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Abstract

In this paper, we extend the Grötzsch Theorem by proving that the
clique hypergraph H(G) of every planar graph is 3-colorable. We also
extend this result to list colorings by proving that H(G) is 4-choosable
for every planar or projective planar graph G. Finally, 4-choosability
ofH(G) is established for the class of locally planar graphs on arbitrary
surfaces.

1 Introduction

Let G be a graph. The hypergraph H = H(G) with the same vertex set
as G whose (hyper)edges are the maximal cliques of G is called the clique
hypergraph of G. A k-coloring of H is a function c : V (H)→ {1, . . . , k} such
that no edge of H is monochromatic, i.e., |c(e)| ≥ 2 for every e ∈ E(H). The

∗Supported in part by the Ministry of Science and Technology of Slovenia, Research
Project J1-0502-0101-98.

1



the electronic journal of combinatorics 6 (1999), #R26 2

minimal k such that H admits a k-coloring is called the chromatic number
of H and is denoted by χ(H). The reader can find more about this kind of
colorings in [2, 5].

A k-list-assignment of G is a function L which assigns to each vertex
v ∈ V (G) a set L(v) (called the list of v) which has at least k elements. The
elements of L(v) are called the admissible colors for v. An L-coloring of G
(or H(G)) is a function c : V (G) → ∪vL(v) such that c(v) ∈ L(v) for every
v ∈ V (G) and no edge of G (or H(G)) is monochromatic. A coloring of H(G)
is strong if no 3-cycle of G is monochromatic. G (or H(G)) is (strongly) k-
choosable if, for every k-list-assignment L, there exists a (strong) L-coloring
of G (or H(G)).

If G is a triangle-free graph, then H(G) = G. Hence, χ(H(G)) = χ(G).
Grötzsch [4] (see also [5, 8, 9]) proved the following beautiful theorem.

Theorem 1.1 (Grötzsch) Every triangle-free planar graph is 3-colorable.
Moreover, every 3-coloring of a 4- or 5-cycle of G can be extended to a
3-coloring of the whole graph.

In this paper we extend the Grötzsch Theorem by proving that the clique
hypergraph of every planar graph is 3-colorable (Theorem 2.6). In Section 3
we extend Theorem 2.6 to list colorings by proving that H(G) is 4-choosable
for every planar or projective planar graph G. This result is best possible
since there are triangle-free planar graphs which are not 3-choosable [10]. As
a side result it is also proved that every precoloring of a k-cycle (k ≤ 7) of a
triangle-free graph can be extended to an L-coloring for an arbitrary 4-list-
assignment L (Corollary 3.2). In the last section, 4-choosability of H(G) is
established for the class of locally planar graphs on arbitrary surfaces.

All graphs in this paper are finite and simple. If U⊆V (G), then G(U) is
the induced subgraph of G with vertex set U . If G is a plane graph and C

is a cycle of G, then Int(C) denotes the subgraph of G consisting of C and
all vertices and edges in the disk bounded by C. Similarly, Ext(C)⊆G is the
exterior of C.

2 An extension of the Grötzsch Theorem

The Grötzsch Theorem 1.1 is easily extended to planar graphs with one
triangle.

Corollary 2.1 Let G be a plane graph with precisely one 3-cycle C = xyz.
Let c : V (C)→ {1, 2, 3} be a coloring of H(C). Then c can be extended to a
3-coloring of H(G).
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Proof. If two vertices of H(C) are colored the same, we may assume that
these vertices are y and z. Subdivide the edge yz by inserting a vertex w of
degree 2 and set c(w) ∈ {1, 2, 3}\{c(y), c(z)}. Now, apply Theorem 1.1 to
extend c to Int(G) and Ext(G), respectively. Finally, observe that c is the
required coloring of H(G).

Planar graphs which differ “the most” from triangle-free graphs contain
triangles which cover all edges of the graph. For these graphs we can save
one additional color as shown below.

Theorem 2.2 Let G be a planar graph with at least one edge such that each
edge of G is contained in some 3-cycle of G. Then χ(H(G)) = 2.

