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1 Introduction

The theory of Pfaffian orientations of graphs has been introduced by Kasteleyn [7, 6, 5]
in early sixties to solve some enumeration problems arising from statistical physics
[4, 10]. He proved fundamental results in the planar case and extended his approach
to toroidal grids [5, 6, 7]. The case of general toroidal graphs was also considered in
an unpublished manuscript by Barahona [1].

In the present paper we extend the method proposed by Kasteleyn and we prove
that the generating function of the perfect matchings of a graph of genus g may be
obtained as a linear combination of 4g Pfaffians. As a consequence, we provide a new
technique to compute permanents of square matrices, which completes the scheme
proposed by Pólya in [9].

A graph is a pair G = (V,E) where V is a set of vertices and E is a set of
unordered pairs of elements of V , called edges. In this paper we shall consider only
graphs with finite number of vertices. If e = xy is an edge then the vertices x, y are
called endvertices of e. We associate with each edge e of G a variable xe and we let
x = (xe : e ∈ E). For each M ⊂ E, let x(M) denote the product of the variables of
the edges of M .

A graph G′ = (V ′, E′) is called a subgraph of a graph G = (V,E) if V ′ ⊂ V and
E′ ⊂ E. A perfect matching of a graph is a set of disjoint edges, whose union equals
the set of the vertices.

Let {v1, e1, v2, e2, ..., vi, ei, vi+1, ..., en, vn+1} be a sequence such that each vj is a
vertex of a graph G, each ej is an edge of G and ej = vjvj+1, and vi 6= vj for i < j
except if i = 1 and j = n + 1. If also v1 6= vn+1 then P is called a path of G. If
v1 = vn+1 then P is called a cycle of G. In both cases the length of P equals n. When
no confusion arises we shall also denote paths by simply listing their edges, namely
P = (e1, e2, . . . , en).

A graph G = (V,E) is connected if it has a path between any pair of vertices,
and it is 2-connected if the graph Gv = (V − {v}, {e ∈ E; v /∈ e}) is connected for
each vertex v of G. Each maximal 2-connected subgraph of G is called a 2-connected
component of G.

Let A∆B denote the symmetric difference of the sets A and B and let a =
2
b

denote a = b modulo 2.
Let M,N be two perfect matchings of a graph G. Then M∆N consists of vertex

disjoint cycles of even length. These cycles are called alternating cycles of M and N .
An orientation of a graph G = (V,E) is a digraph D = (V,A) obtained from G

by fixing an orientation of each edge of G, i.e., by ordering the elements of each edge
of G. The elements of A are called arcs.

Let C be a cycle of G and let D be an orientation of G. C is said to be clockwise
even in D if it has an even number of edges directed in D in agreement with the
clockwise traversal. Otherwise C is called clockwise odd.

Definition 1.1 The generating function of the perfect matchings of G is the polyno-
mial P(G, x) which equals the sum of x(P ) over all perfect matchings P of G.
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Definition 1.2 Let G be a graph and let D be an orientation of G. Let M be a perfect
matching of G. For each perfect matching P of G let sgn(D,M∆P ) = (−1)n where
n is the number of clockwise even alternating cycles of M and P , and let P(D,M)
be the sum of sgn(D,M∆P )x(P ) over all perfect matchings P of G.

Definition 1.3 Let G = (V,E) be a graph with 2n vertices and D an orientation
of G. Denote by A(D) the skew-symmetric matrix with the rows and the columns
indexed by V , where avw = xvw in case (v, w) is an arc of D, avw = −xvw in case
(w, v) is an arc of D, and avw = 0 otherwise.

The Pfaffian of the skew-symmetric matrix A(D) is defined as

Pf(A(D)) =
∑
P

s∗(P )ai1j1 · · ·ainjn

where P = {{i1j1}, · · · , {injn}} is a partition of the set {1, . . . , 2n} into pairs, ik <
jk for k = 1, . . . , n, and s∗(P ) equals the sign of the permutation i1j1 . . . injn of
12 . . . (2n).

Each nonzero term of the expansion of the Pfaffian of A(D) equals x(P ) or −x(P )
where P is a perfect matching of G. If s(D,P ) denote the sign of the term x(P ), we
have that

Pf(A(D)) =
∑
P

s(D,P )x(P ).

The following theorem was proved by Kasteleyn [5].

Theorem 1.4 Let G be a graph and D an orientation of G. Let P,M be two perfect
matchings of G. Then

s(D,P ) = s(D,M)sgn(D,M∆P ).

Hence,

Pf(A(D)) =
∑
P

s(D,P )x(P ) = s(D,M)
∑
P

sgn(D,M∆P )x(P ) = s(D,M)P(D,M).

The relevance of Pfaffians in our context lies in the fact that, despite their simi-
larity with the permanent, they are polynomial time computable for skew-symmetric
matrices (see [2]). In fact, see [7] for a proof.

Theorem 1.5 Let G be a graph and let D be an orientation of G. Then

Pf 2(A(D)) = det(A(D)).

In [5] Kasteleyn introduced the following notion:
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Definition 1.6 A graph G is called Pfaffian if it has a Pfaffian orientation, i.e., an
orientation such that all alternating cycles with respect to an arbitrary fixed perfect
matching M of G are clockwise odd.

Hence if a graph G has a Pfaffian orientation D then the signs s(D,P ) are equal
for all perfect matchings P of G and P(G, x)2 = Pf 2(A(D)) = det(A(D)).

An embedding of a graph on a surface is defined in a natural way: the vertices are
embedded as points, and each edge is embedded as a continuous non-self-intersecting
curve connecting the embeddings of its endvertices. The interiors of the embeddings
of the edges are pairwise disjoint and the interiors of the curves embedding edges do
not contain points embedding vertices.

A graph is called planar if it may be embedded on the plane. A plane graph is a
planar graph together with its planar embedding. The embedding of a plane graph
partitions the plane into connected regions called faces. The (unique) unbounded
face is called outer face and the bounded faces are called inner faces.

Let G be a plane graph. A subgraph of G consisting of the vertices and the edges
embedded on the boundary of a face will also be called a face. If a plane graph is
2-connected then each face is a cycle.

