A $[k, k+1]$-Factor Containing A Given Hamiltonian Cycle

Cai Mao-cheng * Yanjun Li
Institute of Systems Science
Chinese Academy of Sciences, Beijing 100080, P.R. China
caimc@bamboo.iss.ac.cn cogt@bamboo.iss.ac.cn
Mikio Kano
Department of Computer and Information Sciences Ibaraki University, Hitachi 316, Japan
kano@cis.ibaraki.ac.jp

Abstract

We prove the following best possible result. Let $k \geq 2$ be an integer and G be a graph of order n with minimum degree at least k. Assume $n \geq 8 k-16$ for even n and $n \geq 6 k-13$ for odd n. If the degree sum of each pair of nonadjacent vertices of G is at least n, then for any given Hamiltonian cycle C of G, G has a $[k, k+1]$-factor containing C.

Submitted: December 15, 1997; Accepted: November 27, 1998.

MR Subject Number: 05C75
Keywords: $[k, k+1]$-factor, Hamiltonian cycle, degree condition

1 Introduction

All graphs under consideration are undirected, finite and simple. A graph G consists of a non-empty set $V(G)$ of vertices and a set $E(G)$ of edges. For two vertices x and y of G, let $x y$ and $y x$ denote an edge joining x to y. Let X be a subset of $V(G)$.

[^0]THE ELECTRONIC JOURNAL OF COMBINATORICS 6 (1999), \#R4

We write $G[X]$ for the subgraph of G induced by X, and define $\bar{X}:=V(G) \backslash X$. The subset X is said to be independent if no two vertices of X are adjacent in G. Sometimes x is used for a singleton $\{x\}$. For a vertex x of G, we denote by $d_{G}(x)$ the degree of x in G, that is, the number of edges of G incident with x. We denote by $\delta(G)$ the minimum degree of G. For integers a and $b, 0 \leq a \leq b$, an $[a, b]$-factor of G is defined to be a spanning subgraph F of G such that

$$
a \leq d_{F}(x) \leq b \quad \text { for all } x \in V(G)
$$

and an $[a, a]$-factor is abbreviated to an a-factor. A subset M of $E(G)$ is called a matching if no two edges of M are adjacent in G. For two graphs H and K, the union $H \cup K$ is the graph with vertex set $V(H) \cup V(K)$ and edge set $E(H) \cup E(K)$, and the join $H+K$ is the graph with vertex set $V(H) \cup V(K)$ and edge set $E(H) \cup E(K) \cup$ $\{x y \mid x \in V(H)$ and $y \in V(K)\}$. Other notation and definitions not defined here can be found in [1].

We first mention some known results concerning our theorem.
Theorem A ([9]) Let G be a graph of order $n \geq 3$. If the degree sum of each pair of nonadjacent vertices is at least n, then G has a Hamilton cycle.

Theorem B ([3]) Let k be a positive integer and G be a graph of order n with $n \geq 4 k-5$, kn even, and $\delta(G) \geq k$. If the degree sum of each pair of nonadjacent vertices is at least n, then G has a k-factor.

Combining the above two theorems, we can say that if a graph G satisfies the conditions in Theorem B, then G has a Hamilton cycle C together with a connected [$k, k+2$]-factor containing C, which is the union of C and a k-factor of G [4].

Theorem C ([8]) Let $k \geq 3$ be an integer and G be a connected graph of order n with $n \geq 4 k-3$, kn even, and $\delta(G) \geq k$. If for each pair (x, y) of nonadjacent vertices of $V(G)$,

$$
\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n}{2}
$$

then G has a k-factor.
Theorem D ([2]) Let $k \geq 3$ be an odd integer and G be a connected graph of odd order n with $n \geq 4 k-3$, and $\delta(G) \geq k$. If for each pair (x, y) of nonadjacent vertices of G,

$$
\max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n}{2}
$$

then G has a connected $[k, k+1]$-factor.
Theorem E ([5]) Let G be a connected graph of ordern, let f and g be two positive integer functions defined on $V(G)$ which satisfy $2 \leq f(v) \leq g(v)$ for each vertex $v \in V(G)$. Let G have an $[f, g]$-factor F and put $\mu=\min \{f(v): v \in V(G)\}$. Suppose that among any three independent vertices of G there are (at least) two vertices with degree sum at least $n-\mu$. Then G has a matching M such that M and F are edgedisjoint and $M+F$ is a connected $[f, g+1]$-factor of G.

