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Abstract

We consider the problem of determining when two delta-matroids
on the same ground-set have a common base. Our approach is to
adapt the theory of matchings in 2-polymatroids developed by Lovász
to a new abstract system, which we call a parity system. Examples
of parity systems may be obtained by combining either, two delta-
matroids, or two orthogonal 2-polymatroids, on the same ground-sets.
We show that many of the results of Lovász concerning ‘double flowers’
and ‘projections’ carry over to parity systems.

1 Introduction: the delta-matroid intersec-

tion problem

A delta-matroid is a pair (V,B) with a finite set V and a nonempty collection
B of subsets of V , called the feasible sets or bases , satisfying the following
axiom:
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1.1 For B1 and B2 in B and v1 in B1∆B2, there is v2 in B1∆B2 such that
B1∆{v1, v2} belongs to B.

Here P∆Q = (P \Q)∪ (Q \P ) is the symmetric difference of two subsets P
and Q of V . If X is a subset of V and if we set B∆X = {B∆X : B ∈ B},
then we note that (V,B∆X) is a new delta-matroid. The transformation
(V,B)→ (V,B∆X) is called a twisting . The rank of a subset P of V is

r(P ) = max
B∈B
|P ∩B|+ |(V \ P ) ∩ (V \B)|. (1)

Thus r(P ) = |V | if and only if P belongs to B.

Proposition 1.2 A nonempty collection B of subsets of V is the collection of
bases of a matroid if and only if (V,B) is a delta-matroid and the members
of B have the same cardinality.

We refer the reader to [4] for an introduction to delta-matroids and some
of the problems considered in that paper.

Problem 1.3 Given delta-matroids (V,B1) and (V,B2) with rank functions r1

and r2, respectively, search for a subset P of V that maximizes r1(P )+r2(P ).

Problem 1.4 Given delta-matroids (V,B1) and (V,B2), search for B in B1∩
B2.

The intersection problem 1.4 is a specialization of Problem 1.3 since the
subsets P in B1∩B2 are characterized by the relation r1(P )+r2(P ) = 2|V |. A
related problem considered in [4] is to find B1 in B1 and B2 in B2 maximizing
|B1∆B2|. The maximum is equal to |V | if and only if B1 ∩ (B2∆V ) 6= ∅.

The matroid parity problem is to find in a matroid, whose ground-set
is partitioned into pairs, an independent set that is a union of pairs and
of maximal cardinality. Lovász [13] has given a general solution of that
problem, which is efficient when a linear representation of the matroid is
known. He has also described in [12] an instance of the matroid parity
problem, whose solution requires exponential time, with respect to the size
of the ground-set, when an independence oracle is known. It is shown in
[5] that the matroid parity problem can be expressed as a delta-matroid
intersection problem. It follows that to solve the delta-matroid intersection
problem requires in general exponential time when a separation oracle is
known. The separation oracle, for a delta-matroid (V,B), tells whether an
ordered pair (P,Q) of disjoint subsets of V is such that P ⊆ B and Q∩B = ∅,
for some B in B.
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We shall approach the delta-matroid intersection problem by adapting
Lovász’ method. However the last step, giving an efficient solution when lin-
ear delta-matroids are involved, is still unsolved. We now recall two natural
instances of the delta-matroid intersection problem, where linear representa-
tions are known.

Complementary nonsingular principal submatrices

Let A = (Avw)v,w∈V be a symmetric or skew-symmetric matrix with entries
in a field F. For every subset W of V we denote by A[W ] the principal
submatrix (Avw)v,w∈W and we make the convention that A[∅] is a nonsingular
matrix. Set

B(A) = {B ⊆ V : A[B] is nonsingular}.

It is shown in [3] that (V,B(A)) is a delta-matroid. If A is skew-symmetric,
then every member of B(A) has even cardinality, whereas this is false in
general when A is symmetric. A delta-matroid is said to be even if the
symmetric difference of ant pair of bases has even cardinality. So every delta-
matroid obtained by twisting (V,B(A)) is even when A is skew-symmetric.