Proof. By the 4-Color Theorem [1, 7], there is a 4-coloring of G. For
i = 1, 2, 3, 4, let Ui⊆V (G) be the set of vertices colored i. Now, let c(v) = 1
if v ∈ U1 ∪U2, and let c(v) = 2 if v ∈ U3 ∪U4. Since every maximal clique K
in G contains at least 3 vertices, K uses at least 3 colors in the 4-coloring of
G, and hence c uses both colors on K. Therefore, c is a 2-coloring of H(G).

For the skeptics of the proof of the 4-Color Theorem and since we do not
want to use this powerful theorem for our application if not necessary, we
state a weaker result with an elementary proof:

Lemma 2.3 Let G be as in Theorem 2.2. Then H(G) has a strong 3-
coloring.

Proof. We use the same proof as for Theorem 2.2 except that we apply the
5-Color Theorem for planar graphs and set c(v) = 3 if v ∈ U5.

A planar graph is a near-triangulation, if every facial walk, except possibly
the outer walk, is a triangle.

Proposition 2.4 Let G be a connected plane graph without separating 3-
cycles.

(a) Suppose that no edge of G lies on exactly one 3-cycle. Then G is either
a triangulation or a triangle-free graph.

(b) Let C be be the outer cycle of G. Suppose that no edge of E(G)\E(C)
lies on exactly one 3-cycle. Then G is either a near-triangulation or G
has no triangles except possibly C.
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Proof. Note that each 3-cycle of G is the boundary of a face. If G is neither
a (near-)triangulation nor a triangle-free graph (with possible exception C in
case (b)), then there is a vertex u contained in some 3-cycle C ′ (and C ′ 6= C
in case (b)) such that the 3-cycles containing u do not form, locally, a (near)
triangulation around u. Since all 3-cycles containing u are facial, there are
at least two edges incident with u that are contained in precisely one 3-
cycle. Moreover, in case (b), one such edge is not on C. This contradiction
completes the proof.

Lemma 2.5 Let G be a connected plane graph whose outer cycle C is a
3-cycle. Let c : V (C) → {1, 2, 3} be a coloring of H(C). Then c can be
extended to a strong 3-coloring of H(G).

Proof. The proof is by induction on |V (G)| + |E(G)|. We may assume
that G 6= C. Let C ′ be a 3-cycle of G (possibly C ′ = C) such that C ′ has
at least one vertex in its interior but, subject to this condition, Int(C ′) is
as small as possible. Let G1 be the graph obtained from G by removing all
vertices and edges in the interior of C ′. By the induction hypothesis, there
is a strong 3-coloring c1 of H(G1) extending c. This 3-coloring induces a
3-coloring c′ of H(C ′), since c1 is strong. If C ′ 6= C, then Int(C ′) is smaller
than G. Therefore, by the induction hypothesis, c′ can be extended to a
strong 3-coloring of H(Int(C ′)). Since every 3-cycle of G is either in G1 or
in Int(C ′), this gives rise to a strong 3-coloring of H(G) extending c.

Suppose now that C ′ = C. Then G has no separating 3-cycles. Suppose
that G has an edge e = uv where u 6∈ V (C) such that e lies in exactly
one 3-cycle C∗ = uvw. Since there are no separating triangles and since
u 6∈ V (C), C∗ is facial and different from C. Let v1, v2, . . . , vd (d = deg(u))
be the neighbors of u enumerated in the clockwise order determined by the
plane embedding of G. We may assume that v1 = v and v2 = w. Let k ≥ 2
be such that uvivi+1 are (facial) 3-cycles for i = 1, . . . , k − 1 but uvkvk+1

(index taken modulo d) is not a 3-cycle in G. Since e lies in precisely one
3-cycle, k exists. Let G′ be the subgraph of G obtained by removing the
edges uv2, uv4, uv6, . . . , uvk (if k is even) or uv2, uv4, uv6, . . . , uvk−1 (if k is
odd). By the induction hypothesis, H(G′) has a strong 3-coloring extending
c. Observe that no edge among the edges uv1, uv3, uv5, . . . belongs to a 3-
cycle in G′. Therefore the colors of v1, v3, v5, . . . are distinct from the color of
u. This easily implies that the 3-coloring of H(G′) is also a strong 3-coloring
of H(G).