Kasteleyn [5] observed that the planar graphs have a Pfaffian orientation; more
specifically, he proved that

Theorem 1.7 Every plane graph has a Pfaffian orientation such that all inner faces
are clockwise odd.

Proof. Let G be a plane graph, and let M be its perfect matching. Each alternating
cycle of M belongs to a 2-connected component of G.

Observe that G has an orientation so that each inner face of each 2-connected
component of G is clockwise odd. Each such face ‘encircles’ no vertex of the corre-
sponding 2-connected component. Let W be a 2-connected component of G. Observe
that the orientation we constructed has the property that a cycle C of W is clock-
wise odd if and only if C encircles an even number of vertices of W . Let C be an
alternating cycle of M and let W be a 2-connected component of G which contains
C. Then C encircles an even number of vertices of W and hence it is clockwise odd.
2

2 Embeddings and Pfaffian orientations

The genus g of a graph G is that of the orientable surface S ⊂ IR3 of minimal genus
on which G may be embedded. Any orientable surface of genus g has a polygonal
representation obtained by cutting the g handles of its space model. In what follows
we base our working definition of a surface on this concept.

Definition 2.1 A surface Sg of genus g consists of a base B0 and 2g bridges Bi
j,

i = 1, ..., g and j = 1, 2, where
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i) B0 is a convex 4g-gon with vertices a1, ..., a4g numbered clockwise;

ii) Bi
1, i = 1, . . . , g, is a 4-gon with vertices xi1, x

i
2, x

i
3, x

i
4 numbered clockwise.

It is glued with B0 so that the edge [xi1, x
i
2] of Bi

1 is identified with the edge
[a4(i−1)+1, a4(i−1)+2] of B0 and the edge [xi3, x

i
4] of Bi

1 is identified with the edge
[a4(i−1)+3, a4(i−1)+4] of B0;

iii) Bi
2, i = 1, . . . , g, is a 4-gon with vertices yi1, y

i
2, y

i
3, y

i
4 numbered clockwise.

It is glued with B0 so that the edge [yi1, y
i
2] of Bi

2 is identified with the edge
[a4(i−1)+2, a4(i−1)+3] of B0 and the edge [yi3, y

i
4] of Bi

2 is identified with the edge
[a4(i−1)+4, a4(i−1)+5(mod4g)] of B0.

Observe that in Definition 2.1 we denote by [a, b] edges of polygons and not edges
of graphs. The usual representation in the space of an orientable surface S of genus g
may be then obtained from its polygonal representation Sg by the following operation:
for each bridge B, glue together the two segments which B shares with the boundary
of B0, and delete B.

Definition 2.2 A graph G is called a g-graph if it may be embedded on Sg so that all
the vertices belong to the base B0, and the embedding of each edge uses at most one
bridge. The set of the edges embedded entirely on the base will be denoted by E0 and
the set of the edges embedded on the bridge Bi

j will be denoted by Ei
j, i = 1, . . . , g,

j = 1, 2. If a g-graph G satisfies the following further conditions:

1. the outer face of G0 = (V,E0) is a cycle, and it is embedded on the boundary of
B0,

2. if e ∈ Ei
1 then e is embedded entirely on Bi

1 and one endvertex of e belongs
to [xi1, x

i
2] and the other one belongs to [xi3, x

i
4]. Similarly, if e ∈ Ei

2 then e is
embedded entirely on Bi

2 and one endvertex of e belongs to [yi1, y
i
2] and the other

one belongs to [yi3, y
i
4].

3. each vertex is incident with at most one edge which does not belong to E0,

4. G0 has a perfect matching,

then we say that G is a proper g-graph.

Given a proper g-graph G, we denote by C0 the cycle which forms the outer face
of E0; then, we fix a perfect matching of G0 and denote it by M0.

Definition 2.3 Let G be a proper g-graph and let Gi
j = (V,E0 ∪ Ei

j). If we draw
B0 ∪ Bi

j on the plane as follows: B0 is unchanged, and the edge [xi1, x
i
4] ([yi1, y

i
4]

respectively) of Bi
j is drawn so that it belongs to the external boundary of B0∪Bi

j, we
obtain a planar embedding of Gi

j. This embedding will be called planar projection of
Ei
j outside B0.
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Definition 2.4 Let G = (V,E) be a proper g-graph. A Pfaffian orientation D0 of
G0 such that each inner face of each 2-connected component of G0 is clockwise odd
in D0 is called a basic orientation of G0.

Note that a basic orientation always exists for a planar graph by Theorem 1.7.

Definition 2.5 Let G = (V,E) be a proper g-graph and D0 a basic orientation of
G0. We define the orientation Di

j of each Gi
j as follows: We consider Gi

j embedded on
the plane by the planar projection of Ei

j outside B0 (see Definition 2.3), and complete
the basic orientation D0 of G0 to an orientation of Gi

j so that each inner face of each
2-connected component of Gi

j is clockwise odd.
The orientation −Di

j is defined by reversing the orientation Di
j of Gi

j.

Observe that after fixing a basic orientation D0, the orientation Di
j is uniquely

determined for each i, j.

Definition 2.6 Let G be a proper g-graph, g ≥ 1. An orientation D of G which
equals the basic orientation D0 on G0 and which equals Di

j or −Di
j on Ei

j is called
relevant. We define its type r(D) ∈ {+1,−1}2g as follows: For i = 0, . . . , g − 1 and
j = 1, 2, r(D)2i+j equals +1 or −1 according to the sign of Di+1

j in D.

Definition 2.7 Let G be a proper g-graph and let A be a subset of its edges. The type
of A is a vector t(A) ∈ {0, 1}2g defined as follows: For i = 0, ..., g − 1 and j = 1, 2,
we let t(A)2i+j equals the number of edges of A which belong to Ei+1

j , modulo 2.

Let CR(A) =
2 ∑g−1

i=0 t(A)2i+1 · t(A)2i+2 denote the number of crossings of the em-
beddings of the edges of A, after making planar projections of Ei

j for all i, j.
Let BR(A) denote the subset of edges of A which do not belong to E0. For each

e ∈ BR(A), let d(e) = 2i+ j if e ∈ Ei+1
j .

