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Abstract

We define and study m-closed cellular algebras (coherent configurations)
and m-isomorphisms of cellular algebras which can be regarded as mth ap-
proximations of Schurian algebras (i.e. the centralizer algebras of permutation
groups) and of strong isomorphisms (i.e. bijections of the point sets taking
one algebra to the other) respectively. If m = 1 we come to arbitrary cellular
algebras and their weak isomorphisms (i.e. matrix algebra isomorphisms pre-
serving the Hadamard multiplication). On the other hand, the algebras which
are m-closed for all m ≥ 1 are exactly Schurian ones whereas the weak iso-
morphisms which are m-isomorphisms for all m ≥ 1 are exactly ones induced
by strong isomorphisms. We show that for any m there exist m-closed alge-
bras on O(m) points which are not Schurian and m-isomorphisms of cellular
algebras on O(m) points which are not induced by strong isomorphisms. This
enables us to find for any m an edge colored graph with O(m) vertices satis-
fying the m-vertex condition and having non-Schurian adjacency algebra. On
the other hand, we rediscover and explain from the algebraic point of view the
Cai-Fürer-Immerman phenomenon that the m-dimensional Weisfeiler-Lehman
method fails to recognize the isomorphism of graphs in an efficient way.
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1 Introduction

The association scheme theory was called in [2] a “group theory without groups”.
Indeed, the axiomatics of association schemes reflects combinatorial properties of
permutation groups. The close connection between these objects is stressed by the
fact that each permutation group produces a scheme the basis relations of which
are exactly the 2-orbits of the group. However, this correspondence is not reversible
and there are schemes which can not be obtained in such a way (for example, the
scheme of the Shrikhande graph). A similar situation arises if one is interested in
isomorphisms of schemes. Namely, each of them induces a combinatorial isomorphism
which can be defined as an ordinary isomorphism of the adjacency algebras of the
schemes preserving the basis matrices. But also in this case there are combinatorially
isomorphic schemes which are not isomorphic (for example, the Hamming schemes
and the schemes of the Doob graphs). The main purpose of this paper is to prove
the nondegeneracy of the natural filtration of the class of all schemes (resp. of all
combinatorial isomorphisms) whose limit is the class of all permutation group schemes
(resp. genuine isomorphisms of schemes).

Having in mind the algebraic nature of the above questions we prefer to deal with
the adjacency algebra of a coherent configuration being a generalization of an associ-
ation scheme. These algebras were introduced by B. Yu. Weisfeiler and A. A. Lehman
as cellular algebras and independently by D. G. Higman as coherent algebras (see [16]
and [10]). They are by definition matrix algebras over C closed under the Hadamard
multiplication and the Hermitian conjugation and containing the identity matrix and
the all-one matrix. Let W be a cellular algebra on a finite set V , i.e. a cellular
subalgebra of the full matrix algebra MatV on V . The automorphism group Aut(W )
of W consists by definition of all permutations of V preserving any matrix of W .
In this language a group scheme corresponds to a Schurian cellular algebra (see [7]
for the explanation of the term), i.e. one coinciding with the centralizer algebra of
its automorphism group. A combinatorial isomorphism of coherent configurations
is transformed to a weak isomorphism of cellular algebras which is by definition a
matrix algebra isomorphism preserving the Hadamard multiplication.

Our technique is based on the following notion of the extended algebra introduced
in [4] (for the exact definition see Section 3). For each positive integer m we define the

m-dimensional extended algebra Ŵ (m) of a cellular algebra W on V as the smallest
cellular algebra on V m containing the m-fold tensor product of W and the adjacency
matrix of the reflexive relation corresponding to the diagonal of V m. (This definition
differs from that of [4] but Theorem 3.2 of this paper establishes the equivalence
between them.) Using the natural bijection between the diagonal of V m and V we

define a cellular algebra W
(m)

on V called the m-closure of W . This produces the
following series of inclusions:

W = W
(1)
≤ . . . ≤W

(n)
= . . . = Sch(W )

where Sch(W ) is the centralizer algebra of Aut(W ) in MatV and n is the number of
elements of V . Thus the m-closure of W can be viewed as an mth approximation of
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its Schurian closure Sch(W ). We say that W is m-closed if W
(m)

= W . Each algebra
is certainly 1-closed and it is m-closed for all m iff it is Schurian. Thus

∞⋂
m=1

Wm =W∞, Wm ⊃ Wm+1

where Wm (resp. W∞) is the class of all m-closed (resp. Schurian) cellular algebras.
Surely, the larger m is, the more an m-closed algebra is similar to the centralizer
algebra of a permutation group. For example, some nontrivial facts from permutation
group theory can be generalized even to 2-closed cellular algebras (see [5]). The
following theorem shows in particular that the filtration {Wm}∞m=1 does not collapse
from any m.

Theorem 1.1 There exists ε > 0 such that for any sufficiently large positive integer
n one can find a non-Schurian cellular algebra on n points which is m-closed for some
m ≥ bεnc.

One of the application of the theorem is related to constructing graphs satisfying
the m-vertex condition in sense of [9] (see also Subsection 3.2). Namely, we show
(Theorem 3.3) that the edge colored graph (coherent configuration) underlying an
m-closed cellular algebra satisfies the m-vertex condition. So Theorem 1.1 implies
the following statement.

Corollary 1.2 For any positive integer m there exists an edge colored graph with
O(m) vertices satisfying the m-vertex condition and having non-Schurian adjacency
algebra.

Concerning the combinatorial isomorphism problem we refine the concept of a
weak isomorphism. Namely, we say that a weak isomorphism of cellular algebras is
an m-isomorphism if it can be extended to a weak isomorphism of their m-extended
algebras (see Section 4 for the exact definition). Obviously, each weak isomorphism
is a 1-isomorphism in this sense. On the other hand, Theorem 4.5 shows that it is
an m-isomorphism for all m iff it is induced by a strong isomorphism (which is by
definition a bijection between the point sets preserving the algebras). The following
theorem is similar to Theorem 1.1.

Theorem 1.3 There exists ε > 0 such that for any sufficiently large positive integer
n one can find a cellular algebra on n points (even a Schurian one) admitting an
m-isomorphism with m ≥ bεnc which is not induced by a strong isomorphism.

It follows from the proof of Theorem 1.3 that the required algebra can be chosen
having simple spectrum. So there exist weak isomorphisms of cellular algebras with
simple spectrum which are not induced by strong isomorphisms. This shows that
Theorem 5.6 from [8] is not true.

Let us briefly outline the proofs of the theorems. To prove Theorem 1.3 we con-
struct a family of cellular algebras with simple spectrum each of which corresponds
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to some cubic (3-regular) graph. Any such algebra admits a weak isomorphism ϕ

which is not induced by a strong isomorphism (Theorem 5.5). Moreover, if the graph
is a Ramanujan one, this weak isomorphism becomes induced by a strong one when
restricted to sufficiently large point sets. In this case we are able to prove that ϕ is in
fact an m-isomorphism for a sufficiently large m and the corresponding algebra W is
a Schurian one. Theorem 1.1 is deduced from Theorem 1.3 by considering the wreath
product of the cellular algebra W by the symmetric group on 2 points with respect to
the weak isomorphism ϕ. This wreath product is not Schurian, since ϕ is not induced
by a strong isomorphism. On the other hand, it is m-closed for a sufficiently large m
due to the facts that so is W (being a Schurian one) and ϕ is an m-isomorphism.
The last implication is the result of the detailed analysis of the extended algebras of
general direct sums and wreath products (Theorems 7.5 and 7.7).

In the context of the discussed topics we can ask ourselves: is the filtration {Wm}∞m=1

defined above natural in a sense. For instance, one can compare it to some other filtra-
tions. A number of them arises from combinatorial algorithms related to the Graph
Isomorphism Problem which is polynomial-time equivalent to the problem of con-
structing the Schurian closure of a cellular algebra. The analysis of such algorithms
lead us in [4] to the following concept of a Schurian polynomial approximation scheme
reflecting the idea of measuring non-Schurity.

Let us have a rule according to which given a cellular algebra W ≤ MatV and
a positive integer m a cellular algebra Sm(W ) ≤ MatV can be constructed. We
say that the operators W 7→ Sm(W ) (m = 1, 2, . . .) define a Schurian polynomial
approximation scheme S if the following conditions are satisfied:

(1) W = S1(W ) ≤ . . . ≤ Sn(W ) = . . . = Sch(W );

(2) Sl(Sm(W )) = Sm(W ) for all l = 1, . . . ,m;

(3) Sm(W ) can be constructed in time nO(m)

where n is the number of elements of V .
Each scheme of such a kind defines a filtration of the class of all cellular alge-

bras. Moreover, there is a natural way to compare the filtrations by comparing the
underlying schemes. Namely, let S and T be two Schurian polynomial approximation
schemes. We say that S is dominated by T if there exists a positive integer c = c(S, T )
such that Sm(W ) ≤ Tcm(W ) for all cellular algebras W and all m. Schemes S and T
are called equivalent if each of them is dominated by the other.

We proved in [4] that the operators W 7→W
(m)

mapping a cellular algebra W to
its m-closure define a Schurian polynomial approximation scheme. Another example
is given by the well-known m-dimensional Weisfeiler-Lehman method (m-dim W-L,
see [3]). Despite the fact that in its original form this method can be applied only to
graphs, a natural interpretation of it produces the algorithm which given a cellular
algebra W constructs a certain cellular algebra WLm(W ) (m = 1, 2, ...) satisfying
conditions (1)-(3) above (the exact definitions can be found in Section 6). The third
main result of the paper shows that these schemes are equivalent.
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Theorem 1.4 Let W be a cellular algebra on V . Then

WLm(W ) ≤W
(m)
≤WL3m(W ), m = 1, 2, . . . .

In particular, the Schurian polynomial approximation schemes corresponding to the
m-closure and the m-dimensional Weisfeiler-Lehman methods are equivalent.

The proof of the theorem is based on the notion of a stable partition of V m, the
axiomatics of which gathers some combinatorial regularity conditions generalizing
those satisfied by the m-orbits of a permutation group. It should be noted that
similar objects were considered in [11] and [13]. The key point of the analysis consists
of the fact that the partition of V m found by the m-dim W-L method is a stable
partition of V m in our sense (Theorem 6.1). Besides, it turns out that a stable
partition of V 3m produces a coherent configuration on V m (Lemma 6.3). Combining

these observations and the inclusion WLm(W ) ≤ W
(m)

proved in [4] we obtain the
required statement.