THE ELECTRONIC JOURNAL OF COMBINATORICS 6 (1999), \#R4

The purpose of this paper is to extend "connected $[k, k+1]$-factor" in some of the above theorems to " $[k, k+1]$-factor containing a given Hamiltonian cycle", which is obviously a 2 -connected [$k, k+1]$-factor.

Our main result is the following
Theorem 1 Let $k \geq 2$ be an integer and G be a graph of order $n \geq 3$ with $\delta(G) \geq k$. Assume $n \geq 8 k-16$ for even n and $n \geq 6 k-13$ for odd n. If for each pair (x, y) of nonadjacent vertices of G,

$$
\begin{equation*}
d_{G}(x)+d_{G}(y) \geq n \tag{1}
\end{equation*}
$$

then for any given Hamiltonian cycle C, G has $a[k, k+1]$-factor containing C.

Now we conclude this section with a new result concerning our theorem.
Theorem \mathbf{F} [11] Let $k \geq 2$ be an integer and G be a connected graph of order n such that $n \geq 8 k-4, k n$ is even and $\delta(G) \geq n / 2$. Then G has a k-factor containing a Hamiltonian cycle.

For a graph G of order n, the condition $\delta(G) \geq n / 2$ does not guarantee the existence of a k-factor which contains a given Hamiltonian cycle of G. Let $n \geq 5$ and $k \geq 3$ be integers, and set

$$
m= \begin{cases}\frac{n}{2}+2 & \text { for even } n \\ \frac{n+3}{2} & \text { for odd } n\end{cases}
$$

Let $C_{m}=\left(v_{1} v_{2} \ldots v_{m}\right)$ be a cycle of order m and $P_{n-m}=\left(v_{m+1} v_{m+2} \ldots v_{n}\right)$ a path of order $n-m$. Then the join $G:=C_{m}+P_{n-m}$ has no k-factor containing the Hamiltonian cycle $\left(v_{1} v_{2} \ldots v_{n}\right)$ but satisfies $\delta(G) \geq n / 2$.

2 Proof

Our proof depends on the following theorem, which is a special case of Lovász's (g, f)-factor theorem [7](%5B10%5D).

Theorem 2 Let G be a graph and a and b be integers such that $1 \leq a<b$. Then G has an $[a, b]$-factor if and only if

$$
\gamma(S, T):=b|S|-a|T|+\sum_{x \in T} d_{G-S}(x) \geq 0
$$

for all disjoint subsets $S, T \subseteq V(G)$.
Proof of Theorem 1 We may assume $k \geq 3$ since G has C for $k=2$. Let

$$
H:=G-E(C), \quad U:=\left\{x \in V(G) \left\lvert\, d_{G}(x) \geq \frac{n}{2}\right.\right\}, \quad W:=V(G) \backslash U, \quad \rho:=k-2 .
$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 6 (1999), \#R4

Then $V(H)=V(G), \rho \geq 1$,

$$
d_{H}(x)=d_{G}(x)-2 \geq \rho \quad \text { for all } \quad x \in V(H)
$$

$n \geq 8 \rho$ for even n and $n \geq 6 \rho-1$ for odd n. Moreover the induced subgraph $G[W]$ is a complete graph since $d_{G}(x)+d_{G}(y)<n$ for any two vertices x and y of W.

Obviously, G has a required factor if and only if H has a [$\rho, \rho+1$]-factor. Suppose, to the contrary, that H has no such factor. Then, by Theorem 2, there exist disjoint subsets S and T of $V(H)$ such that

$$
\begin{equation*}
\gamma(S, T)=(\rho+1) s-\rho t+\sum_{x \in T} d_{H-S}(x)<0 \tag{2}
\end{equation*}
$$

where $t=|T|$ and $s=|S|$.
If $d_{H-S}(v) \geq \rho$ for some $v \in T$, then $\gamma(S, T) \geq \gamma(S, T \backslash\{v\})$, and thus (2) is still holds for S and $T \backslash\{v\}$. Thus we may assume that

$$
\begin{equation*}
d_{H-S}(x) \leq \rho-1 \quad \text { for all } \quad x \in T \tag{3}
\end{equation*}
$$