Problem 1.5 Given a symmetric or skew-symmetric matrix A = (Avw)v,w∈V ,
search for two complementary subsets P and Q of V such that A[P ] and A[Q]
are nonsingular.

Problem 1.6 Given two matrices A′ = (A′vw)v,w∈V and A′′ = (A′′vw)v,w∈V ,
which are both symmetric or both skew-symmetric, and a subset X of V ,
search for two subsets P ′ and P ′′ of V such that A′[P ′] and A′′[P ′′] are non-
singular and P ′∆P ′′ = X.

Problem 1.5 is an instance of Problem 1.6: take A′ = A′′ = A and X = V .
Problem 1.6 is an instance of the delta-matroid intersection problem 1.4: take
B1 = B(A′) and B2 = B(A′′)∆X.

Orthogonal Euler tours

Let G be a connected 4-regular graph that is evenly directed : each vertex is
the head of precisely two directed edges. A directed transition is a pair of
directed edges incident to the same vertex v, one entering v and one leaving
v. A pair of successive directed edges of an Euler tour T is called a directed
transition used by T . Two directed Euler tours of G are orthogonal if they
use no common directed transition.
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Problem 1.7 Find whether G admits a pair of orthogonal Euler tours.

Let us fix a reference directed Euler tour U of G and let us consider the
sequence of vertices S that are encountered while running along U . The
sequence S is defined up to a rotation, depending on the starting point of U ,
and each vertex occurs precisely twice in S. For example

S = (a e f a c d e c b f d b),

when U is the directed Euler tour depicted on the left side of Figure 1.
An alternance of S is a nonordered pair vw of vertices such that v and w
alternatively occur in S. Let A = (Avw)v,w∈V be the matrix with entries in
GF(2) such that

Avw = 1⇐⇒ vw is an alternance of U.

The matrix corresponding to the example is depicted on the right side of
Figure 1. If T is another Euler tour of G, let C(U, T ) be the subset of
vertices v such that U and T use distinct transitions at v. Clearly T is
determined when U and C(U, T ) are known. The results of [2] imply that
A[P ] is nonsingular if and only if there is an Euler tour T such that C(U, T ) =
P . Hence to find a pair of orthogonal Euler tours in G amounts to finding
two complementary subsets P and Q of V such that A[P ] and A[Q] are
nonsingular, which is a solution to Problem 1.5.

a

b c

d

ef



a b c d e f

a 0 0 0 0 1 1
b 0 0 0 1 0 1
c 0 0 0 1 1 0
d 0 1 1 0 1 1
e 1 0 1 1 0 1
f 1 1 0 1 1 0



Figure 1: An Euler tour and the corresponding binary matrix.

A solution to Problem 1.7 is given in [1] when G is plane and the boundary
of each face is consistently directed. One may also consider two connected
and evenly directed 4-regular graphs G1 and G2 on the same vertex-set V ,
each with a bicoloring of the directed transitions satisfying the following
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property: any two directed transitions incident to the same vertex have the
same colour if and only if they are disjoint. An Euler tour T1 of G1 is
orthogonal to an Euler tour T2 of G2 if, for every vertex v in V , the directed
transitions of T1 and T2 incident to v have distinct colours.

Problem 1.8 Find whether G1 and G2 have orthogonal Euler tours.

If G1 and G2 are equal to the graph G of Problem 1.7 and each directed
transition of G has the same colour in G1 and G2, then T1 and T2 are or-
thogonal in the new sense if and only if they are orthogonal in the first
sense. Hence Problem 1.7 is an instance of Problem 1.8. By generalizing the
preceding argument one shows that Problem 1.8 is an instance of Problem
1.6.