We complete the introduction by making some remarks concerning the m-dim
W-L method. This method was discovered to test the isomorphism of two graphs
by comparing the canonical colorings of V m constructed from them. However it was
proved in [3] that there exist infinitly many pairs of non-isomorphic vertex colored
graphs with O(m) vertices for which the m-dim W-L method does not recognize their
non-isomorphism. Nevertheless, the technique used for the proof of this result leaves
the algebraic nature of this phenomenon unclear. In contrast to [3] the results of
the present paper completely clarify the situation. Namely, let Γ1 and Γ2 be two
graphs which can not be identified by the m-dim W-L method (see [3]). Then the
cellular algebras W1 and W2 generated by the adjacency matrices of them are weakly
isomorphic and this weak isomorphism is not induced by a strong one. Moreover,
it follows from Theorem 6.4 that the last isomorphism can be extended to a weak
isomorphism of the bm/3c-extended algebras corresponding to W1 and W2. So it is
in fact an bm/3c-isomorphism. Thus the algebraic reason for the high-dimensional
W-L method to fail in recognizing the isomorphism of graphs is that there are highly
closed isomorphisms of cellular algebras which are not induced by strong isomorphisms
(Theorem 1.3).

In fact the construction underlying Theorem 1.3 produces for any positive inte-
ger m examples of non-isomorphic edge colored graphs (even vertex colored ones)
with O(m) vertices which are indistinguishable by the m-dim W-L method due to
Theorem 6.4. We notice that these graphs slightly differ from those found by Cai-
Fürer-Immerman in [3].

The paper consists of six sections and Appendix. Section 2 contains the main
definitions and notation concerning cellular algebras. In Section 3 we define extended
algebras and closures. Also we describe the connection of these notions with the m-
vertex condition. Section 4 is devoted to refining the notion of a weak isomorphism.
In Sections 5 and 6 we prove Theorems 1.1 and 1.3, and Theorem 1.4 respectively.
Appendix contains the explicit description of the extended algebras of the direct sum
and the wreath product by a permutation group. These results are used in proving
Theorems 1.1 and 1.3.
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Notation. As usual by C we denote the complex field.
Throughout the paper V denotes a finite set with n = |V | elements.
The algebra of all complex matrices whose rows and columns are indexed by the

elements of V is denoted by MatV , its unit element (the identity matrix) by IV and
the all-one matrix by JV . For U ⊂ V the algebra MatU is considered in a natural way
as a subalgebra of MatV .

For U,U ′ ⊂ V let JU,U ′ denote the {0,1}-matrix with 1’s exactly on the places
belonging to U × U ′.

The transpose of a matrix A is denoted by AT , its Hermitian conjugate by A∗.

Each bijection g : V → V ′ defines a natural algebra isomorphism from MatV onto
MatV ′ . The image of a matrix A under g will be denoted by Ag.

The group of all permutations of V is denoted by Sym(V ).
For integers l,m the set {l, l + 1, . . . ,m} is denoted by [l,m]. We write [m],

Sym(m), Matm, V m and V instead of [1,m], Sym([m]), Mat[m], V
[m] and V 1 respec-

tively.

2 Cellular algebras

All undefined terms below concerning cellular algebras and permutation groups can
be found in [17] and [18] respectively.

2.1. By a cellular algebra on V we mean a subalgebra W of MatV for which the
following conditions are satisfied:

(C1) IV , JV ∈W ;

(C2) ∀A ∈W : A∗ ∈W ;

(C3) ∀A,B ∈W : A ◦B ∈W ,

where A ◦B is the Hadamard (componentwise) product of the matrices A and B. It
follows from (C2) that W is a semisimple algebra over C .

Each cellular algebra W on V has a uniquely determined linear base R = R(W )
consisting of {0,1}-matrices such that∑

R∈R

R = JV and R ∈ R ⇔ RT ∈ R. (1)

The linear baseR is called the standard basis of W and its elements the basis matrices.
The nonnegative integers cTR,S defined by RS =

∑
T∈R c

T
R,S · T where R, S ∈ R, are

called the structure constants of W .
Set Cel(W ) = {U ⊂ V : IU ∈ R} and Cel∗(W ) = {

⋃
U∈S U : S ⊂ Cel(W )}.

Each element of Cel(W ) (resp. Cel∗(W )) is called a cell of W (resp. a cellular set
of W ). Obviously,

V =
⋃

U∈Cel(W )

U (disjoint union).
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The algebra W is called homogeneous if |Cel(W )| = 1.
For U,U ′ ∈ Cel∗(W ) set RU,U ′ = {R ∈ R : R ◦ JU,U ′ = R}. Then

R =
⋃

U,U ′∈Cel(W )

RU,U ′ (disjoint union).

Moreover, given cells U,U ′ the number of 1’s in the uth row (resp. vth column) of
the matrix R ∈ RU,U ′ does not depend on the choice of u ∈ U (resp. v ∈ U ′).

For each U ∈ Cel∗(W ) we view the subalgebra IUWIU of W as a cellular algebra
on U and denote it by WU . The basis matrices of WU are in 1-1 correspondence to
the matrices of RU,U . If U ∈ Cel(W ) we call WU the homogeneous component of W
corresponding to U .

Each matrix R ∈ R being a {0,1}-matrix is the adjacency matrix of some binary
relation on V called a basis relation of W . By (1) the set of all of them form a partition
of V × V which can be interpreted as a coherent configuration on V (see [10]). We
use all the notations introduced for basis matrices also for basis relations.

2.2. A large class of cellular algebras comes from permutation groups as follows
(see [17]). Let G ≤ Sym(V ) be a permutation group and

Z(G) = Z(G, V ) = {A ∈ MatV : Ag = A, g ∈ G}

be its centralizer algebra. Then Z(G) is a cellular algebra on V such that Cel(Z(G)) =
Orb(G) and R(Z(G)) = Orb2(G) where Orb(G) is the set of orbits of G and Orb2(G)
is the set of its 2-orbits.

We say that cellular algebras W on V and W ′ on V ′ are strongly isomorphic, if
W g = W ′ for some bijection g : V → V ′ called a strong isomorphism from W to W ′.
Clearly, g induces a bijection between the sets R(W ) and R(W ′). We use notation
Iso(W,W ′) for the set of all isomorphisms from W to W ′.

The group Iso(W,W ) contains a normal subgroup

Aut(W ) = {g ∈ Sym(V ) : Ag = A, A ∈W}

called the automorphism group of W . If W = Z(Aut(W )), then W is called Schurian.
It is easy to see that W is Schurian iff the set of its basis relations coincides with the
set of 2-orbits of Aut(W ). It follows from [18] that there exist cellular algebras which
are not Schurian (see also [7]).

2.3. The set of all cellular algebras on V is ordered by inclusion. The largest and
the smallest elements of this set are respectively the full matrix algebra MatV and the
simplex on V , i.e. the algebra with the linear base {IV , JV }. For cellular algebras W
and W ′ we write W ≤ W ′ if W is a subalgebra of W ′.

Given subsets X1, . . . , Xs of MatV , their cellular closure, i.e. the smallest cellular
algebra containing all of them, is denoted by [X1, . . . , Xs]. If Xi = {Ai} we omit the
braces.
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3 Extended algebras and closures

3.1. The notion of an m-closed cellular algebra was introduced in [4] in connection
with the Schurity problem. It goes back to [17] where a similar notion was defined
in an algorithmic way. We start with the main definitions concerning highly closed
cellular algebras.

Let W be a cellular algebra on V . For each positive integer m we set

Ŵ = Ŵ (m) = [Wm, Zm(V )]

where Wm = W ⊗ · · · ⊗ W is the m-fold tensor product of W and Zm(V ) is the
centralizer algebra of the coordinatewise action of Sym(V ) on V m. We call the cellular

algebra Ŵ ≤ MatVm the m-dimensional extended algebra of W . The group Aut(Ŵ )
acts faithfully on the set

∆ = ∆(m)(V ) = {(v, . . . , v) ∈ V m : v ∈ V }.

Moreover, the mapping δ : v 7→ (v, . . . , v) induces a permutation group isomorphism

between Aut(W ) and the constituent of Aut(Ŵ ) on ∆. Set

W = W
(m)

= ((Ŵ (m))∆)δ
−1

.

We call W the m-closure of W and say that W is m-closed if W = W . Each cellular
algebra is certainly 1-closed. The following proposition describes the relationship
between the m-closures for m ≥ 1 and the Schurian closure Sch(W ) = Z(Aut(W ))
of a cellular algebra W and shows that in a sense W can be regarded as an mth
approximation of Sch(W ).

Proposition 3.1 ([4], Proposition 3.3) For each cellular algebra W on n points
the following statements hold:

(1) Aut(W
(m)

) = Aut(W ) for all m ≥ 1;

(2) W = W
(1)
≤ . . . ≤W

(n)
= . . . = Sch(W );

(3) (W
(m)

)
(l)

= W
(m)

for all l ∈ [m].

The following statement gives in fact an equivalent definition of the m-extended
algebra and hence of the m-closure.

Theorem 3.2 Let W ≤ MatV be a cellular algebra. Then Ŵ = [Wm, I∆].

Proof. We will prove the following equality:

Zm(V ) = [Z1(V )m, I∆]. (2)

Then since obviously Wm ≥ Z1(V )m, we will have

Ŵ = [Wm,Zm(V )] = [Wm,Z1(V )m, I∆] = [Wm, I∆].
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To prove (2) it suffices to check that any 2-orbit R of the coordinatewise action
of Sym(V ) on V m is a union of the basis relations of the algebra [Z1(V )m, I∆]. It is
easy to see that the set of all of these 2-orbits is in 1-1 correspondence with the set
of all equivalence relations E on [2m] having at most n classes so that

R = R(E) = {(ū, v̄) ∈ V m × V m : (ū · v̄)i = (ū · v̄)j ⇔ (i, j) ∈ E} (3)

where ū · v̄ ∈ V 2m is the composition of ū and v̄. Any R(E) can be expressed with
the help of set-theoretic operations by the sets

R(S) = {(ū, v̄) : i, j ∈ S ⇒ (ū · v̄)i = (ū · v̄)j} (4)

with nonempty S ⊂ [2m]. Set A(S) = (
⊗m

i=1A
(0)
i )I∆(

⊗m
i=1A

(1)
i ) where A

(l)
i coincides

with IV or JV depending on whether lm + i belongs or does not belong to S ∩ [1 +
lm,m + lm], l = 0, 1. Then a straightforward check shows that A(S) equals the
adjacency matrix of the relation R(S). So the latter matrix belongs to the right side
of (2).

3.2. In this subsection we prove a theorem which is needed for Corollary 1.2.
Under a colored graph Γ on V we mean a pair (V, c) where c = cΓ is a mapping

from V × V to the set of positive integers. The number c(u, v) is called the color
of a pair (u, v). The following definition goes back to [9]. A colored graph Γ is
called satisfying the m-vertex condition if for each colored graph K on m vertices
with designated pair of vertices (x, y), the number of embeddings of K as induced
subgraph of Γ such that (x, y) is mapped to (u, v), depends only on the color of the
pair (u, v). A detailed information about this notion can be found in [7, p.70].

We say that a colored graph Γ is associated with a cellular algebra W if the color
classes of Γ coincide with the basis relations of W . In fact, the graph Γ is nothing
else than the coherent configuration (with labeling) underlying W .