Now we may assume that G has no separating 3-cycles and that no edge
in E(G)\E(C) belongs to exactly one 3-cycle in G. By Proposition 2.4(b), G
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is either a triangulation, or C is the only 3-cycle of G. In the latter case c can
be extended to a (strong) 3-coloring of H(G) by Corollary 2.1. Otherwise, G
is a triangulation of the plane. In particular, each edge of G belongs to a 3-
cycle in G. Lemma 2.3 implies thatH(G) is (strongly) 3-colorable. Moreover,
it is easy to use the 5-coloring of G from the proof of Lemma 2.3 (by possibly
permuting the colors) so that the corresponding strong 3-coloring of H(G) is
an extension of c. This completes the proof.

Theorem 2.6 The clique hypergraph of every planar graph is strongly 3-
colorable.

Proof. If G has a 3-cycle C, then color H(C) arbitrarily and extend the
coloring to Int(C) and to Ext(C) (respectively) by applying Lemma 2.5.
Otherwise, χ(H(G)) = χ(G) ≤ 3 by Theorem 1.1.

3 List-coloring planar and projective planar

graphs

The main results of this section are Corollary 3.4 and Theorem 3.8 which
extend Theorems 2.2 and 2.6, respectively, to list colorings. As mentioned
before, we need one more color since there exist triangle-free planar graphs
which are not 3-choosable [10].

Lemma 3.1 Let G be a planar graph and let C = x1x2 · · ·xk be a k-cycle of
G with k ≤ 7. Let L be a 4-list-assignment for G and let c be a mapping which
assigns to each vertex of C a color from its list. Suppose that G contains
no 3-cycle except possibly C. Then c can be extended to an L-coloring of
G−E(G(V (C))).

Proof. Let G be a counterexample with |V (G)\V (C)| as small as possible.
Then G is connected and without vertices of degree 1. By minimality, we
may assume that C is the outer cycle of G. Similarly, C is an induced cycle
and every vertex in V (G)\V (C) has degree at least 4. If k = 3, then we
can subdivide an edge of C and arbitrarily color the new vertex. So, assume
that k ≥ 4. If k ≥ 5, then we may as well assume that no two consecutive
vertices of C have degree 2. Otherwise, we could contract the edge joining
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two vertices xi, xi+1 of degree 2 and replace C by a (k−1)-cycle. A standard
application of Euler’s formula shows that∑

i≥0

(4− i)ni +
∑
i≥0

(4− i)fi = 8 (1)

where ni is the number of vertices of degree i and fi is the number of facial
walks of length i. Since C is a facial k-cycle, fk ≥ 1. Now, (1) implies that
2n2 +n3 ≥ k+ 4. However, this inequality cannot be satisfied subject to the
above assumptions on vertex degrees in G.

The first part of the following Grötzsch-type result was first observed by
Kratochv́ıl and Tuza [6]. Every planar triangle-free graph has a vertex of
degree at most 3, so it is easy to make the induction. On the other hand, the
second part of Corollary 3.2 is a straightforward consequence of Lemma 3.1.

Corollary 3.2 Every triangle-free planar graph G is 4-choosable. Moreover,
if L is a 4-list-assignment of G and C is a k-cycle of G with k ≤ 7, then
every L-coloring of G(V (C)) can be extended to an L-coloring of G.

In what follows, we will need the next technical result.

Lemma 3.3 Let G be a plane graph with outer facial walk C = x1x2 · · ·xn,
let L be a 3-list-assignment of G, and let c be an L-coloring of x1 and
xn (possibly c(x1) = c(xn)). Suppose that each edge with an endvertex in
V (G)\V (C) lies on at least one 3-cycle. Then c can be extended to a strong
L-coloring of H(G) (or H(G)−x1xn if c(x1) = c(xn) and x1xn ∈ E(H(G)))
such that any two vertices of C, that are adjacent in G − x1xn, are colored
differently.

