi2 Mi3

Mi3 Mi1 Mi2

Mi2 Mi3 Mi1


 ,

where each Mij is a matrix of order 3, M11 = O, M12 = M13 = J , M21 = M22 =
M23 = M31 = M41 = I, M32 = M43 = ρI, and M33 = M42 = ρ2I.

Let M be the set of block-matrices P = [Pij], i, j = 1, 2, 3, 4, where each Pij is a
block-matrix Pij = [Pijkl], k, l = 1, 2, 3, satisfying the following conditions:

(i) each Pijkl is a (0, 1)-matrix of order 3;
(ii) for i = 1, 2, 3, 4, there is a unique hi = hi(P ) ∈ {1, 2, 3, 4} such that

(Pijk1, Pijk2, Pijk3) is a permutation of (O, J, J) for j = hi and all k

and
Pijkl ∈ {I, ρI, ρ2I} for j 6= hi and all k, l.

Clearly, the above matrix M is an element of M.
Define a bijection σ : M → M by σP = P ′, where
(i) for i = 1, 2, 3, 4 and j = 2, 3, 4, P ′

ij = Pi,j−1;
(ii) for i = 1, 2, 3, 4, if hi = 4, then P ′

i1 = ρPi4;
(iii) for i = 1, 2, 3, 4, if hi 6= 4, then P ′

i1kl = ρPi4kl for all k, l.
Let G be the cyclic group generated by σ. Then |G| = 12.

Claim. For any P, Q ∈ M, (σP )(σQ)T = PQT .
Proof. Let P, Q ∈ M and let P ′ = σP and Q′ = σQ. It suffices to show that, for
i = 1, 2, 3, 4,

P ′
i1Q

′T
i1 = Pi4Q

T
i4. (1)

If hi(P ) = hi(Q) = 4 or hi(P ) 6= 4 and hi(Q) 6= 4, then P ′
i1 is obtained from Pi4 by

the same permutation of columns as Q′
i1 from Qi4, so (1) is clear. Suppose hi(P ) = 4
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and hi(Q) 6= 4. Then (Pi4k1, Pi4k2, Pi4k3) is a permutation of (O, J, J) and matrices
Qi4k1, Qi4k2, Qi4k3 have the same row sum (equal to 1). Therefore

3∑
l=1

P ′
i1klQ

′T
i1kl =

3∑
l=1

Pi4klQ
T
i4kl = 2J,

and (1) follows. 2

It is readily verified that
11∑

n=0

σnM = 5J. (2)

Thus, the set M, the matrix M , and the group G satisfy Lemma 2.1 for (v, k, λ) =
(36, 15, 6) with |G| = 12. Note that the sum of the entries of any row of any matrix
P ∈ M is equal to 15.

Let M = J −M and M = {J −P : P ∈ M}. Without changing G, we obtain that
M, M , and G satisfy Lemma 2.1 for (v, k, λ) = (36, 21, 12). The sum of the entries
of any row of any matrix P ∈ M is equal to 21.

Note that the described (36, 15, 6)-design and (36, 21, 12)-design are symmetric
(4h2, 2h2 − h, h2 − h)-designs with h = 3 and h = −3, respectively.

4 Using the Kronecker product

The next lemma will allow us to double the parameter h in a family of symmetric
(4h2, 2h2 − h, h2 − h)-designs satisfying Lemma 2.1.

Lemma 4.1 Let an integer h 6= 0, a set M of matrices of order 4h2, and a finite
cyclic group G = 〈σ〉 of bijections M → M satisfy the following conditions:

(i) M contains the incidence matrix M of a symmetric (4h2, 2h2−h, h2−h)-design;
(ii) for any P, Q ∈ M, (σP )(σQ)T = PQT ;
(iii)

∑|G|−1
n=0 σnM = (2h−1)|G|

4h
J.

(iv) the sum of the entries of any row of any matrix P ∈ M is equal to 2h2 − h.
Then there exists a set M1 of matrices of order 16h2 and a cyclic group G1 = 〈τ〉

of bijections M1 → M1 satisfying the following conditions:
(a) M1 contains the incidence matrix M1 of a symmetric (16h2, 8h2−2h, 4h2−2h)-

design;
(b) for any R, S ∈ M1, (τR)(τS)T = RST ;
(c)

∑|G1|−1
n=0 τnM1 = (4h−1)|G1|

8h
J ;

(d) the sum of the entries of any row of any matrix R ∈ M1 is equal to 8h2 − 2h;
(e) |G1| = 2|G|.