Theorem 3.3 A colored graph associated with an m-closed cellular algebra satisfies
the m-vertex condition.

Proof. First we prove the following statement.

Lemma 3.4 Let W be a cellular algebra on V and X be a cell of its m-extended
algebra. Then the set Ri,j(X) = {(vi, vj) : v ∈ X} is a basis relation of the algebra W
for all i, j ∈ [m].

Proof. It follows from statement (2) of Proposition 3.6 of [4] that Ri,j(X) ⊂ R for
some R ∈ R(W ). On the other hand, by statement (1) of the same proposition the

set XR = {(u, . . . , u, v) ∈ V m : (u, v) ∈ R} is a cell of Ŵ . So the number of 1’s in
any row of the adjacency matrix of the relation {(u, v) ∈ XR×X : u1 = vi, um = vj}
is the same (this relation is obviously a union of basis ones). By the choice of R the
last number is not zero. Thus Ri,j(X) = R.

Let now Γ be a graph associated with an m-closed algebra W ≤ MatV and K be
an arbitrary colored graph on [m] with designated pair of vertices (x, y). Let u, v ∈ V
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and u = uδ, v = vδ. It is easy to see that the number of embeddings of K as induced
subgraph of Γ such that (x, y) is mapped to (u, v) equals the cardinality of the set

{w ∈ V m : wx = u, wy = v, cΓ(wi, wj) = cK(i, j), i, j ∈ [m]}. (5)

Since W = W , by Lemma 3.4 the set X = {w : cΓ(wi, wj) = cK(i, j), i, j ∈ [m]} is a

cellular set of Ŵ and depends only on cΓ(u, v), i.e. on the basis relation R of W such
that (u, v) ∈ R. So the set (5) coincides with

{w ∈ V m : (u, w) ∈ R1, (w, v) ∈ R2, w ∈ X} (6)

where R1 (resp. R2) is the binary relation on V m defined by the equality of the first
and xth (resp. yth and first) coordinates. However the cardinality of the set (6)

equals the sum of the structure constants cR0
S,T of Ŵ where R0 = Rδ, and S and T

run over the sets of basis relations of Ŵ contained in (∆×X)∩R1 and (X×∆)∩R2

respectively. Since the last number depends only on R, we are done.

Remark 3.5 In fact, it can be proved that the graph of Theorem 3.4 satisfies the
3m-vertex condition. However, the proof of this statement is out of the scope of this
paper.

4 Weak isomorphisms and their extensions

4.1. Along with the notion of a strong isomorphism we consider for cellular algebras
that of a weak one. Namely, cellular algebras W on V and W ′ on V ′ are called weakly
isomorphic if there exists an algebra isomorphism ϕ : W →W ′ such that

ϕ(A ◦B) = ϕ(A) ◦ ϕ(B) for all A,B ∈W.

Any such ϕ is called a weak isomorphism from W to W ′. The set of all of them
is denoted by Isow(W,W ′). If W = W ′ we write Isow(W ) instead of Isow(W,W ).
Clearly, Isow(W ) forms a group which is isomorphic to a subgroup of Sym(R(W )).
We note that each strong isomorphism from W to W ′ induces in a natural way a
weak isomorphism between these algebras.

The following statement establishes the simplest properties of weak isomorphisms.

Lemma 4.1 Let W ≤ MatV , W ′ ≤ MatV ′ be cellular algebras and ϕ ∈ Isow(W,W ′)
be a weak isomorphism. Then

(1) ϕ(R) = R′ where R = R(W ) and R′ = R(W ′). Besides, ϕ(RT ) = ϕ(R)T for
all R ∈ R.

(2) ϕ induces a natural bijection U 7→ Uϕ from Cel∗(W ) onto Cel∗(W ′) preserving
cells such that ϕ(IU) = IUϕ. Moreover, |U | = |Uϕ| and, in particular, |V | =
|V ′|.

(3) ϕ(RU1,U2) = R′
Uϕ1 ,U

ϕ
2

for all U1, U2 ∈ Cel∗(W ).
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Proof. The first part of statement (1) is trivial. The second follows from the ob-
servation that given R ∈ R, the matrix RT is the only matrix of R whose product
by R is not orthogonal to IV with respect to the Hadamard multiplication. Let
U ∈ Cel∗(W ). Then the equalities IUIU = IU ◦ IU = IU imply that ϕ(IU)ϕ(IU) =
ϕ(IU)◦ϕ(IU) = ϕ(IU). So there exists U ′ ⊂ V ′ such that ϕ(IU) = IU ′ . Since IU ′ ∈W ′,
we have U ′ ∈ Cel∗(W ′). Set Uϕ = U ′. Since IV =

∑
U∈Cel(W ) IU and ϕ(IV ) = IV ′ ,

the mapping U 7→ Uϕ gives a bijection from Cel(W ) to Cel(W ′), which proves the
first part of statement (2). Note that ϕ(JV ) = JV ′. So ϕ(JU) = ϕ(IUJV IU) =
IUϕJV ′IUϕ = JUϕ for all U ∈ Cel∗(W ). Now the rest of statement (2) follows
from the equality J2

U = |U |JU . Statement (3) is the consequence of the equality
RU1,U2 = {IU1RIU2 : R ∈ R, IU1RIU2 6= 0} and statements (1) and (2).

Lemma 4.1 implies that if U is a cellular set of W , then any weak isomorphism
ϕ : W → W ′ induces a weak isomorphism from WU to W ′

Uϕ . It will be denoted by
ϕU and called the restriction of ϕ to U .

4.2. Let ϕ : W →W ′ be a weak isomorphism from a cellular algebra W ≤ MatV
to a cellular algebra W ′ ≤ MatV ′ .

Definition 4.2 We say that a weak isomorphism ψ : Ŵ → Ŵ ′ is an m-extension of
ϕ if the following conditions are satisfied:

(i) ψ(I∆) = I∆′,

(ii) ψ(A) = ϕm(A) for all A ∈Wm,

where ∆ and ∆′ are the diagonals of V m and (V ′)m respectively and ϕm is the weak
isomorphism from Wm to (W ′)m induced by ϕ.

The proof of Theorem 3.2 implies that ψ takes a basis matrix of Zm(V ) to the corre-
sponding basis matrix of Zm(V ′) (i.e. with the same defining equivalence relation E
on [2m], see (3)). It follows from (ii) that any 1-extension of ϕ coincides with ϕ.

Lemma 4.3 Let ψ be an m-extension of a weak isomorphism ϕ : W → W ′. Then

(1) ψ is uniquely determined by ϕ.

(2) ϕ has an l-extension for all l ∈ [m].

Proof. The first statement immediately follows from Theorem 3.2 whereas the second
one is the consequence of statement (2) of Lemma 7.3.

The weak isomorphism ψ : Ŵ → Ŵ ′ (uniquely determined by ϕ according to
Lemma 4.3) will be denoted below by ϕ̂.

4.3. Now we are ready to introduce the central notion of the paper.

Definition 4.4 A weak isomorphism ϕ is called an m-isomorphism if there exists an
m-extension of ϕ.
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Obviously, the inverse of anm-isomorphism as well as the composition ofm-isomorphisms
is also an m-isomorphism. The set of all m-isomorphisms from W to W ′ will be de-
noted by Isowm(W,W ′). It follows from statement (2) of Lemma 4.3 that

Isowl(W,W
′) ⊃ Isowm(W,W ′), l ∈ [m]. (7)

Obviously, Isow1(W,W ′) = Isow(W,W ′).
We note that given g ∈ Iso(W,W ′) its m-fold Cartesian product gm belongs to

Iso(Wm, (W ′)m) and takes I∆ to I∆′. So gm belongs to Iso(Ŵ , Ŵ ′) and the weak

isomorphism from Ŵ to Ŵ ′ induced by it is the m-extension of the weak isomorphism
induced by g. Thus any weak isomorphism induced by a strong isomorphism (the set
of all of them will be denoted by Isow∞(W,W ′)) is an m-isomorphism for all m. The
following statement shows that the converse statement is also true.

Theorem 4.5 Isowm(W,W ′) = Isow∞(W,W ′) for all m ≥ n.

Proof. Let ϕ ∈ Isowm(W,W ′) where m ≥ n. Choose v = (v1, . . . , vm) ∈ V m such that

V = {v1, . . . , vn} and denote by U the cell of Ŵ containing v. Since U is contained in
an orbit of Sym(V ) acting on V m, the last equality holds also for all points of U and

|R(ŴU)| = |U |, i.e. ŴU is the centralizer algebra of a regular permutation group.

Hence by Lemma 4.1 so is the algebra Ŵ ′
U ′ where U ′ = U ϕ̂. It is easy to see that

any weak isomorphism of such algebras is induced by a strong isomorphism. So there
exists a bijection h : U → U ′ inducing ϕ̂U :

ϕ̂(A) = Ah, A ∈ ŴU . (8)

Since ϕ̂ takes a basis matrix of Zm(V ) to the corresponding basis matrix of Zm(V ′)
(i.e. with the same defining equivalence relation E on [2m], see (3)), there exists a
uniquely determined bijection g : V → V ′ such that

vh = (vg1 , . . . , v
g
m). (9)

To complete the proof it suffices to check that (ϕ(R))vgi ,v
g
j

= Rvi,vj for all R ∈ R(W )

and i, j ∈ [n]. Denote by Ai (resp. A′i) the adjacency matrix in MatVm (resp. Mat(V ′)m)
of the relation (4) with S = {i} ∪ [m+ 1, 2m]. Then

(ϕ(R))vgi ,v
g
j

= (A′iϕ(R)δ
′
A′j

T
)vh,vh = (ϕ̂(Ai)ϕ̂(Rδ)ϕ̂(Aj)

T )vh,vh = (AiR
δATj )v,v = Rvi,vj

where δ and δ′ are the diagonal inclusions of V into V m and V ′ into (V ′)m. (We made
use of (9), (8) and the fact that ϕ̂ is the m-extension of ϕ.)

4.4. It seems difficult to verify that a given weak isomorphism is actually an m-
isomorphism. However, we can give a sufficient condition for this. To formulate it let
us denote by Cel∗k(W ) the set of all cellular sets of W containing at most k cells. We

will also make use of the obvious inclusion ŴU ≤ ŴUm where U ∈ Cel∗(W ) and ŴU

is the m-extended algebra of WU .
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Theorem 4.6 Let W ≤ MatV ,W
′ ≤ MatV ′ be cellular algebras and ϕ ∈ Isow(W,W ′)

be a weak isomorphism. Suppose also that for positive integers k,m the following
conditions are satisfied:

(i) For any U ∈ Cel∗k(W ) there exist an m-extension of ϕU and a weak isomorphism

ψU ∈ Isow(ŴUm, Ŵ ′
(Uϕ)m) extending it.

(ii) For any U1, U2 ∈ Cel∗k(W ) the restrictions of ψU1 and ψU2 to (U1∩U2)m coincide.