Proof. Suppose that the theorem is false and G is a counterexample with
|V (G)| as small as possible. We leave it to the reader to verify that G is
2-connected. Then C is a cycle. Suppose that C has a chord xixj (i < j).
Let G1 = Int(xjxj+1 · · ·xixj) and G2 = Int(xixi+1 · · ·xjxi). Then x1 and
xn are vertices of G1. By the minimality of G, we can extend c to H(G1).
The resulting coloring has different colors on xi and xj . Then we can extend
the induced coloring of c on {xi, xj} to H(G2). This gives rise to a required
strong coloring of H(G) (or H(G)− x1xn), a contradiction.

So assume that C is chordless. Let G′ = G − xn−1 and denote by C ′

the outer walk of G′. Note that every edge of G′ with an endvertex in
V (G′)\V (C ′) lies on at least one 3-cycle of G, and that this 3-cycle is also
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contained in G′. By minimality, c can be extended to a strong L-coloring
c̄ of H(G′) so that any two adjacent vertices of C ′ are colored differently.
Finally, let c̄(xn−1) ∈ L(xn−1)\{c(xn), c̄(xn−2)}. We claim that c̄ is a strong
L-coloring of H(G) (or H(G) − x1xn). Suppose not. Then there exists
a monochromatic edge xxn−1. Since x 6∈ V (C), there is a 3-cycle of G
containing xxn−1, and so there is a monochromatic triangle xxn−1y. Since x
and y are adjacent vertices and both belong to C ′, this is not possible. This
completes the proof.

Similarly as in Theorem 2.2 for usual colorings, we can save a color under
an additional assumption. The following claim is an easy consequence of the
above lemma.

Corollary 3.4 Let G be a planar graph such that each edge of G lies on
some 3-cycle of G. Then H(G) is strongly 3-choosable.

In the sequel we shall use the following lemma whose easy proof is left to
the reader.

Lemma 3.5 Let G be a graph such that no edge of G belongs to more than
two 3-cycles in G. Let uv1 be an edge which belongs to exactly one 3-cycle
uv1v2 in G. Let P = v1v2 · · · vk be the maximal path in N(u) containing
the edge v1v2. Let G′ be the subgraph of G obtained by removing the edges
uv2, uv4, uv6, . . . , uvk (if k is even) or uv2, uv4, uv6, . . . , uvk−1 (if k is odd).
Then every (strong) coloring of H(G′) is also a (strong) coloring of H(G).

Lemma 3.6 Let G be a connected plane graph with outer cycle C = x1x2 · · ·xk
(k ≤ 7), let L be a 4-list-assignment of G, and let c(v) ∈ L(v) for v ∈ V (C).
Then c can be extended to V (G) such that no edge of H(G) with a vertex in
V (G)\V (C) and no 3-cycle of G with a vertex in V (G)\V (C) is monochro-
matic.

Proof. The proof is by induction on |V (G)|+ |E(G)| and follows the same
lines as the proof of Lemma 2.5. We may assume that G 6= C and that
C is chordless. Suppose first that G has a nonfacial 3-cycle C ′. By the
induction hypothesis, we first extend c to V (Ext(C ′)) and afterwards extend
the induced coloring of V (C ′) to V (Int(C ′)). It is easy to see that this gives
the required extension of c.

Suppose now that G has only facial 3-cycles. Suppose that G has an edge
e = uv1 where u 6∈ V (C) such that e lies in exactly one 3-cycle. Let G′

be the subgraph of G as in Lemma 3.5. Note that V (G) = V (G′). By the
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induction hypothesis, we can extend c to V (G′). Finally observe that c is
also the required extension for G.

Now we may assume that G has only facial 3-cycles and that no edge
in E(G)\E(C) belongs to exactly one 3-cycle in G. By Proposition 2.4(b),
G is either a near-triangulation, or G has no 3-cycles (except possibly C).
In the latter case, c can be extended by Lemma 3.1. Otherwise, G is a
near-triangulation of the plane, which we assume henceforth.