Finally one may consider the following more general situation. Given a
connected 4-regular graph G, let us define a transition as a pair of edges
incident to the same vertex. Let us forbid one transition at each vertex and
let us consider the collection of Euler tours that use no forbidden transition.
If G is evenly directed one retrieves the collection of directed Euler tours
by forbidding at each vertex the transition made of the two directed edges
leaving that vertex. If we define two Euler tours to be orthogonal if they
use no common transition, then one generalizes Problems 1.7 and 1.8. One
can show, by using the property 5.3 of [3], that the two new problems are
instances of Problems 1.5 and 1.6, respectively, where the matrices are sym-
metric with entries in GF(2). Note that a matrix with entries in GF(2) is
skew-symmetric if and only if it is symmetric with a null diagonal.

2 Background on 2-matroids

Many properties of delta-matroids are invariant by twisting. For example if B
is a common base of the delta-matroids (V,B1) and (V,B2) in the intersection
problem 1.4, then B∆X is a common base of (V,B1∆X) and (V,B2∆X), for
every subset X of V . The structure of a 2-matroid, which is a particular case
of the structure of multimatroid introduced in [5], encompasses a twisting
class of delta-matroids.

If Ω is a partition of a set U , then a subtransversal (resp. transversal) of
Ω is a subset A of U such that |A∩ω| ≤ 1 (resp. |A∩ω| = 1) holds for all ω in
Ω. The set of subtransversals of Ω is denoted by S(Ω). A class of Ω is called
a skew class or, if it has cardinality 2, a skew pair . Two subtransversals
are compatible if their union is also a subtransversal. A multimatroid is a
triple Q = (U,Ω, r), with a partition Ω of a finite set U and a rank function
r : S(Ω)→ IN, satisfying the four following axioms:
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2.1 r(∅) = 0;

2.2 r(A) ≤ r(A+x) ≤ r(A)+1 if A is a subtransversal of Ω, x is an element
of U , and A is disjoint from the skew class of Ω containing x;

2.3 r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B) if A and B are compatible sub-
transversals of Ω;

2.4 r(A+ x)− r(A) + r(A+ y)− r(A) ≥ 1 if A is a subtransversal of Ω, x
and y are distinct elements in the same class ω of Ω, and A ∩ ω = ∅.

If each class of Ω has cardinality equal to the positive integer q then Q
is also called a q-matroid . If q = 1, then r is defined for every subset of U
and the first three axioms amount to say that r is a matroid rank function,
whereas the fourth axiom is void. We shall be more especially interested in 2-
matroids. An independent set of a multimatroid (U,Ω, r) is a subtransversal
I such that r(I) = |I|. A base is a maximal independent set. The following
property, which is an easy consequence of the axiom 2.4, implies that the
bases of a 2-matroid are transversals.

Proposition 2.5 [5] The bases of a multimatroid (U,Ω, r) are transversals
of Ω if every class of Ω has at least two elements.

In particular, if B(Q) is the collection of bases of a 2-matroid Q, then
each member of B(Q) is a transversal of Ω. Let T be a transversal of Ω. The
set system Q ∩ T = (T, {B ∩ T : B ∈ B(Q)}) is the section of Q by T .

Theorem 2.6 [5] A set system is a delta-matroid if and only if it is a section
of a 2-matroid.

To compare the various sections Q ∩ T of the same 2-matroid Q =
(U,Ω, r), when T ranges in the collection of transversals of Ω, it is con-
venient to define a surjective mapping p : U → V such that p(u′) = p(u′′) if
and only if u′ and u′′ belong to the same class of Ω. In particular we can take
V = Ω. If we denote by p(Q∩ T ) the isomorphic image of the delta-matroid
Q ∩ T by the bijective mapping p|T , then one easily verifies that

p(Q ∩ T ) = p(Q ∩ T ′)∆p(T∆T ′),

for every transversal T ′ of Ω. This implies that p(Q∩T ) ranges in a twisting
class of delta-matroids when T ranges in the collection of transversals of Ω.
Thus Problems 1.3 and 1.4 can be restated as
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Problem 2.7 Given 2-matroids (U,Ω, r1) and (U,Ω, r2), search for a sub-
transversal A of Ω that maximizes r1(A) + r2(A).

Problem 2.8 Given 2-matroids Q1 = (U,Ω, r1) and Q2 = (U,Ω, r2), search
for a base B ∈ B(Q1) ∩ B(Q2).