If $S=\emptyset$, then $\gamma(\emptyset, T)=-\rho t+\sum_{x \in T} d_{H}(x) \geq 0$ as $d_{H}(x) \geq \rho$ for all $x \in V(H)$. Thus

$$
\begin{equation*}
s \geq 1 \tag{4}
\end{equation*}
$$

If $t \leq \rho+1$, then we have

$$
\begin{aligned}
\gamma(S, T) & \geq(\rho+1) s-\rho t+\sum_{x \in T}\left(d_{H}(x)-s\right) \\
& \geq(\rho+1) s-\rho t+t(\rho-s) \\
& =s(\rho+1-t) \geq 0
\end{aligned}
$$

This contradicts (2). Hence

$$
\begin{equation*}
t \geq \rho+2 \tag{5}
\end{equation*}
$$

We now prove the next Claim:
Claim 1. $s \leq \frac{n}{2}-3$ if n is even, and $s \leq \frac{n-5}{2}$ if n is odd.
Assume that n is even and $s \geq(n / 2)-2$. Let $q:=s-(n / 2)+2 \geq 0$ and $r:=n-s-t \geq 0$. Then it follows from $\rho \geq 1$ and $n \geq 8 \rho$ that

$$
\begin{aligned}
\gamma(S, T) & =(\rho+1) q+\rho(r+q)+\sum_{x \in T} d_{H-S}(x)+\frac{n}{2}-4 \rho-2 \\
& \geq 2 q+r+q+\sum_{x \in T} d_{H-S}(x)-2
\end{aligned}
$$

Hence we may assume $q=0$ and $r \leq 1$ since otherwise $\gamma(S, T) \geq 0$. If $r=1$ and $\sum_{x \in T} d_{H-S}(x) \geq 1$, then $\gamma(S, T) \geq 0$. If $r=0$ and $\sum_{x \in T} d_{H-S}(x) \geq 1$, then $V(H)=S \cup T$ and

$$
\sum_{x \in T} d_{H-S}(x)=\sum_{x \in T} d_{H[T]}(x)=2|E(H[T])| \equiv 0 \quad(\bmod 2),
$$

and so $\gamma(S, T) \geq 0$. Therefore it suffices to show that $\sum_{x \in T} d_{H-S}(x) \geq 1$ under the assumption that $q=0$ and $0 \leq r \leq 1$.

Suppose that $\sum_{x \in T} d_{H-S}(x)=0, q=0$ and $0 \leq r \leq 1$. Let $\bar{S}:=V(G) \backslash S \supseteq T$, $X:=\left\{x \in \bar{S} \mid d_{G}(x) \geq n / 2\right\}$ and $Y:=\bar{S} \backslash X$. Then a complete graph $G[Y]$ is contained in C, and it follows from $s=(n / 2)-2$ that for each vertex $x \in X$, there exist two edges of C which join x to two vertices in \bar{S}. Hence we have
$|X|+|Y|-1=|\bar{S}|-1 \geq|E(G[\bar{S}]) \cap E(C)| \geq|X|+1+|E(G[Y])|=|X|+1+\frac{|Y|(|Y|-1)}{2}$, which implies $|Y| \geq 2+|Y|(|Y|-1) / 2$. Now we get a contradiction, because it is obvious that there is no nonnegative integral solution of $|Y|$ to this quadratic inequality. Therefore Claim 1 holds for even n.

We next assume that n is odd and $s \geq(n-3) / 2$. Let $q:=s-(n-3) / 2 \geq 0$ and $r:=n-s-t \geq 0$. Then it follows from $\rho \geq 1$ and $n \geq 6 \rho-1$ that

$$
\begin{aligned}
\gamma(S, T) & =(\rho+1) q+\rho(r+q)+\sum_{x \in T} d_{H-S}(x)+\frac{n}{2}-3 \rho-\frac{3}{2} \\
& \geq 2 q+r+q+\sum_{x \in T} d_{H-S}(x)-2
\end{aligned}
$$

Hence, by the same argument as above, we may assume that $q=0,0 \leq r \leq 1$ and $\sum_{x \in T} d_{H-S}(x)=0$. Let $X:=\left\{x \in \bar{S} \mid d_{G}(x) \geq(n+1) / 2\right\}$ and $Y:=\bar{S} \backslash X$. Then we similarly obtain $|Y| \geq 2+|Y|(|Y|-1) / 2$, and derive a contradiction. Consequently Claim 1 also holds for odd n.