Then ϕ ∈ Isowm(W,W ′) whenever k ≥ 3m.

Proof. Supposing k ≥ 3m let us define a mapping ψ : R → R′ where R = R(Ŵ )

and R′ = R(Ŵ ′) as follows. Given R ∈ R set

ψ(R) = ψU (R). (10)

where U ∈ Cel∗k(W ) is chosen such that R ∈ RUm,Um. Since 2m ≤ k, at least one
such U does exist. By (ii) the element ψ(R) does not depend on the choice of U .
Obviously, ψ is a bijection (the inverse map is given by (ψU)−1). This defines a linear

1-1 mapping from Ŵ to Ŵ ′ for which we use the same notation ψ.
Let R, S ∈ R with RS 6= 0. Then R, S ∈ RUm,Um for some U ∈ Cel∗3m(W ). Since

3m ≤ k, we obtain from (10) and (i) that

ψ(RS) = ψU (RS) = ψU (R)ψU(S) = ψ(R)ψ(S),

which implies that ψ ∈ Isow(Ŵ ). It also follows from (10) and (i) that the restriction
of ψ to Um extends the m-extension of ϕU for all U ∈ Cel∗k(W ). So ψ is the m-
extension of ϕ.

In Section 5 it will be convenient for us to make use of a weaker version of the
theorem as follows.

Corollary 4.7 The conclusion of Theorem 4.6 still holds if conditions (i) and (ii)
are replaced by the following conditions:

(i′) For any U ∈ Cel∗k(W ) there exists a bijection h = h(U) ∈ Iso(W,W ′) such that
Uh = Uϕ and the weak isomorphism from WU to W ′

Uϕ induced by it coincides
with ϕU .

(ii′) For any U1, U2 ∈ Cel∗k(W ) there exists a permutation h = h(U1, U2) ∈ Aut(W )
such that

(h1)U = hU (h2)U

where h1 and h2 are the bijections associated with U1 and U2, U = U1 ∩ U2 and
hU , (h1)U and (h2)U are the bijections obtained from h, h1 and h2 by restriction
to U .

Proof. Set ψU to be the restriction to Um of the weak isomorphism from Ŵ to Ŵ ′

induced by the m-fold Cartesian product of h. Then conditions (i) and (ii) follow
from (i′) and (ii′) respectively.
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5 Proofs of Theorems 1.1 and 1.3

Our constructions below involve the notions of the direct sum of cellular algebras and
the wreath product of a cellular algebra by a permutation group. As to the definitions
see Subsection 7.1

5.1. Let G be an elementary Abelian group of order 4 and Vi = G, i ∈ [s], and
consider G as acting on Vi by multiplications. Let us denote by K the class of all
cellular algebras W on the disjoint union V of Vi’s such that

W ≥
s

�
i=1
Z(G, Vi), Cel(W ) = {Vi : i ∈ [s]}.

For W ∈ K the group Aut(W ) is naturally identified with a subgroup of Gs the
elements of which will be denoted by (g1, . . . , gs). Moreover, each element ofGs can be
considered as a strong isomorphism of W to itself inducing the identity isomorphism
of all of its homogeneous components. Below we set R = R(W ) and Ri,j = RVi,Vj

where i, j ∈ [s].
The following statement is straightforward from the definitions (see also [8]).

Lemma 5.1 Let W ∈ K. Then

(1) WVi = Z(G, Vi) for all i.

(2) If i 6= j, then WVi∪Vj = Z(Gi,j, Vi ∪ Vj) where Gi,j is a subgroup of G × G of
index 1, 2 or 4. Moreover, Aut(WVi∪Vj) = Gi,j and |Ri,j| = [G×G : Gi,j].

(3) If |Ri,j| = 2, then Gi,j is of the form

K(c1, c2) = 〈c1〉 × 〈c2〉 ∪ 〈c1〉 × 〈c2〉

where c1 = c1(i, j), c2 = c2(i, j) are uniquely determined elements of G \ {1},
〈cl〉 = {1, cl} and 〈cl〉 = G \ 〈cl〉, l = 1, 2. Moreover, c1(i, j) = c2(j, i) and
Ri,j consists of the adjacency matrices of the relation Gi,j and its complement
in Vi × Vj.

It follows from statement (1) and Proposition 2.1 of [6] that K consists of algebras
with simple spectrum.

5.2. In this paper we are especially interested in the subclass K∗ of the class K
consisting of all cellular algebras W such that

(i) |Ri,j| ≤ 2 for all i 6= j.

(ii) Given i ∈ [s] the elements c1(i, j) with |Ri,j| = 2 are pairwise distinct.

We associate to such an algebra a graph Γ = Γ(W ) with vertex set V (Γ) = [s]
and edge set E(Γ) = {(i, j) : |Ri,j| = 2}. Since |Ri,j| = |Rj,i|, this graph can be
considered as an undirected one. We observe that

|Ri,j| =

{ 4, if i = j,
2, if (i, j) ∈ E(Γ),
1, otherwise

(11)



the electronic journal of combinatorics 6 (1999), #R18 15

It should be noted that each weak isomorphism of the algebras belonging K∗ induces
an isomorphism of the corresponding graphs. Moreover, it is easy to see that each
isomorphism of the graphs is induced by a strong isomorphism of the algebras.

Lemma 5.2 Let Γ be an undirected graph with V (Γ) = [s]. Then Γ = Γ(W ) for
some W ∈ K∗ iff the degree of any vertex of Γ is at most 3.

Proof. Let W ∈ K∗. It follows from (ii) and the definition of c1(i, j) that the degree
of a vertex i in the graph Γ(W ) is at most |G \ {1}| = 3, which proves the necessity.
Conversely, let the degree of any vertex of Γ be at most 3. For each i ∈ [s] choose an
injection

fi : {j : (i, j) ∈ E(Γ)} → G \ {1}

and denote by W the linear subspace of MatV spanned by �s
i=1Z(G, Vi) and the

adjacency matrices A(i, j) of the relations K(c1, c2) ⊂ Vi × Vj where c1 = c1(i, j) =
fi(j), c2 = c2(i, j) = fj(i) for all (i, j) ∈ E(Γ). Let (i, j), (j, k) ∈ E(Γ) and i 6= k.
Then c2(i, j) 6= c1(j, k) and so

A(i, j) · A(j, k) = JVi,Vk .

This implies that the linear space W is closed with respect to the matrix multiplication
and hence is a cellular algebra from K∗.

Let us study the isomorphisms of a cellular algebra W ∈ K∗ to itself leaving any
cell of W fixed. For an edge (i, j) of the graph Γ = Γ(W ) set

g(i,j) = (h1, . . . , hs), hk =

 c1(i, j), if k = i,
c2(i, j), if k = j,
1, otherwise.

(12)

Let P = (i0, . . . , it) ∈ [s]t+1 be a path in the graph Γ from i0 to it (i.e. (il−1, il) ∈ E(Γ)
for all l ∈ [t]). We define a permutation of V by

gP =
t∏
l=1

g(il−1,il). (13)

Clearly, gP ∈ Iso(W,W ) for all P (including ones with t = 0 for which gP = 1) and
also

gP ·P ′ = gPgP ′, gP−1 = g−1
P (14)

where P ·P ′ is the composition of the paths P and P ′ (providing that the last vertex
of P coincides with the first vertex of P ′) and P−1 is the reverse of P . Denote by ϕP
the weak isomorphism of the algebra W to itself induced by the strong isomorphism
gP . Obviously, ϕP is identical on each homogeneous component of W and ϕ2

P = idW .

Lemma 5.3 Let W ∈ K∗ and Γ = Γ(W ). Then the following statements hold:

(1) Let ϕ = ϕ(i,j) where (i, j) ∈ E(Γ). Then the action of ϕ on the set Ra,b is
nontrivial iff (a, b) ∈ E(Γ) and |{a, b} ∩ {i, j}| = 1.
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(2) If P = (i0, . . . , it) is a closed path in the graph Γ (i.e. i0 = it), then
gP ∈ Aut(W ).

(3) If Γ is a 3-connected graph, then W is a Schurian algebra.

Proof. If ϕ is not identical on Ra,b, then obviously (a, b) ∈ E(Γ) and {a, b} ∩
{i, j} 6= ∅ (see (11) and (12)). Further, if {a, b} = {i, j}, then g(i,j) is of the form
(c1(a, b), c2(a, b)) on Va∪Vb and consequently belongs to Aut(WVa∪Vb) (see Lemma 5.1)
acting trivially on Ra,b. Conversely, let (a, b) ∈ E(Γ) and for instance a = i, b 6= j.
Then g(i,j) is of the form (c1(a, j), 1) on Va ∪Vb with c1(a, j) 6= c1(a, b) and so can not
belong to Aut(WVa∪Vb). This proves statement (1). Now, if P is a closed path in Γ,
then by statement (1) and formula (14) the weak isomorphism ϕP acts trivially on
the set R. This means that gP ∈ Aut(W ), which proves statement (2).

To prove statement (3) we will make use of the following property of a 3-connected
graph: given an edge and a vertex nonincident to each other, there exists a cycle (a
closed path without repeating vertices) passing through the edge but not through the
vertex. (Indeed, the subgraph obtained by removing the vertex is 2-connected and
so there is a cycle in it passing through the edge, see Corollaries 2 and 4 on pp. 168
and 169 of [1]). Given distinct i, j ∈ [s] we define a set Si,j of cycles of the graph Γ
as follows. If (i, j) ∈ E(Γ), then Si,j consists of 3 elements: a cycle passing through i
but not through j, a cycle passing through j but not through i and a cycle passing
through the edge (i, j). If (i, j) 6∈ E(Γ), then Si,j consists of 4 elements: 2 cycles
passing through i but not through j covering all edges incident to i and 2 cycles
passing through j but not through i covering all edges incident to j.

It follows from (12) and (13) that the order of the group generated by all per-
mutations gP , P ∈ Si,j, and even of its constituent Hi,j on Vi ∪ Vj equals 2|Si,j |.
So

|Hi,j| =

{
8, if (i, j) ∈ E(Γ),
16, otherwise.

On the other hand, by statement (2) of the lemma the group Hi,j is a subgroup of
Aut(WVi∪Vj) whereas |Aut(WVi∪Vj | = 16/|Ri,j| by statement (2) of Lemma 5.1. Thus
Hi,j = Aut(WVi∪Vj) by (11). Since the algebra WVi∪Vj is obviously Schurian and each
element of Hi,j is the restriction of an automorphism of W , statement (3) follows.

Remark 5.4 In fact, if Γ is a connected cubic graph, then the 3-connectivity of Γ
is also necessary for W to be Schurian. This can be proved by using the fact that in
this case the group Aut(W ) is generated by the permutations gP where P runs over
all cycles of Γ.