We shall investigate these problems using a similar technique to Lovász
[13], who replaced the parity problem by the search for a maximum matching
in a 2-polymatroid. We similarly extend the two preceding problems into a
search for a maximum matching in a parity system.

3 Parity system

A 2-polymatroid is a pair (V, ρ) with a finite set V and a rank function
ρ : V → IN satisfying the following axioms

3.1 ρ(∅) = 0;

3.2 ρ(A) ≤ ρ(A + x) ≤ ρ(A) + 2 is satisfied for every subset A of V and
every element x in V \ A;

3.3 ρ(A) + ρ(B) ≥ ρ(A∪B) + ρ(A∩B) is satisfied for every pair of subsets
A and B of V .

A matching is a subset M such that ρ(M) = 2|M |.
The definition of a 2-polymatroid becomes the definition of a matroid,

when the value 2 in the axiom 3.2 is replaced by 1. A parity system general-
izes a 2-matroid in the same way; the value 1 that occurs in the axioms 2.2
and 2.4 is replaced by 2 in the following axioms 3.5 and 3.7. Throughout the
paper we shall use the notation r for a 2-matroid, ρ for a 2-polymatroid, and
R for a parity system.

A parity system is a triple P = (U,Ω, R) with a paired set (U,Ω) and a
rank function R : S(Ω)→ IN satisfying the four following axioms:

3.4 R(∅) = 0;

3.5 R(A) ≤ R(A+ x) ≤ R(A) + 2 is satisfied for every subtransversal A of
Ω and every x in U provided that A is disjoint from the skew class containing
x;

3.6 R(A) + R(B) ≥ R(A ∪ B) + R(A ∩ B) is satisfied for every pair of
compatible subtransversals A and B of Ω;
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3.7R(A+x)−R(A)+R(A+y)−R(A) ≥ 2 is satisfied for every subtransversal
A of Ω and every skew pair {x, y} provided that A is disjoint from the skew
class including {x, y}.

We say that P is indexed on a set V if Ω is indexed on V , that is Ω = {Ωv :
v ∈ V }. (The free sum of two orthogonal 2-polymatroids, constructed in the
sequel, is indexed on a set V in a natural way.) We can always assume that
P is indexed on a set V , taking V = Ω if no natural index-set is specified. If
A is a subtransversal of Ω then we set σ(A) = {v ∈ V : A ∩ Ωv 6= ∅} and we
call σ(A) the support of A. If W is a subset of V , then we denote by P [W ]
the parity system (U ′,Ω′, R′), where U ′ = ∪v∈WΩv, Ω′ = {Ωv : v ∈ W}, and
R′ is the restriction of R to S(Ω′).

A matching is a subtransversal M of Ω such that R(M) = 2|M |. Let
ν(P ) denote the size of a maximum matching in P . We shall be interested
in the following problem.

Problem 3.8 Given a parity system P , search for a maximum matching in
P .

In the following two subsections we will describe two natural constructions
for parity systems.

Sum of a pair of 2-matroids

If (U,Ω) is a paired set, then for every element u in U , we denote by ũ the
element that belongs to the same pair as u and is distinct from u.

Consider a pair of 2-matroids, Q1 = (U,Ω, r1) and Q2 = (U,Ω, r2), defined
on the same partitioned set (U,Ω). Set R = r1 + r2. Then P = (U,Ω, R) is a
parity system, which we call the sum of Q1 and Q2. Furthermore a solution
to Problem 3.8 for P will give rise to a solution to Problem 2.7 for Q1 and Q2.
We shall be especially interested in the case when P is a sum of a 2-matroid
Q = (U,Ω, r) and the converse 2-matroid Q̃ = (U,Ω, r̃), where r̃ is defined
by the relation r̃(A) = r(Ã), for every subtransversal A of Ω. In this case
ν(P ) = |Ω| if and only if Q has two complementary bases. Thus Problem 3.8
generalizes Problem 1.5, and hence also Problem 1.7.