Suppose that a vertex v ∈ V (G)\V (C) has two neighbors xi, xj on C
which are not consecutive vertices of C. Since k ≤ 7, there is a color a ∈ L(v)
such that a = c(x) for at most one vertex x ∈ V (C). Set c(v) = a and
apply induction on Int(C ′) and Int(C ′′) where C ′ and C ′′ are the cycles of
C ∪ {xiv, xjv} different from C. By the choice of a and since G is a near-
triangulation, the obtained extensions of c determine a required extension of
c to V (G).

For i = 1, . . . , k − 1, let vi be the vertex of G such that vixixi+1 is a
3-cycle of G (distinct from C). We say that a color a ∈ L(vi) is bad if
c(xi) = c(xi+1) = a. By the previous paragraph, each vertex vi has at
most one bad color in its list. Let L′′ be the 3-list-assignment of G which is
obtained from L by removing bad colors from the lists L(vi), i = 1, . . . , k−1.
Let G′′ = G−{x2, x3, . . . , xk−1} and apply Lemma 3.3 on G′′ and the reduced
list-assignment L′′. We claim that the resulting strong coloring of H(G′′) (or
H(G′′) − x1xk) determines the required extension of c. Suppose not. Then
there is a monochromatic 3-cycle xyz (since every edge of G belongs to a
3-cycle) where z /∈ V (C). We may assume that x = xi, 1 < i < k. Since
L′′(z) contains no bad colors, y /∈ {x1, . . . , xk}. Therefore, yz is an edge on
the outer facial walk of G′′. Since any two adjacent vertices on the outer
walk of G′′ are colored differently, we have a contradiction.

In Theorem 3.8, we will use the following lemma.

Lemma 3.7 Suppose that G is a planar graph with outer cycle C of length
6. Suppose that every vertex and every edge of G lies on a path of length 3,
but not on a path of length 2, which connects two diagonally opposite vertices
of C. Then G− V (C) is a 3-choosable graph and every face of G is of size
≤ 6.

Proof. Observe that G−V (C) is an outerplanar graph. So it is 3-choosable.
The fact that every face of G is of size ≤ 6 can be easily proved by induction
on the number of paths of length 3 between diagonally opposite vertices of
C.
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Theorem 3.8 Let G be a graph embedded in the plane or the projective
plane. Then H(G) is strongly 4-choosable.

Proof. Suppose that the theorem is false and that G is a minimum coun-
terexample. Let L be a 4-list-assignment for G such thatH(G) is not strongly
L-colorable. We shall establish some additional properties of G.

(a) G has at least one facial 3-cycle. If every facial walk has length at
least 4, then standard application of Euler’s formula (an inequality similar
to (1)) shows that G contains a vertex v of degree at most 3. By minimality,
H(G − v) has a strong L-coloring which can, obviously, be extended to a
strong L-coloring of H(G).

(b) Every contractible 3-cycle of G is facial. This is an easy consequence of
Lemma 3.6 and the minimality of G: First color the exterior of the 3-cycle,
then extend the coloring into the interior of the cycle.

(c) G has no noncontractible 3-cycles. Suppose that C = xyz is a non-
contractible 3-cycle of G. By cutting G along C, we get a plane graph G′

with the outer cycle C ′ = x′y′z′x′′y′′z′′, where x′, x′′ correspond to x, etc.
Let us observe that C ′ is a chordless cycle of G′. Our goal is to prove that
H(G) has a strong L-coloring, which would be a contradiction. This is true
if H(G′) has a strong L-coloring such that x′ and x′′ (resp. y′ and y′′, z′ and
z′′) have the same color, and such that vertices of every 3-path from x′ to x′′,
from y′ to y′′, or from z′ to z′′ receive at least 2 different colors (so that the
corresponding noncontractible 3-cycle in G is strongly colored).