5.3. Let W ∈ K∗ and a ∈ [s]. Set

ψa =
∏
b∈Γ(a)

ψa,b
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where Γ = Γ(W ), Γ(a) is the neighbourhood of a in Γ and ψa,b is the weak isomorphism
of the algebra W defined for R ∈ R by

ψa,b(R) =

{
JVa,Vb −R, if R ∈ Ra,b,
JVb,Va −R, if R ∈ Rb,a,
R, otherwise.

Then ψa is an involutory weak isomorphism of W moving R iff R ∈ Ra,b ∪ Rb,a

with b ∈ Γ(a). These weak isomorphisms are closely related to those of the previous
subsection. Namely, by statement (1) of Lemma 5.3 we have ϕ(i,j) = ψiψj for all
(i, j) ∈ E(Γ). So

ϕP = ψaψb (15)

where P is any path in the graph Γ from a to b.

Theorem 5.5 Let W ∈ K∗, Γ = Γ(W ) be a cubic graph and a ∈ [s]. Then

(1) The weak isomorphism ψa is not induced by a permutation of V .

(2) If Γ is a connected graph with no separator of some cardinality k ≥ 3m, then
ψa ∈ Isowm(W ). (A set X is called a separator of Γ if any connected component
of the induced subgraph Γ \X on [s] \X has at most s/2 vertices.)

Proof. Given ϕ ∈ Isow(W ) leaving any cell of W fixed let us denote by T (ϕ) (resp.
t(ϕ)) the set of all 2-subsets {i, j} of [s] such that ϕ(R) 6= R for some R ∈ Ri,j ∪Rj,i

(resp. its cardinality). Then, obviously, t(ψa) = 3. So to prove statement (1) it
suffices to check that

t(ϕg) ≡ 0 (mod 2), g ∈ Gs (16)

where ϕg is the weak isomorphism of W induced by g (see Subsection 5.1). It is easy
to see that

|T (ϕgh)| = |T (ϕg)|+ |T (ϕh)| − 2|T (ϕg) ∩ T (ϕh)|, g, h ∈ Gs

whence t(ϕgh) = t(ϕg) + (ϕh) (mod 2) for all g, h. Now (16) follows from the straight-
forward equality t(ϕg) = 2 where g = (g1, . . . , gs) with exactly one of gi’s not equal
to 1.

To prove (2) it suffices to verify that for ϕ = ψa conditions (i′) and (ii′) of Corol-
lary 4.7 are satisfied. Let U ∈ Cel∗k(W ). Denote by CU the vertex set of a largest
connected component of the graph Γ\XU where XU is the subset of [s] corresponding
to the cells of W contained in U . Choose a vertex b = bU ∈ CU and a path P = PU in
the graph Γ from a to b. Then by (15) and the fact that b 6∈ U we have (ϕP )U = (ψa)U .
So the condition (i′) is satisfied for h = gP .

Let U1, U2 ∈ Cel∗k(W ). Set bi = bUi, Ci = CUi, Xi = XUi, Pi = PUi (i = 1, 2).
Then |Ci| > s/2, since Xi is not a separator of Γ by the hypothesis of statement (2).
So C1 ∩ C2 6= ∅ and there exists a path P1,2 in Γ from b1 to b2 all vertices of which
belong to C1∪C2. Set P = P1 ·P1,2 ·P

−1
2 . Then by (14) and the fact that P1,2 contains

no vertices of U = U1 ∩ U2 we have

(gP )U = (gP1gP1,2g
−1
P2

)U = (h1)U(h−1
2 )U
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where h1 = gP1, h2 = gP2. It follows from statement (2) of Lemma 5.3 that
gP ∈ Aut(W ). Thus the condition (ii′) is satisfied for h = gP .

Remark 5.6 Let Γ(W ) be a connected cubic graph and ϕ1, ϕ2 ∈ Isow(W ) be weak
isomorphisms leaving any cell of W fixed such that (ϕ1)Vi = (ϕ2)Vi for all i ∈ [s]. Then
it can be proved by the same technique that ϕ1ϕ

−1
2 is induced by a strong isomorphism

of W iff t(ϕ1) = t(ϕ2) (mod 2).

5.4. Proof of Theorem 1.3. It follows from [12] and [14] that for all sufficiently
large l the graph CD(l, 3) defined in [12] is a connected, edge-transitive, cubic Ra-

manujan graph with sl = 2 · 3l−b
l+2
4
c+1 vertices. One can easily veryfy that there

exists ε′ > 0 such that any cubic Ramanujan graph with s vertices has no separa-
tor of cardinality k for all k ≤ ε′s. By Lemma 5.2 there exists a cellular algebra
W (l) ∈ K∗ on 4sl points with Γ(W (l)) = CD(l, 3). So by Theorem 5.5 there exists
an bslε

′

3
c-isomorphism ϕ(l) of W (l) which is not induced by a strong isomorphism.

According to [15] the graph CD(l, 3) being a connected edge-transitive cubic graph,
is 3-connected. Thus W (l) is a Schurian algebra by statement (3) of Lemma 5.3.

Let us define a cellular algebra Wn on n points by Wn = W (l)�Matn−4sl where l is
the largest positive integer for which 4sl ≤ n. Let ϕn be the weak isomorphism of Wn

coinciding with ϕ(l) on the first summand and identical on the second one. Then by
above Wn is a Schurian algebra and ϕn is not induced by a strong isomorphism for all
sufficiently large n. Set m = bslε

′

3
c. Since ϕ(l) ∈ Isowm(W (l)), Theorem 7.6 implies

that ϕn ∈ Isowm(Wn). Taking into account the inequality sl/n ≥ sl/sl+1 ≥ 1/12, we
conclude that m ≥ bnεc where ε = ε′/36.

5.5. Proof of Theorem 1.1. Let W and ϕ be the Schurian algebra on n
points and the m-isomorphism from Theorem 1.3. Set W ′ = W oΨ G where W =
{Wi}2

i=1, Ψ = {ψi,j}2
i,j=1, G = Sym(2) with W1 = W2 = W and ψ1,2 = ϕ. Then by

statement (3) of Theorem 7.7 the algebra W ′ is m-closed. On the other hand, W ′ is
not Schurian by Corollary 7.9. Thus for a sufficiently large even integer the required
algebra is constructed. The odd case is reduced to the even one by considering the
algebra W ′

�Mat1.

6 Proof of Theorem 1.4

We start with the description of the m-dimensional Weisfeiler-Lehman method and
the Schurian polynomial approximation scheme associated with it. Below a mapping f
from V m to the set of positive integers is called a coloring of V m. Any nonempty set
f−1(i) ⊂ V m is called a color class of f . The following algorithm was described in [3]
(see also [4]).

m-dim stabilization

Input: a coloring f0 of V m.
Output: a coloring f of V m.
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Step 1. Set k = 0.
Step 2. For each v̄ ∈ V m find a formal sum S(v̄) =

∑
u∈V fk(v̄/u) where

v̄/u = (v̄1,u, . . . , v̄m,u) with v̄i,u = (v1, . . . , vi−1, u, vi+1, . . . , vm), and
fk(v̄/u) = (fk(v̄1,u), . . . , fk(v̄m,u)).
Step 3. Find a coloring fk+1 of V m such that

fk+1(v̄) = fk+1(v̄′) ⇔ (fk(v̄) = fk(v̄
′), S(v̄) = S(v̄′)).

If the numbers of color classes of fk and fk+1 are different, then k := k+ 1 and go to
Step 2. Otherwise set f = fk.

For a cellular algebra W on V with standard basis R let us denote by f0 the
coloring of V m defined by

f0(v̄) = f0(v̄′) ⇔ ∀R ∈ R ∀i, j ∈ [m] : ((vi, vj) ∈ R ⇔ (v′i, v
′
j) ∈ R)

and set
WL1(W ) = W and WLm(W ) = [Rf ], m ≥ 2

where f is the coloring of V m derived from f0 by the m-dim stabilization procedure
and Rf is the set of the adjacency matrices of the relations

{(u′, v′) ∈ V × V : f(u′, . . . , u′, v′) = f(u, . . . , u, v)}, u, v ∈ V.

Let us define Pm = Pm(W ) to be the partition of V m into the cells of W if m = 1, and
into the color classes of f if m ≥ 2. In the last case denote by Pm,k(W ), k = 0, . . . , k̄
the partition of V m into the classes of the coloring fk obtained in applying the m-dim
stabilization procedure to the coloring f0. Then

Pm,0 ≤ Pm,1 ≤ · · · ≤ Pm,k̄ = Pm (17)

where for partitions P,P ′ of V m we write P ≤ P ′ if P ′ is the refinement of P.

Theorem 6.1 The partition P = Pm(W ), m ≥ 1 satisfies the following conditions:

(P1) P is normal, i.e. the set π−1
L (∆(L)) is a union of the elements of P for all L ⊂M

where ∆(L) = ∆(L)(V ) = {(v, . . . , v) ∈ V L : v ∈ V } and πL = πML : V M → V L

is a natural projection,

(P2) P is invariant, i.e. Pg = P for all g ∈ Sym(M) where Pg = {T g : T ∈ P}, g ∈
Sym(M),

(P3) P is regular, i.e. given T ∈ P, S ∈ πL(P) the number |π−1
L (u) ∩ T | does not

depend on u ∈ S for all L ⊂M where πL(P) = {πL(T ) : T ∈ P},

where M = [m].

Proof. It follows from the definition of the coloring f0 that the partition Pm,0 satisfies
conditions (P1) and (P2). So Pm,k+1 and hence Pm satisfies (P1) by (17) and (P2)
by the definition of fk+1 at Step 3. Thus it suffices to check that Pm satisfies condi-
tion (P3) or, equivalently, the following condition:
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(P3∗) given l ∈ [m−1] and S ∈ πl+1(P), R ∈ πl(P) the number |(πl+1
l )−1(u)∩S| does

not depend on u ∈ R

where πl+1
l = π

[l+1]
[l] and πl = π[l].

For l ∈ [m] let ηl be the mapping defined by

ηl : V m → V m, (v1, . . . , vm) 7→ (v1, . . . , vl, v1, . . . , v1).

Lemma 6.2 T ∈ Pm implies ηl(T ) ∈ Pm.

Proof. Using induction on l = m,m − 1, . . . we assume that T = ηl+1(T ). Let
v = (v1, . . . , vm) ∈ T . Then by the definition of the initial coloring f0 and formula (17)
we conclude that the final color of the tuple vl+1,u for u = v1 differs from that for
u 6= v1 (see Step 2). So the final color of ηl(v) does not depend on the choice of v
in the color class T due to the termination condition at Step 3. Thus ηl(T ) ⊂ T ′ for
some T ′ ∈ Pm. To prove the inverse inclusion we observe that T ′ ⊂ ηl(V

m). On the
other hand, given v′ ∈ T ′ the number |{u ∈ V : v′l+1,u ∈ T}| does not depend on v′

and is positive since ηl(T ) 6= ∅. Thus T ′ ⊂ ηl(T ).
To prove (P3∗) set S = πl+1(T ) and R = πl(T

′) where T, T ′ ∈ Pm. By Lemma 6.2
we assume T = ηl+1(T ), T ′ = ηl(T

′). For u ∈ V l set v = ηl(v
′) where v′ is any element

of the set (πml )−1(u). Then obviously

|(πl+1
l )−1(u) ∩ S| = |{u ∈ V : vl+1,u ∈ T}|.