More generally one may consider a 2-matroid Q and a partition Π of U
into pairs such that π = {u1, u2} ∈ Π implies π̃ := {ũ1, ũ2} ∈ Π. By setting
U ′ = Π, Ω′ = {{π, π̃} : π ∈ Π} and

R′(A′) = r(
⋃
π∈A′

π), A′ ∈ S(Ω′),

one defines a parity system Q/Π := (U ′,Ω′, R′). A solution to Problem 3.8
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for this parity system would give a solution to a parity problem for the 2-
matroid Q which is analogous to the parity problem for matroids considered
by Lovász in [13].

Free sum of two orthogonal 2-polymatroids

If (V, ρ) is a 2-polymatroid, then one easily verifies that the mapping ρ∗,
defined on the power-set of V by the formula

ρ∗(A) = 2|A|+ ρ(V \ A)− ρ(V ),

defines a 2-polymatroid (V, ρ∗), which we call the dual of (V, ρ).
Consider a pair of 2-polymatroids defined on the same ground-set, say

(V, ρ1) and (V, ρ2). We say that (V, ρ2) is orthogonal to (V, ρ1) if ρ1
∗−ρ2 is a

nondecreasing function. We note that a pair of orthogonal 2-polymatroids is
a special type of generalized polymatroids due to A. Frank [7] and R. Hassin
[11]. See also Frank and Tardos [8] for relevant references.

Proposition 3.9 The 2-polymatroid (V, ρ1) is orthogonal to (V, ρ2) if and
only if the relation

ρ1(A+ x)− ρ1(A) + ρ2(B + x)− ρ2(B) ≥ 2 (2)

is satisfied for every pair of disjoint subsets A and B of V and every element
x in V \ (A ∪B).

Construction 3.10 Consider two orthogonal 2-polymatroids (V, ρ1) and
(V, ρ2). Set

U = V1 + V2, where

Vi = {vi : v ∈ V }, i = 1, 2,

Ω = {Ωv : v ∈ V }, where

Ωv = {v1, v2}, v ∈ V,
R(A) = R1(A ∩ V1) +R2(A ∩ V2), A ∈ S(Ω), where

Ri({vi : v ∈W}) = ρi(W ), i = 1, 2, W ⊆ V.

By using the relation (2), one verifies that P (V, ρ1, ρ2) := (U,Ω, R) is a
parity system. We call that parity system the free sum of (V, ρ1) and (V, ρ2).
Then ν(P ) = |Ω| if and only if (V, ρ1) and (V, ρ2) have two complementary
polymatroid matchings.
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4 Flowers and double flowers

Let P be a parity system. A base of P is a transversal B such that R(B)
has a maximal value. A circuit is a subtransversal C of Ω such that R(C) is
odd and every proper subset of C is a matching.

A flower (resp. double flower) is a subtransversal that is the disjoint
union of a maximum matching with a subtransversal of cardinality 1 (resp.
2). A flower contains precisely one circuit. A circuit is essential if it is
contained in a flower. A double flower contains at least two circuits (which
are essential). A double flower is trivial if it contains two disjoint circuits
(then there are no other circuits contained in that double flower).

Let F be a collection of subsets of a set V . A separator of F is a subset
W of V such that every member of F is either contained in W or disjoint
from W . The separator is proper if it is neither empty nor equal to V .

A parity system P , indexed on the set V , is reducible if there exists a
bipartition {V1, V2} of V such that

ν(P ) = ν(P [V1]) + ν(P [V2]).

Proposition 4.1 If a parity system is irreducible, then the collection of
supports of its essential circuits has no proper separator.