We complete the section with a lemma.

Lemma 2.8 Let G be a proper g-graph. Let C1, ..., Ck be vertex-disjoint cycles of G
and let C denote their union. Then

CR(C) =
2

k∑
i=1

CR(Ci).

Proof. Let us embed the cycles C1, ..., Ck using the planar projections of Ei
j outside

B0 by Definition 2.7. Then CR(C) equals the total number of crossings of C (modulo
2). Now, each cycle Cl, l = 1, ..., k is represented as a closed curve in the plane and
each pair of cycles Ci and Cj, i 6= j, intersects an even number of times. Hence the
sum (modulo 2) of the number of crossings between pairs of cycles Ci and Cj , i 6= j,
is 0 and does not affect CR(C). Each of the remaining crossings is a crossing of some
Cl, l = 1, ..., k, with itself and the lemma follows. 2
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3 Perfect matchings

Through this section, the graph G will be a proper g-graph embedded on a fixed
surface Sg. We also fix a perfect matching M0 of G0.

The aim of this section is to prove that, for any perfect matching P , the
sgn(D,M0 ∆P ) depends only on the vectors t(M0∆P ) and r(D).

Given an orientation D of G and an even length cycle C of G, we denote by lD(C)
the number of arcs of C directed in agreement with any of the two possible ways of
traversing C, modulo 2. For short, any alternating cycle with respect to M0 will be
simply called an alternating cycle. In order to prove our statement, we consider first
the case that M0∆P consists of exactly one alternating cycle.

Theorem 3.1 Let G be a proper g-graph and let D be a relevant orientation of G.
If C is an alternating cycle of G, then

lD(C) =
2

|BR(C)| − 1− CR(C) +
1

2

∑
e∈BR(C)

(r(D)d(e) + 1).

Proof. We assume without loss of generality that G = C ∪ C0 ∪M0, where C0 is
the outer face of G0 and M0 is the fixed perfect matching of G0. Let D0 be the basic
orientation of G0.

Claim 1. If C intersects at most one of Ei
1, E

i
2, for each i = 1, ..., g, then

lD(C) =
2

|BR(C)| − 1 +
1

2

∑
e∈BR(C)

(r(D)d(e) + 1).

A cycle C satisfying the properties of Claim 1 may be embedded without crossings
using the planar projection of each Ei

j outside B0. Hence lD(C) = 1 if and only if

|{e ∈ BR(C) : r(D)d(e) = −1}| =
2

0. End of Claim 1.

The proof is by induction on |BR(C)|. The case |BR(C)| = 0 is proved by
Claim 1. By induction we assume that

lW (C ′) =
2

|BR(C ′)| − 1− CR(C ′) +
1

2

∑
e∈BR(C′)

(r(W )d(e) + 1)

for any alternating cycle C ′ of a proper g-graph H, with relevant orientation W ,
such that |BR(C ′)| < |BR(C)|.

We distinguish two cases.

Case 1. There exists a bridge B = Bi
j containing more than one edge of C.

Let e = u1u2 and f = v1v2 be two edges of C ∩ Ei
j which see each other on B, i.e.,

there is no other edge of C drawn between them on B. Without loss of generality, let e
be nearer to the edge [a2(i−1)+j , a2(i−1)+j+3] of B = Bi

j than f and let u1, v1 and u2, v2

belong to the edge [a2(i−1)+j , a2(i−1)+j+1] and [a2(i−1)+j+2, a2(i−1)+j+3], respectively.
Since e, f do not belong to E0, they are not edges of M0 ⊂ E0.
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Let Ri be the subpath of C0 from ui to vi, i = 1, 2, and let R be the cycle of G
consisting of (R1, f, R2, e). By the choice of e, f , the cycle R is the boundary of a face
of the planar projection of Gi

j = (V,E0∪Ei
j) outside B0. Observe that lW (R) = 1 for

each relevant orientation W of G, since R contains two edges embedded outside B0.
Let us introduce a new edge h (not belonging to G), between the endvertices

of e, f such that one of two cycles H̄1, H̄2 formed by h and C and containing h is
alternating. Without loss of generality, let h have u1 as an endvertex. Hence we have
that h = u1v1 or h = u1v2.

We may assume without loss of generality that H̄2 is alternating. Hence H̄1

contains both e, f . Note that H̄1 consists of an even number of edges. We denote
by h1, h2 the two arcs with the same endvertices as h, directed oppositely. Let
D′ = D ∪ {h1, h2}. Let Hi be the subdigraph of D′ which is the orientation of H̄i

using hi, i = 1, 2. Observe that lD(C) = lD′(H1) + lD′(H2).

Subcase 1.1: h1 = u1v1.
We adjust the boundary of B0 by replacing {R1} with h1, h2. Observe that

CR(C) =
2
CR(H1) + CR(H2): attention should be drawn to the question of how

crossings of C with itself are manifested as crossings of H1 or H2, when all Ei
j are

projected outside of B0 (see Definition 2.3). If two edges of C cross and they are not
separated in C by the endvertices of h1, then that crossing counts as a crossing with
in H1 or H2. We must therefore consider the parity of the number of crossings of C
where the crossed edges are separated in C by the endvertices of h1. These crossings
are counted as crossings of H1 with H2. If the number of such crossings of C is odd,
then there must be an additional crossing of H1 with H2, since the total number of
crossings of H1 with H2 must be even. Since h1 and h2 do not cross, this additional
crossing must occur at an endvertex of h1. It is easy to see that in the present case
there is no such crossing, and so, there are an even number of crossings of C where
the crossed edges are separated in C by the ends of h. The required congruence
therefore follows in this case.
We construct now two digraphs D1, D2 as follows:

- D1 is obtained from D−{e, f} by adding new vertices u′1, v
′
1 of degree 2, incident

with new arcs e′, f ′, h′1. The arcs e′, f ′, h′1 are obtained from e, f, h1 by replacing
u1 by u′1 and v1 by v′1. We adjust the boundary of B0 by replacing {R2} with
{e′, f ′, h′1}. Finally we add h′1 to M0. Let H ′1 be the cycle of D1 obtained from
H1 by replacing e, f, h1 by e′, f ′, h′1. Then lD1(H

′
1) = lD′(H1) and CR(H ′1) =

2

CR(H1);

- D2 is obtained fromD−{e, f} by adding arc h2. We remind that h2 is embedded
on the adjusted B0 parallel to R1. Let H ′2 = H2. Then lD2(H

′
2) = lD′(H2) and

CR(H ′2) =
2
CR(H2).