Let a ∈ L(x), b ∈ L(y)\{a} and c ∈ L(z)\{a, b}. Color x′ and x′′ by a, y′

and y′′ by b, and color z′ and z′′ by c. Let G′′ be the subgraph of G′ which
consists of precisely those vertices and edges which belong to some path of
length 3 which connects two diagonally opposite vertices of C ′. Note that
C ′ ⊆ G′′. (The possibility G′′ = C ′ is not excluded). By Lemma 3.7, we can
L-color the graph G′′ − V (C ′). Finally for each inner face C ′′ of G′′, extend
the coloring of V (C ′′) to Int(C ′′) using Lemma 3.6. We claim that we have
a strong L-coloring of H(G).

If D is a noncontractible 3-cycle of G, then it determines a path of length
3 between two diagonally opposite vertices of C ′ in G′. If it uses an edge of C ′,
then it has at least two colors. Otherwise, an edge of D is in E(G′′−V (C ′)).
Since G′′− V (C ′) has been L-colored as a graph, the colors of endvertices of
that edge are distinct. If D is a contractible 3-cycle, it is contained in some
Int(C ′′). Clearly, C ′′ cannot be monochromatic, so the coloring of Int(C ′′)
obtained by Lemma 3.6 uses at least two colors on D. Finally, consider an
edge pq ∈ E(G) which is also an edge of H(G). Then pq is an edge in some
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Int(C ′′)−E(C ′′). Since pq is not contained in a 3-cycle of Int(C ′′), the colors
of p and q are distinct. This proves that we have a strong L-coloring ofH(G).

(d) No edge of G belongs to exactly one 3-cycle. Because of (b) and (c), all
3-cycles in G are facial. This enables us to use Lemma 3.5 and minimality.

By (a)–(d), G is a triangulation of the projective plane with no subgraph
isomorphic to K4. By Euler’s formula, G has a vertex v of degree at most 5.
By minimality, there is a strong L-coloring of H(G− v). Let Lv be the set of
colors used on the neighbors of v at least twice. Then |Lv| ≤ 2. Since each
face of G containing v is a 3-cycle, we may color v by any color in L(v)\Lv
to get a strong L-coloring of H(G). This completes the proof.

4 List-coloring locally planar graphs

Let G be a graph embedded in a surface S. The edge-width ew(G) is the
length of a shortest noncontractible cycle of G. (If there are no noncon-
tractible cycles, then we set ew(G) =∞. Observe that G is planar in such a
case.) Recall that the Euler genus of the surface S is equal to 2− χS, where
χS denotes the Euler characteristic of S.

Lemma 4.1 Let G be a connected graph which is (2-cell) embedded in a
surface of Euler genus g.

(a) If ew(G) ≥ 6g − 11, then G has a vertex of degree at most 6.

(b) If ew(G) ≥ 19g− 37, each facial walk has length at least 4, and G has
no vertices of degree less than 4, then G contains a facial 4-cycle C
whose vertices all have degree 4 in G.

Proof. If g = 0, then (a) is well-known and there are no graphs satisfying
the assumptions of (b). Hence we may assume that ew(G) < ∞ and so
|V (G)| ≥ ew(G).

By Euler’s formula and simple counting arguments, we have
∑

(6− i)ni ≥
12− 6g, where ni is the number of vertices of degree i (i ≥ 0). If there are
no vertices of degree 6 or less, then |V (G)| =

∑
i≥7 ni ≤ 6g − 12 and hence

ew(G) ≤ 6g − 12. This proves (a).
To prove (b), we will apply the discharging method. A similar derivation

as used to prove (1) shows that∑
i≥4

(4− i)ni +
∑
i≥4

(4− i)fi = 8− 4g (2)
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where fi is the number of facial walks of length i. Give charge 4− i to each
vertex of G of degree i and to each face of G of size i. By (2), the total
charge, taken over all vertices and faces equals 8− 4g. Now, we redistribute
the charge according to the following rules so that the total charge remains
unchanged.

Rule 1. Every vertex v of degree 4 sends charge 1
5

to each face of size ≥ 5
that v is incident with.

Rule 2. Every vertex v of degree 4 sends charge 2
19

to all its neighboring
vertices of degree ≥ 5.