Claim 2. $\quad T \cap U \neq \emptyset$.
Indeed, assume $T \subseteq W$. Then $G[T]$ is a complete graph and $|E(G[T])|=t(t-1) / 2$. Since C is a Hamiltonian cycle, $|E(G[T]) \cap E(C)| \leq t-1$. Hence

$$
\sum_{x \in T} d_{H-S}(x) \geq 2|E(G[T]) \backslash E(C)| \geq t(t-1)-2(t-1)=(t-1)(t-2)
$$

Thus

$$
\begin{align*}
\gamma(S, T) & \geq(\rho+1) s-\rho t+(t-1)(t-2) \\
& \geq(\rho+1) s-\rho t+(t-1) \rho \tag{5}\\
& =(\rho+1) s-\rho>0 \tag{4}
\end{align*}
$$

This contradicts (2).
Claim 3. $\quad T \cap W \neq \emptyset$.
Suppose $T \subseteq U$ and n is even. Then for every $x \in T$, we have by (3)

$$
\frac{n}{2} \leq d_{G}(x) \leq d_{H-S}(x)+s+2 \leq \rho+s+1
$$

which implies $d_{H-S}(x) \geq(n / 2)-s-2$ and $\rho+s+2-n / 2 \geq 1$. Hence

$$
\begin{aligned}
\gamma(S, T) & \geq(\rho+1) s-\rho t+t\left(\frac{n}{2}-s-2\right) \\
& =(\rho+1) s-t\left(\rho+s+2-\frac{n}{2}\right) \\
& \geq(\rho+1) s-(n-s)\left(\rho+s+2-\frac{n}{2}\right) \\
& =(\rho+1) s+\left(\frac{n}{2}-s-3+\frac{n}{2}+3\right)\left(\frac{n}{2}-s-3-2 \rho+\rho+1\right) \\
& =\left(\frac{n}{2}-s-3\right)^{2}+\left(\frac{n}{2}-s-3\right)\left(\frac{n}{2}+3-2 \rho\right)+n-6 \rho \\
& \geq 0 . \quad \text { (by } n \geq 8 \rho \text { and Claim 1) }
\end{aligned}
$$

This contradicts (2).
Next assume $T \subseteq U$ and n is odd. Then for every $x \in T$, we have

$$
\frac{n+1}{2} \leq d_{G}(x) \leq d_{H-S}(x)+s+2 \leq \rho+s+1
$$

which implies $d_{H-S}(x) \geq(n / 2)-s-(3 / 2)$ and $\rho+s+(3 / 2)-(n / 2) \geq 1$. Hence

$$
\begin{aligned}
\gamma(S, T) & \geq(\rho+1) s-\rho t+t\left(\frac{n}{2}-s-\frac{3}{2}\right) \\
& =(\rho+1) s-t\left(\rho+s+\frac{3}{2}-\frac{n}{2}\right) \\
& \geq(\rho+1) s-(n-s)\left(\rho+s+\frac{3}{2}-\frac{n}{2}\right) \\
& =\left(\frac{n}{2}-s-\frac{5}{2}\right)^{2}+\left(\frac{n}{2}-s-\frac{5}{2}\right)\left(\frac{n}{2}+\frac{5}{2}-2 \rho\right)+n-5 \rho \\
& \geq 0 . \quad(\text { by } n \geq 6 \rho-1 \text { and Claim 1) }
\end{aligned}
$$

This contradicts (2). Therefore Claim 2 is proved.
Now put

$$
T_{1}:=T \cap U, \quad T_{2}:=T \cap W, \quad t_{1}=\left|T_{1}\right|, \quad t_{2}:=\left|T_{2}\right|
$$