We remind that lD(R) = 1. Hence, exactly one of hi is oriented so that both cycles
it makes with R are clockwise odd. Let it be h2. Then D2 is a relevant orientation
and D1 becomes relevant after reversing the orientation of h′1: this digraph, obtained
from D1 by reversing the orientation of h′1, we denote by D∗1, and its subdigraph
corresponding to H ′1 we denote by H∗1 . Then, lD∗1 (H∗1 ) =

2
lD1(H

′
1) + 1.
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Note that both D2 and D∗1 are relevant orientations of proper g-graphs, H ′2 is an
alternating cycle of D2, H∗1 is an alternating cycle of D∗1 and CR(H∗1 ) < CR(C) and
CR(H ′2) < CR(C). Hence, by the induction assumption, we have that:

lD(C) =
2

lD′(H1) + lD′(H2) =
2

lD1(H ′1) + lD2(H ′2) =
2

lD∗1 (H∗1 ) + 1 + lD2(H ′2) =
2

|BR(H∗1 )| − 1− CR(H∗1) +
1

2

∑
p∈BR(H∗1 )

(r(D∗1)d(p) + 1)+

|BR(H ′2)| − 1− CR(H ′2) +
1

2

∑
p∈BR(H′2)

(r(D2)d(p) + 1) + 1.

Now, the theorem follows by observing that |BR(C)| =
2
|BR(C − {e, f})| =

2

|BR(H∗1 )| + |BR(H ′2)| − 2, CR(C) =
2
CR(H∗1 ) + CR(H ′2) and r(D∗1)d(p), r(D2)d(p)

and r(D)d(p) coincide for any p ∈ BR(C)− {e, f}. Hence,

lD(C) =
2

|BR(C)| − 1− CR(C) +
1

2

∑
p∈BR(C)

(r(D)d(p) + 1).

(End of Subcase 1.1)

Subcase 1.2: h1 = u1v2.
Let h1 and h2 be embedded on the bridge B. Observe that CR(C) =

2
CR(H1) +

CR(H2) + 1: attention again should be drawn to the question of how crossings of C
with itself are manifested as crossings of H1 or H2, when all Ei

j are projected outside
of B0 (see Definition 2.3). To see this clearly, we introduce some notation. Let A be
a subset of arcs of H1 and B a subset of arcs of H2. We denote by CR(A × B) the
number of crossings between arcs of A and B, mod 2. We also denote by cr(i, j) the
number of crossings of arcs of Hi ∩ C with hj. Hence, we have:

CR(H1) =
2

CR(H1 ∩ C) + cr(1, 1),

CR(H2) =
2

CR(H2 ∩ C) + cr(2, 2),

CR(C) =
2

CR(H1 ∩ C) + CR(H2 ∩ C) + CR((H1 ∩ C)× (H2 ∩ C)),

CR(H1 ×H2) =
2

0,

and
2∑

i,j=1

cr(i, j) =
2

0

since each arc which crosses h1 crosses also h2.
Hence it remains to show that

CR(H1 ×H2) =
2

CR((H1 ∩ C)× (H2 ∩ C)) + cr(1, 2) + cr(2, 1) + 1 :

this follows since in this case one additional crossing between H1 and H2 must occur
at an endvertex of h. The required congruence follows.

We construct two digraphs D1, D2 as follows:
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- D1 is obtained from D − {e, f} by adding a new arc h′1 between v1 and the
endvertex u2 of e. If lD′(fh1e) = 1 then we let h′1 = (v1, u2). If lD′(fh1e) = 0
then we let h′1 = (u2, v1).

We consider h′1 embedded on the bridge B. Let H ′1 be obtained from H1 by
replacing {f, h1, e} by h′1. We have lD′(H1) = lD1(H ′1) and CR(H1) = CR(H ′1).

- D2 is obtained from D−{e, f} by adding the arc h2. We consider h2 embedded
on the bridge B. We let H2 = H ′2. Thus again we have lD′(H2) = lD2(H ′2) and
CR(H2) = CR(H ′2).

We remind that lD(R) = 1 and thus exactly one of hi is oriented so that both
cycles it makes with R are clockwise odd. Let it be h2. Let R3 be the subpath
of C0 from v1 to v2 such that (e, R1, R3, R2) is a cycle. We have lD1(h′1, R3, R2) =

2

lD′(e, h1, f, R3, R2) =
2
lD′(f,R3) + lD′(e, h1, R2).

We show now that both D1 and D2 are relevant orientations with r(D1) = r(D2) =
r(D). We only need to show that h′1 and h2 are correctly oriented in D1 and D2.
This follows easily for D2, since both cycles h2 makes with R are clockwise odd.

For D1 we distinguish two cases. First, let r(D)2(i−1)+j = 1. In this case we
have lD′(f,R3) = 1 and lD′(e, h2, R2) = 1. Hence lD′(e, h1, R2) = 0. It follows
that lD1(h′1, R3, R2) = 1 and D1 is relevant with r(D1) = r(D). Secondly, let
r(D)2(i−1)+j = −1. In this case we have lD′(f,R3) = 0 and lD′(e, h2, R2) = 1.
Hence lD′(e, h1, R2) = 0. It follows that lD1(h

′
1, R3, R2) = 0 and D1 is relevant

with r(D1) = r(D).
Hence, Di is a relevant orientation of a proper g-graph, H ′i is an alternating cycle

of Di and |BR(H ′i)| < |BR(C)|, for i = 1, 2, and, by the induction hypothesis, we
have that:

lD(C) =
2

lD′(H1) + lD′(H2) =
2

lD1(H
′
1) + lD2(H ′2) =

2

|BR(H ′1)| − 1− CR(H ′1) +
1

2

∑
p∈BR(H′1)

(r(D1)d(p) + 1) +
1

2
(r(D1)d(h1) + 1)+

|BR(H ′2)| − 1− CR(H ′2) +
1

2

∑
p∈BR(H′2)

(r(D2)d(p) + 1) +
1

2
(r(D2)d(h2) + 1).