If u runs over R, then v runs over T ′. Since the right side of the last equality does
not depend on v ∈ T ′, we conclude that the left side of it does not depend on u ∈ R.

Below given a finite set M a partition P of V M satisfying (P1)–(P3) will be called
stable. The following statement contains the simplest properties of a stable partition
to be used in proving Theorem 1.4.

Lemma 6.3 Let P be a stable partition of V M . Then

(1) πL(P) is a stable partition of V L for all L ⊂M ,

(2) if M = I ×K, then P is a stable partition of (V I)K,

(3) if M = [3], then π[2](P) is the set of basis relations of a cellular algebra on V .

Proof. To prove statement (1) we observe first that the elements of πL(P) are pair-
wise disjoint by (P3) and so πL(P) is a partition of V L. The obvious equality
(πLK)−1(∆(K)) = πL(π−1

K (∆(K))) with K ⊂ L implies that this partition is normal.
It is also invariant since πL(T )g = πL(T g̃) for all g ∈ Sym(L) where g̃ is the image
of g under the natural injection of Sym(L) into Sym(M). Finally, let S ∈ πL(P),
R ∈ πLK(πL(P)), K ⊂ L, and u ∈ R. Then

|V ||M\L||(πLK)−1(u) ∩ S| = |π−1
L ((πLK)−1(u) ∩ S)| = |π−1

K (u) ∩ π−1
L (S)|.
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Since πL(P) is a partition of V L, we see that π−1
L (S) =

⋃
T∈P,T∈π−1

L (S) T . So the

last number equals
∑

T |π
−1
K (u) ∩ T |. Thus the regularity of πL(P) follows from the

regularity of P.
Let us prove statement (2). The normality of P as a partition of (V I)K follows

from the equality

(πKJ )−1(∆(J)(V I)) =
⋂
i∈I

π−1
{i}×J(∆({i}×J))

where J ⊂ K and the normality of P as a partition of V M . The invariance (resp.
regularity) of P as a partition of (V I)K is obtained by the specialization of (P2)
(resp. (P3)) for g belonging to the subgroup of Sym(M) equal to the wreath product
of the identity group on I and Sym(K) (resp. for L = I × J , J ⊂ K).

Let us prove the third statement. Set R = π[2](P). It follows from statement (1)
that R is a stable partition of V 2. In particular, V 2 and ∆([2])(V ) are unions of
the elements of R. Besides, RT = R since RT = Rg for all R ∈ R where g is the
transposition belonging to Sym(2). So it suffices to check that given Q,R, S ∈ R the
number

p(u1, u2;Q,R) = |{u ∈ V : (u1, u) ∈ Q, (u, u2) ∈ R}|

does not depend on the choice of (u1, u2) ∈ S. However, p(u1, u2;Q,R) coincides with
the sum of the numbers |π−1

L (u)∩T | where L = [2], u = (u1, u2) ∈ S and T runs over
the elements of P contained in the set

π−1
L (Q) ∩ π−1

L (R)g ∩ π−1
L (S)h

with g = (1, 2, 3), h = (2, 3) in cyclic notation. By (P3) these numbers do not depend
on u.

Now we are ready to prove Theorem 1.4. Let us compare the partitions of Carte-
sian powers of V associated with the Schurian polynomial approximation schemes

{W
(m)
} and {WLm(W )} where W is a cellular algebra on V .

Theorem 6.4 For all cellular algebra W and all m ≥ 1

Pm(W ) ≤ Cel(Ŵ (m)), R(Ŵ (m)) ≤ π2m(P3m(W )). (18)

(We consider the elements of R(Ŵ (m)) as subsets of V 2m, see proof of Theorem 3.2.)

Proof. The first inequality was in fact proved in Proposition 4.1 of [4]. Accord-
ing to Theorem 6.1 P3m(W ) is a stable partition of V 3m. So by Lemma 6.3 there

exists a cellular algebra Âm(W ) on V m whose set of basis relations coincides with

π2m(P3m(W )). It follows from (P1) with P = P3m(W ) that I∆(m) ∈ Âm(W ). Be-
sides, R(Wm) ≤ π2m(P3m,0(W )) by the definition of the initial coloring f0, whence

Wm ≤ Âm(W ). Thus

Ŵ (m) ≤ Âm(W )

by Theorem 3.2.
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The inclusion WLm(W ) ≤ W
(m)

was proved in Theorem 1.2 of [4] (in fact deduced

from the first inequality of Theorem 6.4). To prove the inclusion W
(m)
≤WL3m(W )

we observe that by Theorem 6.1 the partition P3m(W ) is stable and hence

R(WL3m(W )) = π2(P3m(W )) = π2(π2m(P3m(W ))) = π2(R(Âm))

where Âm = Âm(W ) is the cellular algebra on V m defined in the proof of Theorem 6.4.
On the other hand, the stability of partition π2m(P3m(W )) (see Lemma 6.3) implies

that π2(R(Âm)) = R(((Âm)∆)δ
−1

) where ∆ and δ are defined in Subsection 3.1. So
by the second inequality of Theorem 6.4 we have

R(WL3m(W )) = R(((Âm)∆)δ
−1

) ≥ R(((Ŵ (m))∆)δ
−1

) = R(W
(m)

).

This completes the proof of Theorem 1.4.

7 Appendix

7.1. Throughout the subsection we denote by Wi (resp.W ′
i ) a cellular algebra on a

set Vi (resp.V ′i ) where i ∈ [s].
Following [17] we call the cellular algebra

s

�
i=1

Wi = [
s⋃
i=1

R(Wi)]

on the disjoint union V of Vi’s the direct sum of Wi’s. Obviously, it does not depend
on the ordering of the summands. Any set Vi is a cellular set of this algebra. Any of
its basis relations contained in Vi×Vj coincides with a basis relation of Wi (for i = j)
or equals the direct product of a cell of Wi and a cell of Wj (for i 6= j).

Let ϕi ∈ Isow(Wi,W
′
i ) for all i ∈ [s]. Then the mapping

ϕ :
s

�
i=1

Wi →
s

�
i=1

W ′
i (19)

coinciding with ϕi on Wi and taking JX,Y to JX′,Y ′ where X ∈ Cel(Wi), Y ∈ Cel(Wj),
i 6= j, and X ′ = Xϕi, Y ′ = Y ϕj , is obviously a weak isomorphism. We say that it is
induced by ϕi’s. It is easy to see that each weak isomorphism ϕ of the direct sums
such that ϕ(Wi) = W ′

i for all i can be obtained in this way.
Let W ≤ MatV be a cellular algebra and Φ ⊂ Isow(W ) be a group of its weak

isomorphisms. Then according to [5] the set WΦ = {A ∈W : ϕ(A) = A, ϕ ∈ Φ} is a

cellular algebra on V . If Φ ⊂ Isowm(W ), then ŴΦ ≤ Ŵ Φ̂ where Φ̂ = {ϕ̂(m) : ϕ ∈ Φ}.
Let now W = {Wi}si=1 and Ψ = {ψi,j}si,j=1 with ψi,j ∈ Isow(Wi,Wj) such that

ψi,j ψj,k = ψi,k, i, j, k ∈ [s] (20)

It is easy to see that ψi,i = idWi
and ψ−1

i,j = ψj,i for all i, j. Any permutation
g ∈ Sym(s) induces s weak isomorphisms ψi,ig : Wi → Wig , i ∈ [s], and hence by (19)
a weak isomorphism ϕg : W → W where W = �

s
i=1Wi. Obviously, given a group

G ≤ Sym(s) the set Φ(Ψ, G) = {ϕg : g ∈ G} is a subgroup of Isow(W ).
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Definition 7.1 The cellular algebra WΦ with Φ = Φ(Ψ, G) is called the wreath prod-
uct of the family W by the group G with respect to Ψ and is denoted by W oΨ G 1.

The algebra W oΨ G contains two subalgebras

WΨ = {
s∑
i=1

Ai : Ai ∈Wi, Aj = ψi,j(Ai), i, j ∈ [s]} (21)

and
WG = {

∑
O∈Orb2(G)

αOAO, αO ∈ C }, AO =
∑

(i,j)∈O

JVi,Vj (22)

closed under the Hadamard multiplication and the Hermitian conjugation. It is easy
to see that

W oΨ G = [WΨ,WG]. (23)

Let W = W oΨ G with W = {Wi}si=1, Ψ = {ψi,j}si,j=1, W
′ = W ′ oΨ′ G with

W ′ = {W ′
i}
s
i=1, Ψ′ = {ψ′i,j}

s
i,j=1 and ϕi ∈ Isow(Wi,W

′
i ) for all i. If

ϕi ψ
′
i,j = ψi,j ϕj, i, j ∈ [s], (24)

then ϕ(WΨ) = (W ′)Ψ′ and ϕ(WG) = (W ′)G where ϕ is the weak isomorphism (19).
By (23) this defines by restriction a weak isomorphism from W to W ′ such that

ϕ(AO) = A′O for all O ∈ Orb2(G). (25)

In this case we say that it is induced by ϕi’s. Conversely, any ϕ ∈ Isow(W,W ′) for
which (25) is satisfied can be obtained in this way with uniquely determined ϕi’s.

According to [17] the tensor product
⊗s

i=1Wi can be considered as a cellular
algebra on the set

∏s
i=1 Vi. The basis matrices (resp. cells) of this algebra are exactly

the Kronecker (resp. direct) products of the basis matrices (resp. cells) of Wi’s.

7.2. Here given a cellular algebra W ≤ MatV we define and study an auxiliary
cellular algebra Ŵ ∗ on the set V ∗ =

⋃
I⊂[m] V

I . Below we denote by MatV1,V2 the
linear space of all complex matrices the rows and columns of which are indexed by
the elements of sets V1 and V2 respectively. The tensor product MatV1,V2 ⊗MatV ′1 ,V ′2
is naturally identified with MatV1×V ′1 ,V2×V ′2

.
Given I, J ⊂ [m] let DI,J = DI,J(V ) denotes the adjacency matrix of the binary

relation {(u, v) ∈ V I × V J : ui = vi, i ∈ I ∩ J}. Set DI = DI(V ) = DI,[m](V )
and dI = dI(V ) = |V |m−|I|. Then

DI,I = IV I , (DI,J)T = DJ,I , dI∪JDI,J = DID
T
J . (26)

Besides,
DT
I DI = EI , DIEI = dIDI , E2

I = dIEI (27)

1We note that if G is transitive and Wi is homogeneous for all i, this is a special case of the
corresponding construction of [17].
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where EI is the adjacancy matrix of the relation {(u, v) : V m×V m : ui = vi, i ∈ I}.
We also observe that EI ∈ Zm(V ).