Proof. For any P ∈ M, define

RP =




J − P P P P
P J − P P P
P P J − P P
P P P J − P


 .
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It is well known and readily verified that M1 = RM is the incidence matrix of a
symmetric (16h2, 8h2 − 2h, 4h2 − 2h)-design.

Let M1 = {RP : P ∈ M}. Then M1 ∈ M1, so M1 satisfies (a). Condition (d) is
implied by (iv). Any matrix R ∈ M1 can be divided into eight 4h2 by 8h2 cells Rij,
1 ≤ i ≤ 4, 1 ≤ j ≤ 2. Observe that each Rij is of one of the two following types:

(type 1) Rij = [P J − P ] or Rij = [J − P P ], P ∈ M;
(type 2) Rij = [P P ], P ∈ M.
Observe also that Ri1 and Ri2 are not of the same type.
For any R ∈ M1, denote by τR a (0, 1)-matrix of order 16h2 divided into eight

4h2 by 8h2 cells τRij, 1 ≤ i ≤ 4, 1 ≤ j ≤ 2, where

τRi2 = Ri1

and

τRi1 =

{
J − Ri2 if Ri2 is of type 1,
[σP σP ] if Ri2 = [P P ] .

In order to verify (b), it suffices to show that, for i = 1, 2, 3, 4, (τRi1)(τSi1)T =
Ri2S

T
i2.

If Ri2 and Si2 are of type (1), then (τRi1)(τSi1)T = (J − Ri2)(J − Si2)T =
8h2J − Ri2J

T − JST
i2 + Ri2S

T
i2 = Ri2S

T
i2 for the row sum of any matrix of type

1 is equal to 4h2. If Ri2 = [P P ] and Si2 = [Q Q], where P, Q ∈ M, then
(τRi1)(τSi1)T = 2(σP )(σQ)T = 2PQT = Ri2S

T
i2. If Ri2 = [P P ] and Si2 is of type

1, then (τRi1)(τSi1)T = (σP )J = (2h2 − h)J = Ri2S
T
i2.

Let G1 be the group of bijections M1 → M1 generated by τ . Then (e) is satisfied,
and we have to verify (c). For n = 1, 2, . . . , 2|G| − 1, let An be the (i, j)-block
of the 4 by 4 block-matrix τnM1. Then there is P ∈ M such that the multiset
{An : 0 ≤ n ≤ 2|G| − 1} is the union of {σnP : 0 ≤ n ≤ |G| − 1} and the multiset
consisting of |G|

2 copies of P and |G|
2 copies of J − P . Therefore,

2|G|−1∑
n=0

An =
|G|−1∑
n=0

σnP +
|G|
2

J =
(2h − 1)|G|

4h
J +

|G|
2

J =
(4h − 1)|G1|

8h
J.

2

The following theorem is now immediate by induction.

Theorem 4.2 Let an integer h 6= 0, a set M of matrices of order 4h2, and a finite
cyclic group G of bijections M → M satisfy conditions (i)–(iv) of Lemma 4.1. Then,
for any positive integer d, there exists a non-empty set Md of matrices of order 4d+1h2

and a cyclic group Gd of bijections Md → Md satisfying the following conditions:
(a) Md contains the incidence matrix Md of a symmetric design with parameters

(4d+1h2, 22d+1h2 − 2dh, 22dh2 − 2dh);

(b) for any P, Q ∈ Md and τ ∈ Gd, (τP )(τQ)T = PQT ;
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(c)
∑

τ∈Gd
τMd = (2d+1h−1)|Gd|

2d+2h
J ;

(d) the sum of the entries of any row of any matrix R ∈ Md is equal to 22d+1h2 −
2dh;

(e) |Gd| = 2d|G|.
We combine Theorem 4.2 and Lemma 2.1 and obtain the main result of this paper.

Theorem 4.3 If h = ±3 · 2d, where d is a positive integer and |2h − 1| is a prime
power, then, for any positive integer m, there exists a symmetric (h((2h−1)2m−1)

h−1 , h(2h−
1)2m−1, h(h − 1)(2h − 1)2m−2)-design.

Proof. We start with the set M or M described in Section 3 and apply Theorem
4.2 to this set to obtain the set of matrices Md or Md and the group Gd. Then we
apply Lemma 2.1. Properties (ii) and (iii) required in Lemma 2.1 are implied by (b)
and (c) of Theorem 4.2. The parameter q of Lemma 2.1 is equal to (2hd − 1)2, where
hd = ±3 · 2d, so q is a prime power. Since |G| = 12, we have |Gd| = 3 · 2d+2 = 4|hd|,
so |Gd| divides q − 1. 2

Remark 4.4 These parameters are new, except m = 1 (Menon designs).
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