The theorem follows by observing that |BR(C)| =
2
|BR(C−{e, f})| =

2
|BR(H ′1)|+

|BR(H ′2)| − 2, CR(C) + 1 =
2
CR(H ′1) + CR(H ′2) and r(D1) = r(D2) = r(D).

(End of Subcase 1.2)
End of Case 1

Case 2. There exists i such that C contains exactly one edge from both Ei
1 and Ei

2.

Let e ∈ Ei
1 and f ∈ Ei

2 and let C1 and C2 be two paths such that C = (C1, e, C2, f).
The endvertices of e, f belong to C0. Let us assume that along the boundary of B0

from a4(i−1)+1 to a4i+1, the endvertices of e, f appear in the order v1, u1, v2, u2 where
e = u1u2 and f = v1v2.
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Let R1, R2 be the two disjoint subpaths of the segment of C0 between a4(i−1)+1

and a4i+1, which cover the endvertices of e, f . Note that R1, R2 contain no other
vertex of G incident with an edge out of E0, by the choice of i. Let R denote the
cycle (R1, e, R2, f) and let R3 denote the segment of C0 between u1 and v2.

Let us introduce a new edge h (not belonging to G), between endvertices of e, f
such that one of two cycles Ī1, Ī2 formed by h and C and containing h is alternating.

Without loss of generality let h have u1 as an endvertex. Hence we have that
h = u1v1 or h = u1v2. We may also assume without loss of generality that Ī2 is
alternating. Hence Ī1 contains both e, f . Note that Ī1 consists of an even number of
edges.

We denote by h1, h2 the two arcs with the same endvertices as h, directed oppo-
sitely. Let D′ = D∪{h1, h2}. Let Ii be the subdigraph of D′ which is the orientation
of Īi using hi, i = 1, 2. Observe that lD(C) = lD′(I1) + lD′(I2).

Again we distinguish two subcases.

Subcase 2.1: h1 = u1v1.
In this case h forms a cycle with R1.
As in Subcase 1.1, we extend B0 along R1 and consider h1, h2 as embedded on

the extended B0.
Observe that CR(C) =

2
CR(I1) + CR(I2): attention should be drawn to the

question of how crossings of C with itself are manifested as crossings of I1 or I2, when
all Ei

j are projected outside of B0 (see Definition 2.3). In this case, the arguments
are identical to those used in the proof of Subcase 1.1, and we omit them.

We construct two digraphs D1, D2 as follows:

- D1 is obtained from D−{e, f} by adding new vertices u′1, v
′
1 of degree 2, incident

with new arcs e′, f ′, h′1. The arcs e′f ′, h′1 are obtained from e, f, h1 by replacing
u1 by u′1 and v1 by v′1. We extend B0 along R2 and we embed the path (e′, f ′, h′1)
on the extended B0. Finally we add h′1 to M0. Let I ′1 be the cycle of D1

obtained from I1 by replacing e, f, g1 by e′, f ′, g′1. We have lD′(I1) = lD1(I
′
1)

and CR(I1)− 1 =
2
CR(I ′1).

- D2 is obtained from D−{e, f} by adding the arc h2. We consider h2 embedded
on the extended B0 along R1. We let I ′2 = I2. Hence, lD′(I2) = lD2(I ′2) and
CR(I2) =

2
CR(I ′2).

Hence, for i = 1, 2, Di is an orientation of a proper g-graph and I ′i is an alternating
cycle of Di. Moreover |BR(I ′i)| < |BR(C)|.

Let us assume without loss of generality that h2 is directed so that the cycle
lD′(R1, h2) = 1. Hence D2 is a relevant orientation with r(D2) = r(D).

We show now that D1 is a relevant orientation with r(D) = r(D1) if and only
if r(D)d(e) = r(D)d(f). We first prove that if r(D)d(e) = r(D)d(f) = 1 then D1 is a
relevant orientation.

In this case it suffices to show that lD1(R2, f
′, h′1, e

′) =
2

1. We have lD1(h′1, f
′, R3) =

2

lD′(h1, f, R3) =
2
lD′(h2, f, R3)+1 =

2
lD2(h2, f, R3)+1 =

2
0, since r(D2)d(f) = r(D)d(f) =

1, and thus, lD2(h2, f, R3) = 1.
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Moreover lD1(R2, R3, e
′) = lD′(R2, R3, e) = 1, since r(D)d(e) = 1 and D is a

relevant orientation. Replacing f ′h′1 for R3 gives what we claimed.
Similarly, we can prove that if r(D)d(e) = r(D)d(f) = −1 then again

lD1(R2, f
′, h′1, e

′) = 1, and so, D1 is a relevant orientation.
On the other hand, if r(D)d(e) 6= r(D)d(f) then D1 is obtained from a relevant

orientation by reversing one arc, and so, it is not relevant.
Summarizing, if r(D)d(e) = r(D)d(f) then D1 is a relevant orientation with r(D) =

r(D1), and if r(D)d(e) 6= r(D)d(f) then D1 becomes relevant after reversing the ori-
entation of h′1: this digraph, obtained from D1 by reversing the orientation of h′1,
we denote by D∗1, and its subdigraph corresponding to H ′1 we denote by H∗1 . Then
lD∗1 (I ′1) =

2
lD1(I

′
1) + 1.

Using the induction assumption of 3.1 for D∗, I∗1 , D1, I
′
1 and D2, I

′
2 we get:

lD(C) =
2

lD′(I1) + lD′(I2) =
2

lD1(I
′
1) + lD2(I

′
2) =

2

|BR(C)|−4−CR(C)+1+
1

2

∑
p∈BR(C)−{e,f}

(r(D)d(p)+1)+
1

2
(r(D)d(e)−1+r(D)d(f)−1) =

2

|BR(C)| − 1− CR(C) +
1

2

∑
p∈BR(C)

(r(D)d(p) + 1).