For I, J ⊂ [m] set

ŴI,J = DIŴDT
J , R̂I,J = {RI,J : RI,J = (dRI,J)−1DIRD

T
J , R ∈ R̂}

where R̂ = R(Ŵ ) and dRI,J is the coefficient at R in the decomposition of the ma-

trix EIREJ with respect to R̂. Both of the sets are contained in MatV I ,V J . Set

Ŵ ∗ =
∑

I,J⊂[m]

ŴI,J , R̂∗ =
⋃

I,J⊂[m]

R̂I,J(W ).

Obviously, the sum is meant to be direct and the union is meant to be disjoint.

Lemma 7.2 The following statements hold:

(1) The linear space Ŵ ∗ is a cellular algebra on V ∗ and the set R̂∗ is its standard
basis.

(2) Ŵ ∗ = [Ŵ , {DI}I⊂[m]].

(3) For each I ⊂ [m] the set V I is a cellular set of Ŵ ∗. Moreover, (Ŵ ∗)V l ≥ Ŵ (l)

for all l ∈ [m] and also (Ŵ ∗)Vm = Ŵ , (Ŵ ∗)V = W .

(4) Let I, J ⊂ [m] and {Ik}sk=1, {Jk}sk=1 be partitions of I and J (with some of

Ik, Jk possibly empty). Then
⊗s

k=1 ŴIk,Jk ⊂ ŴI,J .

Proof. Let us show that any matrix A = DIRD
T
J , R ∈ R̂, is a dRI,J-multiple of a {0,1}-

matrix. It is easy to see that given (u, v) ∈ V I × V J the number Au,v equals any
(u′, v′)-element of the matrix B = EIREJ with (DI)u,u′ > 0, (DJ)v,v′ > 0. If Au,v 6= 0,
then u′, v′ can be chosen so that in addition Ru′,v′ > 0. So Au,v = Bu′,v′ = dRI,J by the

definition of dRI,J . Thus R̂I,J consists of {0,1}-matrices. Moreover, any two of them
are orthogonal with respect to the Hadamard multiplication or coincide. Indeed,
let RI,J ◦ SI,J 6= 0 where R, S ∈ R̂. Then S ◦ (EIREJ) 6= 0 and R ◦ (EISEJ) 6= 0.

Since the matrices EIREJ , EISEJ belong to Ŵ and are multiples of {0,1}-matrices,
they (and hence also DIRDJ , DISDJ) coincide up to a scalar factor. It follows from

above that the set R̂∗ consists of {0,1}-matrices summing up to JV ∗. Besides, it

is easy to see that it is closed under transposition and linearly spans Ŵ ∗. Since
ŴI,JŴJ,K ⊂ ŴI,K (see (27)), statement (1) follows. Statement (2) is the consequence

of the definition of Ŵ ∗, statement (1) and the fact that DI ∈ ŴI,[m] for all I ⊂ [m].

To prove statement (3) it suffices to check that (Ŵ ∗)V l ≥ Ŵ (l). To do this we observe
that

I∆(l) = D[l]I∆(m)D[l], R1⊗ . . .⊗Rl = d−1
[l] D[l](R1⊗ . . .⊗Rl⊗ IV ⊗ . . .⊗ IV )D[l] (28)

where Ri ∈ R(W ) for all i ∈ [l]. Thus we are done by Theorem 3.2 (with m = l).
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Let us prove statement (4). First we observe that for all l ∈ [s]

DI,IlAlDJl,J =
s⊗

k=1

C
(l)
k , Al ∈ MatV Il ,V Jl

where C
(l)
k is the all-one matrix of MatV Ik ,V Jk if k 6= l, and C

(l)
l = Al. Since the

Hadamard multiplication in MatV I ,V J =
⊗s

k=1 MatV Ik ,V Jk can be done factorwise, we
come to the equality

(DI,I1A1D
T
J1,J

) ◦ · · · ◦ (DI,IsAsD
T
Js,J) =

s⊗
k=1

Ak. (29)

Thus, if Ak ∈ ŴIk,Jk for all k, then by statement (1) each Hadamard factor in the left

side of (29) (and hence the whole product) belongs to ŴI,J .
We complete the subsection by defining and studying some natural weak isomor-

phisms of our auxiliary algebras.

Lemma 7.3 Let ϕ ∈ Isowm(W,W ′) and ψ = ϕ̂. Then

(1) There exists a uniquely determined weak isomorphism ψ∗ : Ŵ ∗ → Ŵ ′
∗

such
that (ψ∗)Vm = ψ and ψ∗(DI) = D′I for all I ⊂ [m].

(2) The mapping (ψ∗)V l induces by restriction an l-extension of ϕ for all l ∈ [m].
In particular, (ψ∗)V : W →W ′ extends ϕ.

Proof. To prove statement (1) set

ψ∗(A) = (dIdJ)−1D′Iψ(DT
I ADJ)(D′J)T , A ∈ ŴI,J .

It immediately follows from (26) and (27) that ψ∗(A) = ψ(A) for all A from Ŵ =

(Ŵ ∗)Vm and also ψ∗(DI) = D′I for all I ⊂ [m]. Moreover, making use of the same

properties of the matrices DI and EI we have for A ∈ ŴI,J , B ∈ ŴJ.K :

dIdKψ
∗(AB) = D′Iψ(DT

I ABDK)(D′K)T = d−1
J D′Iψ(DT

I ADJ)ψ(DT
JBDK)(D′K)T =

d−3
J D′Iψ(DT

I ADJEJ)ψ(EJD
T
JBDK)(D′K)T = d−2

J D′Iψ(DT
I ADJ)E′Jψ(DT

JBDK)(D′K)T =

d−2
J D′Iψ(DT

I ADJ)(D′J)TD′Jψ(DT
JBDK)(D′K)T = dIdKψ

∗(A)ψ∗(B).

This shows that ψ∗ is a matrix algebra isomorphism. In particular,

ψ∗(RI,J) = (dRI,J)−1ψ∗(DI)ψ(R)ψ∗(DT
J ) = (d

ψ(R)
I,J )−1D′Iψ(R)(D′J)T = ψ(R)I,J

for all R ∈ R̂ and I, J ⊂ [m]. Thus ψ∗ preserves the Hadamard multiplication and
hence is a weak isomorphism. Since the uniqueness of ψ∗ follows from statement (2)
of Lemma 7.2, we are done.
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The second statement of the lemma follows from the first one, statement (3) of
Lemma 7.2 and formula (28).

The isomorphism (ψ∗)V will be denoted by ϕ and called the m-closure of ϕ.

7.3. It is clear that the direct sum is Schurian iff so is any of its summands. In
this subsection we generalize this observation to m-closed algebras. To do this we
need to study the m-extended algebra of the direct sum.

Theorem 7.4 Let W = �
s
k=1Wk. Then the set V ∗ is a cellular set of the alge-

bra
⊗s

k=1 Ŵk

∗
and

Ŵ ∗ = (
s⊗

k=1

Ŵk

∗
)V ∗. (30)

Proof. It is easy to see that given I ⊂ [m] we have V I =
⋃
I V

I where I = {Ik}sk=1

runs over all ordered partitions of the set I into s classes (possibly empty) and V I =∏s
k=1 V

Ik
k . Since V Ik

k is a cellular set of the algebra Ŵk

∗
the first part of the theorem

follows. Further, the right side of (30) denoted by W ′ below, coincides with the
direct sum over all I, J ⊂ [m] and all partitions {Ik}sk=1 and {Jk}sk=1 of I an J of

the linear spaces
⊗s

k=1(Ŵk)Ik,Jk. Since (Ŵk)Ik,Jk ⊂ ŴIk,Jk for all k, we conclude by

statement (4) of Lemma 7.2 that W ′ is a subalgebra of Ŵ ∗ .
To prove the inverse inclusion it suffices to check by statement (2) of Lemma 7.2

and Theorem 3.2 that W ′ contains the algebra Wm and the matrices I∆ and DI ,
I ∈ [m]. Let us prove that I∆ ∈W ′. Since I∆ =

∑s
k=1 I∆k

where ∆k = ∆(m)(Vk), we
need only to check that I∆k

∈ W ′ for all k. Given k ∈ [s] let us define a partition
{Il} of [m] so that Il = ∅ for l 6= k and Ik = [m]. Then, obviously,

I∆k
∈ Ŵk =

s⊗
l=1

(Ŵl)Il,Il ⊂W ′.

Further, given I ⊂ [m] it is easy to see that

DI =
∑

{Ik},{Jk}

s⊗
k=1

DIk,Jk(Vk)

where the sum is taken over all partitions of the sets I and [m] respectively with
Ik ⊂ Jk for all k ∈ [s]. Since DIk,Jk(Vk) = dJk(Vk)

−1DIk(Vk)DJk(Vk)
T (see (26))

and DIk(Vk), DJk(Vk) belong to Ŵk

∗
by statement (2) of Lemma 7.2, we conclude

that DI ∈W ′.
Let us prove now that Wm ⊂ W ′. It follows from the definition of the direct

sum that W coincides with the cellular closure of the sets R(Wk), k ∈ [s], and
the matrices JVk,Vl, k, l ∈ [s]. So it suffices to prove that W ′ contains any matrix
A =

⊗m
i=1Ai with Ai ∈ R(Wk) for some k or Ai = JVk,Vl = JVk ,∅⊗J∅,Vl for k 6= l. Let

us define partitions {Ik} and {Jk} of [m] by

Ik = {i ∈ [m] : Ai ∈ MatVk,V }, Jk = {i ∈ [m] : Ai ∈ MatV,Vk}.
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Then

A =
s⊗

k=1

A(k) with A(k) = A(k,0) ⊗ A(k,1) ⊗ A(k,2)

where A(k,0) =
⊗

i∈Ik∩Jk
Ai, A

(k,1) = DIk\Jk,∅(Vk), A
(k,2) = D∅,Jk\Ik(Vk). We only need

to prove that A(k) ∈ (Ŵk)Ik,Jk for all k ∈ [s]. However, this follows from statement (4)
of Lemma 7.2 applied to the partitions of Ik and Jk with 3 classes Ik,0 = Jk,0 = Ik∩Jk,
Ik,1 = Ik \ Jk, Ik,2 = Jk,1 = ∅ and Jk,2 = Jk \ Ik.

Theorem 7.4 enables us to obtain the following decomposition of the m-extended
algebra of the direct sum:

Ŵ =
∑
I,J

ŴI,J , ŴI,J =
s⊗

k=1

(Ŵk)Ik,Jk (31)

where I = {Ik}sk=1 and J = {Jk}sk=1 run over all ordered partitions of the set [m]

into s classes (possibly empty). According to this each basis matrix of Ŵ can
uniquely be represented as the Kronecker product over k ∈ [s] of the “basis” ma-

trices of (Ŵk)Ik,Jk .