By Claims 2 and 3, we have $t_{1} \geq 1$ and $t_{2} \geq 1$. It is clear that $d_{H-S}(x) \geq d_{G}(x)-s-2$ for all $x \in T$, in particular, for every $y \in T_{1}$,

$$
d_{H-S}(y) \geq\left\{\begin{array}{llll}
\frac{n}{2}-s-2 & \text { if } & n & \text { is even } \tag{6}\\
\frac{n}{2}-s-\frac{3}{2} & \text { if } & n & \text { is odd }
\end{array}\right.
$$

It follows from (3) that

$$
\begin{equation*}
\frac{n}{2}-\rho-s-2 \leq-1 \quad \text { if } n \text { is even, } \quad \text { and } \quad \frac{n}{2}-\rho-s-\frac{3}{2} \leq-1 \quad \text { if } n \text { is odd. } \tag{7}
\end{equation*}
$$

By Claim 1 and by the above inequalities, we have

$$
\begin{equation*}
\rho \geq 2 \tag{8}
\end{equation*}
$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 6 (1999), \#R4

For every $x \in T_{2}$, we have $d_{H-S}(x) \geq t_{2}-3$ by the fact that $G[W]$ is a complete graph, and obtain the following inequality from (3).

$$
\begin{equation*}
t_{2} \leq \rho+2 \tag{9}
\end{equation*}
$$

In order to complete the proof, we consider two cases. Assume first n is even. By making use of $n \geq 8 \rho$, (6), (7), (8), (9) and Claim 1, we have

$$
\begin{aligned}
\gamma(S, T) & \geq(\rho+1) s-\rho\left(t_{1}+t_{2}\right)+t_{1}\left(\frac{n}{2}-s-2\right) \\
& =(\rho+1) s-\rho t_{2}+t_{1}\left(\frac{n}{2}-s-2-\rho\right) \\
& \geq(\rho+1) s-\rho t_{2}+\left(n-s-t_{2}\right)\left(\frac{n}{2}-\rho-s-2\right) \\
& =\left(\frac{n}{2}-s-3\right)^{2}+\left(\frac{n}{2}-s-3\right)\left(\frac{n}{2}+3-2 \rho-t_{2}\right) \\
& \quad+n-6 \rho-t_{2} \\
& \geq 2 \rho-t_{2} \geq \rho+2-t_{2} \geq 0 .
\end{aligned}
$$

This contradicts (2).
We next assume n is odd. Let $r:=n-s-t$. It is easy to see that

$$
\begin{equation*}
\sum_{x \in T_{2}} d_{H-S}(x) \geq 2\left|E\left(G\left[T_{2}\right]\right) \backslash E(C)\right| \geq t_{2}\left(t_{2}-1\right)-2\left(t_{2}-1\right)=\left(t_{2}-1\right)\left(t_{2}-2\right) \tag{10}
\end{equation*}
$$

By using $n \geq 6 \rho-1$, (6), (7), (8) (9) and (10), we have

$$
\begin{aligned}
\gamma(S, T) \geq & (\rho+1) s-\rho\left(t_{1}+t_{2}\right)+t_{1}\left(\frac{n}{2}-s-\frac{3}{2}\right)+\left(t_{2}-1\right)\left(t_{2}-2\right) \\
= & (\rho+1) s+t_{1}\left(\frac{n}{2}-\rho-s-\frac{3}{2}\right)-\rho t_{2}+\left(t_{2}-1\right)\left(t_{2}-2\right) \\
\geq & (\rho+1) s+\left(n-s-t_{2}-r\right)\left(\frac{n}{2}-\rho-s-\frac{3}{2}\right)-\rho t_{2}+\left(t_{2}-1\right)\left(t_{2}-2\right) \\
= & \left(\frac{n}{2}-s-\frac{5}{2}\right)^{2}+\left(\frac{n}{2}-s-\frac{5}{2}\right)\left(\frac{n}{2}+\frac{5}{2}-t_{2}-2 \rho\right) \\
& \quad+n-5 \rho+\left(t_{2}-1\right)\left(t_{2}-2\right)-t_{2}+r\left(\rho+s+\frac{3}{2}-\frac{n}{2}\right) \\
& =\left(\frac{n}{2}-s-\frac{5}{2}\right)^{2}+\rho-1+\left(t_{2}-1\right)\left(t_{2}-2\right)-t_{2}+r .
\end{aligned}
$$