(End of Subcase 2.1)

Subcase 2.2: h = u1v2.
In this case h forms a cycle with R3. We extend B0 along R3 and consider h1, h2

embedded on the extended B0.
Observe that CR(C) =

2
CR(I1)+CR(I2):attention should be drawn to the question

of how crossings of C with itself are manifested as crossings of I1 or I2, when all Ei
j are

projected outside of B0 (see Definition 2.3). In this case, the arguments are identical
to those used in the proof of Subcase 1.1 and Subcase 2.1, and we omit them.

We construct two digraphs D1, D2 as follows:

- D1 is obtained from D−{e, f} by adding new vertices u′1, v
′
2 of degree 2, incident

with new arcs e′, f ′, h′1. The arcs e′, f ′, h′1 are obtained from e, f, h1 by replacing
u1 by u′1 and v2 by v′2. We extend B0 along R1R3R2 and we embed e′, f ′, h′1 on
the extended B0. Finally we add h′1 to M0. Let I ′1 be the cycle of D1 obtained
from I1 by replacing e, f, h1 by e′, f ′, h′1. We have that lD′(I1) =

2
lD1(I

′
1) and

CR(I ′1) =
2
CR(I1)− 1.

- D2 is obtained from D − {e, f, } by adding arc h2. We again extend B0 along
R3 and consider h2 embedded on the extended B0. We let I ′2 = I2. Hence,
lD′(I2) =

2
lD2(I

′
2) and CR(I ′2) =

2
CR(I2).

Hence for i = 1, 2, Di is an orientation of a proper g-graph and I ′i is an alternating
cycle of Di. Moreover |BR(I ′i)| < |BR(C)|.

Let us assume without loss of generality that h2 is directed so that l(R3, h2) = 1.
Hence D2 is a relevant orientation with r(D2) = r(D).
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As in Subcase 2.1, we shall show that D1 is a relevant orientation if and only if
r(D)d(e) = r(D)d(f): It again suffices to consider the case that r(D)d(e) = r(D)d(f) =
1. In this case it suffices to show that lD1(R2, R3, R1, f

′, h′1, e
′) = 1. In fact, we

have lD2(R1, f, h2) = 1 since r(Dd(f)) = 1 and D2 is a relevant orientation. Hence

lD1(R1, f
′, h′1) = 0. Moreover lD1(R2, R3, e

′) =
2
lD(R2, R3, e) = 1 since r(D)d(e) = 1.

Hence lD1(R2, R3, R1, f
′, h′1, e

′) = 1.
Summarizing, if r(D)d(e) = r(D)d(f) then D1 is a relevant orientation with r(D) =

r(D1), and if r(D)d(e) 6= r(D)d(f) then D1 becomes relevant after reversing the orien-
tation of h′1.

The proof then proceeds analogously as in Subcase 2.1. (End of Subcase 2.2)
End of Case 2

It is not difficult to see that the two cases complete the proof. 2

Next we show that a statement analogous to that of Theorem 3.1 holds for the
set of the alternating cycles of M0∆P as well.

Theorem 3.2 Let G be a proper g-graph and let D be a relevant orientation of G.
Let P be a perfect matching of G. Then

sgn(D,M0∆P ) = (−1)q,

where

q =
2

|BR(M0∆P )| − CR(M0∆P ) +
1

2

∑
e∈BR(M0∆P )

(r(D)d(e) + 1).

Proof. Let C1, ..., Ck be the alternating cycles of M0∆P . We have that
sgn(D,M0∆P ) = (−1)q, where q =

2
l(C1) + ...+ l(Ck)− k.

Using Theorem 3.1 for C1, ..., Ck, it remains to show that:

CR(M0∆P ) =
2

k∑
j=1

CR(Cj),

but this holds by Lemma 2.8 and the theorem follows. 2

Corollary 3.3 Let G be a proper 1-graph and D a relevant orientation of G. Let C
be a set of disjoint alternating cycles of M0. Then:

1. If r(D) = (1, 1) then sgn(D, C) = 1 if and only if t(C) ∈ {(0, 0), (0, 1), (1, 0)}.

2. If r(D) = (1,−1) then sgn(D, C) = 1 if and only if t(C) ∈ {(0, 0), (1, 1), (1, 0)}.

3. If r(D) = (−1, 1) then sgn(D, C) = 1 if and only if t(C) ∈ {(0, 0), (0, 1), (1, 1)}.

4. If r(D) = (−1,−1) then sgn(D, C) = 1 if and only if t(C) = (0, 0).
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Definition 3.4 Let G be a proper g-graph and D a relevant orientation of G. Let
r(D) = (r1, ..., r2g). We let c(r(D)) equal to the product of ci, i = 0, ..., g − 1, where
ci = c(r2i+1, r2i+2) and c(1, 1) = c(1,−1) = c(−1, 1) = 1/2 and c(−1,−1) = −1/2.

Observe that c(r(D)) = (−1)n2−g, where n = |{i; r2i+1 = r2i+2 = −1}|.

Corollary 3.5 Let G be a proper 1-graph. Let D1, D2, D3, D4 be the relevant orien-
tations of G. Then

P(G, x) =
4∑
i=1

c(r(Di))P(Di,M0).

A result analogous to Corollary 3.5 holds for all proper g-graphs, g > 1. In order
to deduce it we start with another corollary of Theorem 3.2.

Corollary 3.6 Let G be a proper g-graph and D a relevant orientation of G. Let P
be a perfect matching of G. Then sgn(D,M0∆P ) is a function of r(D) and t(M0∆P )
only. Let us denote this function by σ(r(D), t(M0∆P )).

Lemma 3.7 Let r = (r1, . . . , r2g) and t = (t1, . . . , t2g) be 2g-dimensional vectors.
Let r(j) = (r2j+1, r2j+2) and t(j) = (t2j+1, t2j+2), j = 0, . . . , g − 1. Then

σ(r, t) =
g−1∏
j=0

σ(r(j), t(j)).