Rule 3. Every vertex v of degree 4 sends charge 1
19

to all vertices of degree
≥ 5 which lie in a common 4-sided face F diagonally opposite to v in F .

It is easy to see that the charge of every face remains nonpositive. If u is a
vertex of degree i ≥ 5, then its new charge is ≤ (4− i) + 3

19
i ≤ −1 + 15

19
= −4

19
.

Now, we assume that there is no 4-sided facial cycle with all vertices of degree
4. If v is a vertex of degree 4 incident with a face of size more than 4, then
its new charge is no more than −1

5
− 3

19
< − 4

19
. If v is incident with 4 faces

of size 4, then its new charge is again ≤ − 4
19

. The total charge is 8 − 4g.
Hence:

8− 4g ≤ −
4

19
|V (G)|

which implies that |V (G)| ≤ 19(g − 2).

Theorem 4.2 Let G be a graph embedded in a surface of Euler genus g. If
ew(G) ≥ 19g − 34, then H(G) is strongly 4-choosable.

Proof. Suppose that the theorem is false and G is a minimal counterex-
ample. Let L be the corresponding 4-list-assignment. If G′ is a subgraph
of G, then ew(G′) ≥ ew(G). This implies that for every proper subgraph
of G, H(G) is L-colorable. Then G has no vertices of degree less than 4.
By Theorem 3.8 we may assume that g ≥ 2. Then ew(G) > 3, so every
3-cycle is contractible. The same argument as used to verify (b) in the proof
of Theorem 3.8 shows that every 3-cycle of G is facial. Lemma 3.5 implies
that every edge of G is either in none or in precisely 2 triangles of G. This
implies that G is either triangle-free or a triangulation.

Suppose first that G is a triangulation. By Lemma 4.1(a), G has a vertex
v of degree at most 6. By minimality, there is an L-coloring of H(G − v).
Let Lv be the set of colors used on the neighbors of v at least twice. Then
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|Lv| ≤ 3. Since each face of G containing v is a 3-cycle, we may color v by
any color in L(v)\Lv to get a strong L-coloring of H(G).

Suppose now that G is triangle-free. By Lemma 4.1(b), G has a facial
4-cycle C such that all its vertices have degree 4 in G. By minimality, L-
color H(G − V (C)) = G − V (C). The resulting coloring c1 leaves at least
two admissible colors on each vertex of C. Therefore, c1 can be extended to
an L-coloring of G, a contradiction.

5 Some problems and remarks

Here we want to state the following problems, which we were not able to deal
with at the moment. Let us denote by χl(H(G)) the minimum k such that
H(G) is k-choosable.

Problem 5.1 Let a(S) be the smallest integer such that every triangle-free
graph embeddable on the surface S has a vertex of degree at most a(S). Is it
true that for every graph G embeddable on S, χl(H(G)) ≤ a(S) + 1?

Note that Theorem 3.8 answers this question in the positive when S is
the plane or the projective plane. It may well be true that the maximum
χl(H(G)) for graphs on a fixed surface S is comparable to the maximum
chromatic number of triangle-free graphs on S (cf. Gimbel and Thomassen
[3]).

Problem 5.2 Suppose that G is an arbitrary planar graph such that each
edge lies on at least one 3-cycle. Is H(G) 2-choosable?

By Theorem 2.5, H(G) (from the above problem) is 2-colorable. This the-
orem relies on the 4-Color Theorem. So, it would be an interesting problem
to find a direct proof of Theorem 2.5.

Kratochv́ıl (private communication) proved that 2-colorability of the hy-
pergraph of maximal cliques of a graph is NP-complete. Even more, the
problem remains NP-complete if we restrict to the class of perfect graphs.
In our paper, we have considered mostly planar graphs. So, naturally, we
encounter the following problem.

Problem 5.3 Is the problem of 2-coloring the clique hypergraph of planar
graphs NP-complete?
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Let us observe that 2-coloring of H(G) can be checked in polynomial time
if either G is triangle-free or if every edge of G lies in a 3-cycle.
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