Proof. Consider an irreducible parity system P = (U,Ω, R) indexed on V
and assume for a contradiction that the collection of supports of its essential
circuits admits a proper separator V1. Set V2 = V \ V1 and denote by Ui the
ground-set of P [Vi], for i = 1, 2. Consider a maximum matching M of P .
Since P is irreducible, the matching M ∩ Ui is not a maximum matching of
Pi, for some i = 1, 2 (otherwise we would have ν(P ) = |M | = |M ∩ U1| +
|M ∩U2| = ν(P [V1] + ν(P [V2])). Choose M , i and a maximum matching Mi

of Pi such that

|M ∩Mi| is maximal. (3)

We have |M ∩ Ui| < |Mi|. Hence we can find an element u in Mi such that
M ∩ {u, ũ} = ∅ (we recall that ũ is the element of U − u which belongs to
the same skew pair of Ω as u). So M + u is a flower of P . Let C be the
essential circuit contained in M + u. The element u is contained in C and u
is supported by Vi. Since V1 separates the essential circuits of P , the support
of C is contained in Vi. Since the circuit C is not contained in the matching
M , we can find an element u′ in C \M . Then M ′ := M + u − u′ is a new
matching of P that contradicts (3). ut

The deficiency of a parity system is the number of its skew pairs less the
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cardinality of a maximum matching.

Proposition 4.2 An irreducible parity system P of deficiency at least two
admits a nontrivial double flower.

Proof. First we show that we can find an essential circuit C1 and a flower
F2 satisfying the two following properties:

(i) σ(C1) ∩ σ(C2) 6= ∅, for the circuit C2 contained in F2;

(ii) σ(F ) 6= σ(F2), for all flowers F containing C1.

Consider any essential circuit D′ and a flower F ′ that contains D′. There is
an element v in V \ σ(F ′) because P has deficiency at least two. There is an
essential circuit D′′ whose support contains v, otherwise V − u would be a
proper separator of the supports of the essential circuits of P , contradicting
Proposition 4.1 and the fact that P is irreducible. By Proposition 4.1, we may
choose a sequence of essential circuits D′ = D1, D2, · · · , Dp = D′′ such that
σ(Di) ∩ σ(Di+1) 6= ∅, for 1 ≤ i < p. Let j, 1 ≤ j ≤ p, be the minimal index
such that all flowers F ′′ containing Dj satisfy σ(F ′′) 6= σ(F ′). The index
j exists because all flowers F ′′ containing Dp satisfy v ∈ σ(Dp) ⊆ σ(F ′′),
whereas v 6∈ σ(F ′). We have obviously j > 1. Therefore we can take C1 = Dj

and F2 equal to any flower containing Dj−1 and such that σ(F2) = σ(F ′).
Then C1 and F2 will satisfy (i) and (ii).

To complete the proof of the proposition, we choose a flower F1 that
contains C1 and such that

|F1 ∩ F2| is maximal. (4)

According to the property (ii) there is an element u in F2 such that σ(u)
does not belong to σ(F1). Hence F1 + u is a double flower. Suppose for a
contradiction that F1 + u is trivial. Let C be the circuit contained in F + u
and disjoint from C1. The supports of C and C2 are distinct by the property
(i). Hence we can find an element u′ in C \ C2. Then F ′1 := F1 + u− u′ is a
new flower that contains C1 and contradicts (4). ut

We are now able to prove our first result on Problem 3.8.

Theorem 4.3 Let P be a parity system. Then at least one of the following
alternatives holds.

(a) There exists a partition {V1, V2, . . . , Vm} of V such that

(i) ν(P ) =
∑m
i=1 ν(P [Vi]), and
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(ii) ν(P [Vi]) = |Vi| − 1 = ν(P [Vi − v])

for all 1 ≤ i ≤ m and all v ∈ Vi.

(b) There exists v ∈ V such that every maximum matching of P covers v.

(c) P has a nontrivial double flower.