Proof. By Corollary 3.6, we have that sgn(D, C) = sgn(D′, C′) if and only if r(D) =
r(D′) and t(C) = t(C′). This implies that we can restrict ourselves to consider the
following case: G = C0 ∪M0 ∪ C is a proper g-graph, D is a relevant orientation
of G such that r(D) = r and C consists of a set of vertex-disjoint cycles C1, . . . , Ck
satisfying the following properties:

1. each Ci is alternating with respect to the perfect matching M0,

2. for each i, j |Ei
j| ≤ 1,

3. for each i there is at most one j such that |Cj ∩ (Ei
1 ∪E

i
2)| ≥ 1,

4. for each Cj there is exactly one i such that Cj intersects Ei
1 ∪ E

i
2,

5. t(C) = t.

Hence,

σ(r, t) = sgn(D, C) =
k∏
i=1

sgn(D,Ci) =
k∏
i=1

sgn(Di, Ci)

where Di is the restriction of D to C0 ∪ Ci. Observe that, by Corollary 3.3,
σ(z1, z2) = 1 if z2 = (0, 0). Hence, using Corollary 3.6, we have that

∏k
i=1 sgn(Di, Ci) =∏g−1

j=0 σ(rj, tj) as claimed.
2
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Theorem 3.8 Let G be a proper g-graph. Then

P(G, x) = Lg(G, x) =
4g∑
i=1

c(r(Di))P(Di,M0)

where Di, i = 1, . . . , 4g, are the relevant orientations of G.

Proof. Let P be a perfect matching of G. In each term P(Di,M0), the coefficient of
x(P ) is sgn(Di,M0∆P ). By Corollary 3.6, sgn(Di,M0∆P ) = σ(r(Di), t(M0∆P )).

Let

Kg(t(M0∆P )) =
4g∑
i=1

c(r(Di))σ(r(Di), t(M0∆P ))

denote the coefficient of x(P ) in Lg(G, x).
To prove the theorem it suffices to prove the following claim:

Claim. Kg(t(M0∆P )) = 1 for each t(M0∆P ).

The proof of the claim is by induction on g. The basis of the induction when g = 1
is proved in Corollary 3.5.

To prove the inductive step we introduce the following notation: if z is a 2g-
dimensional vector then we let z = (z(0), . . . , z(g − 1)) where z(i) = (z2i+1, z2i+2).

We call two relevant orientationsD andD′ ofG equivalent if (r(D)(1), . . . , r(D)(g−
1)) = (r(D′)(1), . . . , r(D′)(g − 1)). Clearly, the equivalence classes consist of 4 ele-
ments; let R1, . . . ,R4g−1 be the equivalence classes of the relevant orientations of G
and let Rj = {Dj

1, D
j
2, D

j
3, D

j
4}, j = 1, . . . , 4g−1.

Finally let r(Dj
i )(k) = rji (k), k = 0, . . . , g−1 and let t = t(M0∆P ). We have that

Kg(t) =
4g−1∑
j=1

4∑
i=1

c(r(Dj
i ))σ(r(Dj

i ), t).

Now, by Lemma 3.7, this equals

4g−1∑
j=1

4∑
i=1

c(rji (0))c(rji (1), . . . , rji (g − 1))
g−1∏
k=0

σ(rji (k), t(k)).

By the definition of the equivalence classes, rj1(k) = rj2(k) = rj3(k) = rj4(k) for
k ≥ 1 and j = 1, . . . , 4g−1. Hence, we let rji (k) = rj(k) and write the above summation
as:

4g−1∑
j=1

c(rj(1), . . . , rj(g − 1))
g−1∏
k=1

σ(rj(k), t(k))
4∑
i=1

c(rji (0))σ(rji (0), t(0))

.
The internal sum equals to 1 for each j = 1, . . . , 4g−1 by the basis step of the

induction, and hence, using Lemma 3.7 in the external sum, we can write the above
summation as
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4g−1∑
j=1

c(rj(1), . . . , rj(g − 1))σ((rj(1), . . . , rj(g − 1)), (t(1), . . . , t(g − 1))) =

Kg−1(t(1), . . . , t(g − 1)) = 1,

by the inductive hypothesis for g − 1. End of Claim.
2

As a consequence of Theorem 1.4 and Theorem 3.8, we have:

Corollary 3.9 Let G be a proper g-graph. Then s(Di,M0) = s(Dj,M0) for each
i, j ∈ {1, . . . , 4g} and

P(G, x) = Lg(G, x) = s(D1,M0)
4g∑
i=1

c(r(Di))Pf(A(Di))

where Di, i = 1, . . . , 4g, are the relevant orientations of G.

Theorem 3.10 Let G be a graph embeddable on an orientable surface of genus g.
Then P(G, x) may be expressed as a linear combination of 4g Pfaffians of matrices
A(D), where each D is an orientation of G.

Proof. As observed in the previous section, any orientable surface S of genus g may
be obtained from its polygonal representation Sg as follows: for each bridge B, glue
together the two segments in which B intersects the boundary of B0, and delete B.

If a graph G is embedded on an orientable surface S of genus g, then without
loss of generality no vertex belongs to the boundary of B0. In this way we get an
embedding of G on Sg such that all vertices of G belong to B0 but the embeddings
of some edges may use several bridges.

We construct a graph G′ by replacing each edge e = uv which uses k bridges,
k ≥ 1, by a path Pe = (u, e1, v1, . . . , v2k, e2k+1, v). The new vertices v1, ..., v2k are
embedded on the embedding of e so that each new edge uses at most one bridge.
Moreover, we let x′e1 = xe and x′ei = 1 for each i > 1. We do a similar construction
when G0 has no perfect matching. In fact, take any perfect matching M of G and
replace any edge e = uv ∈M embedded on a bridge by a path u, e1, y, e2, z, e3, v and
let x′e1 = xe and x′e2 = x′e3 = 1. Then leave the only edge e2 to be embedded on the
bridge B.

Finally, we add edges so that the outer face of the planar part is a cycle and we
let x′e = 0 for each such edge e.