Since $\left(t_{2}-1\right)\left(t_{2}-2\right)-t_{2} \geq-2$ with equality only when $t_{2}=2$, we have $\rho-1+\left(t_{2}-\right.$ 1) $\left(t_{2}-2\right)-t_{2}+r \geq \rho-1-2+r=\rho-2+r-1 \geq r-1$ and thus $\gamma(S, T) \geq 0$ unless $s=(n-5) / 2, t_{2}=2 r=0, \rho=2$ and (10) holds with equality. Since $t_{2}=2$ and (10) holds with equality,

$$
\left|E\left(G\left[T_{2}\right]\right)\right|=\left|E\left(G\left[T_{2}\right]\right) \cap E(C)\right|=1
$$

Since $s=(n+1) / 2-3$ and $\rho=2$, it follows from (3) and (6) that

$$
d_{H-S}(x)=1 \quad \text { and } \quad d_{G}(x)=\frac{n+1}{2} \quad \text { for all } \quad x \in T_{1} .
$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 6 (1999), \#R4

This implies that all the edges of C incident with vertices in T_{1} are contained in $E(G[T]) \backslash E\left(G\left[T_{2}\right]\right)$, and thus the number of such edges is at least $t_{1}+1$. Therefore $|E(G[T]) \cap C| \geq t_{1}+1+1=t$, contradicting the fact that C is a Hamiltonian cycle of G. Consequently the theorem is proved.

Remark. The condition that $n \geq 8 k-16$ for even n and $n \geq 6 k-13$ for odd n in Theorem 1 are best possible. To see this, either let n be an even integer such that $2 k \leq n<8 k-16$ and put $m=(n / 2)+2$, or let n be an odd integer such that $2 k-1 \leq n<6 k-13$ and put $m=(n+3) / 2$. Let $C_{m}=\left(v_{1} v_{2} \ldots v_{m}\right)$ be a cycle of order m and $P_{n-m}=\left(v_{m+1} v_{m+2} \ldots v_{n}\right)$ a path of order $n-m$. Then the join $G:=C_{m}+P_{n-m}$ has no $[k, k+1]$-factor containing Hamiltonian cycle $\left(v_{1} v_{2} \ldots v_{n}\right)$ but satisfies $\delta(G) \geq k$ and $d_{G}(x)+d_{G}(y) \geq n$ for all nonadjacent vertices x and y of G.

We explain why G has no such factor when n is even. By setting $S=\left\{v_{m+1}, \ldots, v_{n}\right\}$ and $T=\left\{v_{1}, \ldots, v_{m}\right\}$ in (2), we obtain $\gamma(S, T)=(k-1)(n / 2-2)-(k-2)(n / 2+2)+2<$ 0 , which implies G has no such factor.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York (1976).
[2] Cai Mao-cheng, Connected $[k, k+1]$-factors of graphs, submitted.
[3] T. Iida and T. Nishimura, An Ore-type condition for the existence of k-factors in graphs, Graphs and Combinat. 7 (1991) 353-361.
[4] M. Kano, Some current results and problems on factors of graphs, Proc. 3rd China-USA Internat. Conf. on Graph Theory and Its Application, World Sci. Publishing, River Edge, NJ, (1994) 93-98.
[5] Yanjun Li and Cai Mao-cheng, A degree condition for the existence of connected factors, Australasian Journal of Combinatorics 14 (1995) 77-83.
[6] Yanjun Li and Cai Mao-cheng, A degree condition for graphs to have $[a, b]$ factors, J. Graph Theory 27 (1998) 1-6.
[7] L. Lovász, Subgraphs with prescribed valencies, J. Combin. Theory 8 (1970) 391-416.
[8] T. Nishimura, A degree condition for the existence of k-factors, J. Graph Theory 16 (1992) 141-151.
[9] O. Ore, A note on Hamilton circuit, Amer. Math. Soc. 4 (1947) 107-111.
[10] W.T. Tutte, Graph factors, Combinatorica 1 (1981) 79-97.
[11] B. Wei and Y. Zhu, Hamiltonian k-factors in graphs, submitted.

[^0]: *Research supported partially by the exchange program between Chinese Academy of Sciences and Japan Society for Promotion of Sciences and by National Natural Science Foundation of China.