For each k ∈ [s] let us define the partition I(k) = {I(k)
l }

s
l=1 of the set [m] by I

(k)
l =

∅, if l 6= k, and I
(k)
k = [m]. Then it is easy to see that V I

(k)
= V m

k , ŴI(k),I(k) = Ŵk

and ŴI(k),I(l) for k 6= l coincides with the linear span of the matrices JX,Y where

X ∈ Cel(Ŵk), Y ∈ Cel(Ŵl). Thus, restricting Ŵ to the union of V I
(k)

, k ∈ [s], we
come by (31) to the following statement.

Theorem 7.5 Let W = �
s
k=1Wk. Then

(1) The set U =
⋃s
k=1 V

m
k is a cellular set of the algebra Ŵ and ŴU = �

s
k=1 Ŵk.

(2) W = �
s
k=1W k.

(3) The algebra W is m-closed iff so is Wk for all k.

Another consequence of Theorem 7.4 concerns the m-extensions of weak isomor-
phisms between direct sums.

Theorem 7.6 Let W = �
s
k=1Wk, W

′ = �
s
k=1W

′
k and ϕ : W → W ′ be the weak

isomorphism induced by weak isomorphisms ϕk : Wk → W ′
k, k ∈ [s]. Then ϕ ∈

Isowm(W,W ′) iff ϕk ∈ Isowm(Wk,W
′
k) for all k.

Proof. The necessity is obvious. Conversely, let ϕk ∈ Isowm(Wk,W
′
k) for all k. It

follows from Theorem 7.4 and Lemma 7.2 that the algebras Ŵ and Ŵ ′ coincide with

the restrictions to V m and to (V ′)m of the tensor products
⊗s

k=1 Ŵk

∗
and

⊗s
k=1 Ŵ

′
k

∗

respectively. By statement (1) of Lemma 7.3 the isomorphism ϕ̂k is extended to

the weak isomorphism ϕ̂k
∗ : Ŵk

∗
→ Ŵ ′

k

∗
taking (Vk)

I to (V ′k)
I for all I ⊂ [m]. So
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the restriction to V m of the weak isomorphism
⊗s

k=1 ϕ̂k
∗ is a correctly defined weak

isomorphism from Ŵ to Ŵ ′ being in fact the m-extension of ϕ.

7.4. Here we use the results of the previous subsection to give a sufficient condition
for the wreath productWoΨG to bem-closed. We note that if ψi,j ∈ Isowm(Wi,Wj) for
all i, j, then by Theorem 7.6 ϕg ∈ Isowm(W ) for all g ∈ Sym(s) where W = �

s
i=1Wi.

In this case we can consider the group \Φ(Ψ, G) = {ϕ̂g : g ∈ G} ⊂ Isow(Ŵ ).

Theorem 7.7 Let W oΨ G be the wreath product of W = {Wi}si=1 by G ≤ Sym(s)
with respect to Ψ = {ψi,j}si,j=1. Suppose that ψi,j ∈ Isowm(Wi,Wj) for all i, j. Then

(1) The set U =
⋃s
i=1 V

m
i is a cellular set of \W oΨ G and (\W oΨ G)U = Ŵ oΨ̂ G

where Ŵ = {Ŵi}si=1 and Ψ̂ = {ψ̂i,j}si,j=1.

(2) W oΨ G = W oΨ G where W = {Wi}si=1 and Ψ = {ψi,j}si,j=1 with ψi,j being the
m-closure of ψi,j.

(3) The algebra W oΨ G is m-closed iff so is Wi for all i.

Proof. We prove only the first statement since the others are straightforward from it.
It is easy to see that the adjacency matrix of the relation

⋃s
i=1 V

m
i ×V

m
i ⊂ V m×V m

is a multiple of AI∆A where A is the m-fold tensor product of the matrix
∑s

i=1 JVi
belonging to W oΨ G, and so belongs to \W oΨ G. Thus the first part of statement (1)
follows. Further, since W oΨ G ≤ �

s
i=1Wi, we have

(\W oΦ G)U ≤
s

�
i=1

Ŵi

by statement (1) of Theorem 7.5. The group Φ̂ = \Φ(Ψ, G) acts trivially on the algebra

(W oΨ G)m and leaves the matrix I∆ fixed. So it acts trivially also on \W oΨ G by

Theorem 3.2, which implies that the group Φ(Ψ̂, G) coinciding with Φ̂U acts trivially

on (\W oΨ G)U . Since Ŵ oΨ̂ G is obviously the largest subalgebra of �si=1 Ŵi with this
property, we conclude that

(\W oΨ G)U ≤ Ŵ oΨ̂ G.

To prove the converse inclusion we make use of the equality (23) with W and Ψ

replaced by Ŵ and Ψ̂ and verify that ŴΨ̂, ŴG ⊂ (\W oΨ G)U . A straightforward
check shows that IU(WΨ)mIU = (Wm)Ψm where Wm = {Wm

i }, Ψm = {ψmi,j}. So

(Wm)Ψm ⊂ (\W oΨ G)U . Since I∆ also belongs to (W oΨG)U , this algebra contains the
smallest algebra satisfying (C2) and (C3) and containing (Wm)Ψm and I∆ =

∑s
i=1 I∆i

.

The last algebra coincides with ŴΨ̂ by Theorem 3.2 applied to Ŵi, i ∈ [s] (see (21)).
On the other hand, for any O ∈ Orb2(G) we have

ÂO =
∑

(i,j)∈O

JVmi ,Vmj
= IU(

∑
(i,j)∈O

JVi,Vj)
mIU = IUA

m
O IU
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where AmO is the m-fold tensor product of the matrix AO (see (22)). This implies

that the algebra ŴG spanned by ÂO’s is contained in (\W oΨ G)U , which completes
the proof.

Remark 7.8 It follows from the above proof that \W oΨ G ≤ ( \�s
i=1Wi)

Φ̂. On the
other hand, it is easy to see that each Schurian algebra is strongly isomorphic to
the wreath product of one-point matrix algebras by its automorphism group. So the
equality would imply in particular that the m-extended algebra of a Schurian algebra
is also Schurian. However, this does not seem to be true.

Corollary 7.9 Let G be a transitive group. Then the algebra W oΨ G is Schurian iff
so is Wi for all i and ψi,j ∈ Isow∞(Wi,Wj) for all i, j.

Proof. By statement (3), Theorem 4.5 and the fact that W
(m)

= Sch(W ) for all
W ≤ MatV and m ≥ n (see Proposition 3.1) it suffices to prove that if W oΨ G is
Schurian, then ψi,j is induced by a bijection gi,j from Vi to Vj for all i, j. Since the
group G is transitive, each cell of W oΨ G meets any set Vi. The Schurity of W oΨ G
implies then that so does each orbit of its automorphism group. However, the relation⋃s
i=1 Vi × Vi is invariant with respect to this group. So given i, j ∈ [s] there exists an

automorphism of W oΨ G taking Vi to Vj, which produces the required bijection gi,j.
The analog of Theorem 7.6 for wreath products is the following statement in which

we use the notation of Subsection 7.1.

Theorem 7.10 Let W = W oΨ G, W ′ = W ′ oΨ′ G and ϕ : W → W ′ be the weak
isomorphism induced by weak isomorphisms ϕi : Wi → W ′

i , i ∈ [s], satisfying (24).
Suppose that ψi,j ∈ Isowm(Wi,Wj) for all i, j. Then ϕ ∈ Isowm(W,W ′) iff ϕi ∈
Isowm(Wi,W

′
i ) for all i.

Proof. Let us prove the necessity. Since U =
⋃s
i=1 V

m
i and U ′ =

⋃s
i=1(V ′i )

m are

cellular sets of the algebras Ŵ and Ŵ ′ and U ϕ̂ = U ′, we have ϕ̂(ŴU) = Ŵ ′
U ′ . By

statement (1) of Theorem 7.7 ŴU = Ŵ oΨ̂ G where Ŵ = {Ŵi}, Ψ̂ = {ψ̂i,j}. It is

easy to see that ϕ̂(ŴΨ̂) = (W̃ ′)Ψ̃′ for some W̃ ′ = {W̃ ′
i}
s
i=1 with W̃ ′

i ≤ Mat(V ′i )m and

Ψ̃′ = {ψ̃′i,j}
m
i,j=1 with ψ̃′i,j ∈ Isow(W̃ ′

i , W̃
′
j). Moreover, ϕ̂ takes ŴG to (W̃ ′)G so that

condition (25) is satisfied. So Ŵ ′
U ′ = W̃ ′ oΨ̃′ G and the weak isomorphism

ϕ̂U : Ŵ oΨ̂ G→ W̃
′ oΨ̃′ G

is induced by some weak isomorphisms ϕ̃i : Ŵi → W̃ ′
i , i ∈ [s]. It suffices to check

that W̃ ′
i = Ŵ ′

i and ϕ̃i is an m-extension of ϕi for all i.
First we observe that ϕ̂(E) = E′ where E (resp. E′) is the adjacency matrix of

the equivalence relation
⋃s
i=1 V

m
i × V

m
i (resp.

⋃s
i=1(V ′i )

m × (V ′i )
m). So,∑

i

ϕ̃i(
⊗
j

A
(j)
i ) = ϕ̂(

∑
i

⊗
j

A
(j)
i ) = ϕ̂(E ◦ (

⊗
j

∑
i

A
(j)
i )) =
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ϕ̂(E)◦ϕ̂(
⊗
j

∑
i

A
(j)
i ) = E′◦(

⊗
j

ϕ(
∑
i

A
(j)
i )) = E′◦(

⊗
j

∑
i

ϕ(A
(j)
i )) =

∑
i

⊗
j

ϕi(A
(j)
i )

where i runs over [s], j runs over [m] and A
(j)
i ∈ Wi with

∑
iA

(j)
i ∈ W

Ψ for all j.
Thus ϕ̃i(A) = ϕmi (A) for all A ∈Wm

i and all i ∈ [s]. Finally,

s∑
i=1

ϕ̃i(I∆i
) = ϕ(I∆) = I∆′ =

s∑
i=1

I∆′i

where ∆i (resp. ∆′i) is the diagonal of V m
i (resp. (V ′i )

m). So ϕ̃i(I∆i
) = I∆′i

for all i.

Therefore, W̃ ′
i = [(W ′

i )
m, I∆′ ] = Ŵ ′

i and ϕ̃i is an m-extension of ϕi (see Theorem 3.2
and Definition 4.2).

Conversely, let ϕi ∈ Isowm(Wi,W
′
i ) for all i ∈ [s]. Then the weak isomorphism

from �
s
i=1Wi to �s

i=1W
′
i induced by ϕi’s is an m-isomorphism by Theorem 7.6. The

m-extension of it takes I∆ to I∆′ and coincides with ϕm on Wm (we use Definition 4.2
and the fact that ϕ is induced by ϕi’s). Thus we are done by Theorem 3.2.
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