It is easy to see that G′ is a proper g-graph and that P(G′, x′) = P(G, x).
Now, by Theorem 3.8, P(G′, x′) may be written as a linear combination of 4g

terms Pf(A(D′)), where each D′ is a relevant orientation of G′.
It remains to show that for each relevant orientationD′ ofG′ there is an orientation

D of G such that Pf(A(D′)) = Pf(A(D)) or Pf(A(D′)) = −Pf(A(D)).
We construct D from D′ in two steps:
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1. delete the edges e of G′ −G with x′e = 0,

2. for each edge e of G which was changed into a path Pe of odd length in the
construction of G′, orient e in the direction in which an odd number of edges
of Pe is directed in D′: this is uniquely determined since Pe has an odd length.

If P is a perfect matching of G then there is a unique perfect matching P ′ of G′

such that x(P ) = x′(P ′).
Observe that sgn(D,P∆Q) = sgn(D′, P ′∆Q′) for each pair of perfect matchings

P,Q of G. The claim now follows from Theorem 1.4.
This finishes the proof of the theorem. 2

4 Pfaffian Graphs, Exact Matching, and Perma-

nents

The results of the previous section have interesting algorithmic implications.

Theorem 4.1 Let g and k be fixed positive integers. Let G be the class of graphs of
genus g whose edges are partitioned into at most k classes and the variables xe have
the same value in each class. Then P(G, x) may be determined in polynomial time
for G ∈ G.

Proof. It follows from Theorems 3.8 and 3.10 that P(G, x) may be expressed as a
linear combination of a finite number of Pfaffians.

We show now that if the set of the edges of graph G is partitioned into a bounded
number of classes and the variables xe are equal in each class, then P(D,M) and
Pf(A(D)) may be determined efficiently. Let M = {{i1j1}, . . . , {injn}}, ik < jk, be
a perfect matching of G. Let x′ be defined as follows: x′e = xe if e /∈M and x′f = xfz

if f ∈ M , where z is a new variable. Let A′ be the matrix obtained from A(D) by
replacing each xe by x′e. Then det(A′) may be viewed as a polynomial det(A′)(x, z)
in the variables x and z and its coefficients can be determined efficiently.

By Theorem 1.5, Pf(A′)(x, z) = ±
√
det(A′)(x, z). Hence we can determine

efficiently a polynomial Q(x, z) such that Pf(A′)(x, z) = ±Q(x, z)). Note that
P(D,M) = ±Q(x, 1).

There is exactly one monomial in Q(x, z) containing zn and its coefficient is +1 or
−1. Let Q′(x, z) be the unique polynomial such that Q′(x, z) = Q(x, z) or Q′(x, z) =
−Q(x, z) and the coefficient of Q′(x, z) of the term containing zn equals +1. We have
P(D,M) = +Q′(x, 1). Moreover, Pf(A(D)) = s(D,M)P(D,M) and s(D,M) =
s∗(M)t∗(M) where t∗(M) equals the product of the signs of the elements aikjk of the
matrix A(D) such that ikjk ∈M . Hence P(D,M) and Pf(A(D)) may be determined
efficiently. 2

As a consequence, if we are in the hypothesis stated by the theorem, the following
problems may be solved efficiently.
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1. Recognition of Pfaffian graphs: given a graph G ∈ G, decide whether G admits
a Pfaffian orientation.

It was proved by Vazirani and Yannakakis (see the proof of Theorem 3.1 in [13])
that, given a graph G, it is possible to construct efficiently an orientation D of G
such that G is Pfaffian if and only if D is its Pfaffian orientation. Hence Pf(A(D))
equals to the number of the perfect matchings of G if and only if G is Pfaffian, and it
means that we can decide efficiently whether a graph is Pfaffian once we can compute
efficiently its number of perfect matchings.

2. Exact Matching Problem: given a graph G ∈ G with some edges coloured red,
and a number h, decide whether G has a perfect matching with exactly h red edges.

It suffices to assign an x variable to red edges and a y variable to the remaining
edges and compute P(G; x, y). If the coefficient of the monomial xhyt−h, where t is
the cardinality of a perfect matching of G, is nonzero then the answer to the problem
is yes, otherwise no such a matching exists.

3. Computing permanents of square matrices.
In 1913, Pólya [9] suggested computing the permanent of a matrix A by changing

the signs of some entries of A so that the determinant of the resulting matrix equals
the permanent of A. Let us call a (0, 1)-matrix A convertible if such a change is
possible.

Szegö [11] pointed out in the same year that not all matrices are convertible.
This may be explained nowadays using a complexity argument. There is an effi-

cient algorithm to compute the determinant, while Valiant proved that the problem
of computing the permanent of a (0, 1)-matrix is #P -complete [12].

The computational problem of recognition of convertible matrices has been proved
recently to admit a polynomial algorithm by McCuaig, Robertson, Seymour and
Thomas [8]. An earlier paper of Galluccio and Loebl [3] contains a related algorithmic
result, as well as a history of the problem.

The problem of recognizing convertible matrices is equivalent to the problem of
recognizing bipartite Pfaffian graphs, and to the Even Cycle Problem: given a directed
graph, decide whether it contains a directed cycle of even length.

Let A be a square matrix. Denote by G(A) the bipartite graph whose two bipar-
tition classes are indexed by the rows and the columns of A, and for each edge ij,
aij = xij . Then per(A) = P(G(A), x).

Hence, Theorem 3.10 provides a new combinatorial way to compute permanents
of square matrices: per(A) may be written as a linear combination of 4g terms of
form Pf(A(D)), where D is an orientation of G(A) and g is the genus of G(A).

Since G(A) is a bipartite graph, the non-zero entries of A(D) belong to two
blocks A1, A2, where A1 is obtained from A by changing the sign of some entries and
A2 = −A1. Moreover |Pf(A(D)| = |det(A1)| = |det(A2)| by Theorem 1.5.

This means that the method of Pólya may be completed as follows:

Corollary 4.2 Let A be a square matrix. Then per(A) may be expressed as a linear
combination of terms of the form det(Ai), i = 1, ..., 4g, where each Ai is obtained
from A by changing the sign of some entries.
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