Proof. If ν(P ) = |V | then (b) holds for all v ∈ V . Suppose ν(P ) = |V |−1. If
(a) does not hold for the trivial partition {V } then ν(P [V −v]) = ν(P )−2 for
some v ∈ V and (b) holds for v. Thus we may suppose that ν(P ) ≤ |V |−2. If
P is irreducible then (c) holds by Proposition 4.2 so we may also suppose that
P is reducible. Choose a partition {V1, V2, . . . , Vm} of V such that ν(P ) =∑m
i=1 ν(P [Vi]) and m is as large as possible. Then each maximum matching

of P is the disjoint union of maximum matchings in P [Vi] for 1 ≤ i ≤ m.
Thus we have ν(P [Vi]) ≤ |Vi| − 2 for 1 ≤ i ≤ m, otherwise (a) or (b) hold
for P as above. Moreover the maximality of m implies that each P [Vi] is
irreducible. Hence, by Proposition 4.2, we may choose a nontrivial double
flower F1 in P [V1]. Let Mi be a maximum matching in P [Vi] for 2 ≤ i ≤ m.
Then the union of F1 with ∪mi=2Mi is a nontrivial double flower in P and
hence P satisfies (c). ut

We shall use Theorem 4.3 in a later section to reduce the problem of
determining ν(P ) to smaller parity systems than P . To conclude this section
we need one further result on the structure of double flowers. We define a
double circuit in a parity system to be a subtransversal D such that R(D) =
2|D| − 2 and for all t ∈ D we have R(D − t) = 2|D| − 3.

Proposition 4.4 Let D be a double circuit in a parity system P . Then there
exists a unique partition {D1, D2, . . . , Dm} of D such that D−Di is a circuit
of P for all 1 ≤ i ≤ m.

Proof. For each t ∈ D we have R(D− t) = 2|D− t|− 1. Thus D− t contains
a unique circuit C(t). Let D(t) = D − C(t) and choose s ∈ D(t). Then
s /∈ C(t) so C(t) ⊆ D − s. Thus C(s) = C(t) and D(s) = D(t). Hence
{D(t) : t ∈ D} is the required partition of D. ut

We call the partition of a double circuit D given by Proposition 4.4 the
principal partition of D. Thus D is a trivial double circuit if and only if its
principal partition has exactly two elements.
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5 Compressing double flowers

Let P = (U,Ω, R) and P ′ = (U,Ω, R′) be parity systems. We say that P ′ is
a switching of P if

(a) |R(A)−R′(A)| ≤ 1 for all A ∈ S(Ω),

(b) |R(A)−R′(A)| ≤ |R(B)−R′(B)| for all A ⊆ B ∈ S(Ω), and

(c) (R(A)−R′(A))(R(B)−R′(B)) ≥ 0 for all A ⊆ B ∈ S(Ω).

Note that if P ′ is a switching of P then (a) implies that ν(P ′) ≥ ν(P )− 1.
We say that a switching P ′ of P compresses a double flower F of P if

R′(C) < R(C) for all circuits C of F in P . The following three propositions
will be used to deduce that if P ′ is a switching of P which compresses a
double flower F of P then ν(P ′) = ν(P )− 1.

Proposition 5.1 Let P = (U,Ω, R) be a parity system, F be a double flower
in P and P ′ = (U,Ω, R′) be a switching of P which compresses F . Suppose
that ν(P ′) = ν(P ) = ν and let M be a ν-matching in P ′. Then R(M) < 2ν.

Proof. Suppose that R(M) = 2ν. We may suppose that M has been chosen
such that |M ∩F | is maximum. Since |M | = ν and |F | = ν+2 we can choose
f ∈ F such that σ(f) /∈ σ(M). Then R′(M + f) = 2ν+ 1 = R(M + f), since
M is a maximum matching in both P ′ and P . Since P ′ is a switching of P
we have R′(A) = R(A) for all A ⊆M + f . Since P ′ compresses F it follows
that C 6⊆M + f for all circuits C of F in P . Let C ′ be the unique circuit of
M + f in P ′ and P . Then C ′ 6⊆ F and so we may choose g ∈ C ′ − F . Let
M ′ = M − g + f . Then M ′ is a ν-matching in both P ′ and P . Furthermore
|M ′ ∩ F | > |M ∩ F |. This contradicts the choice of M and completes the
proof of the proposition. ut

Proposition 5.2 Let P = (U,Ω, R) be a parity system, F be a double flower
in P and P ′ = (U,Ω, R′) be a switching of P which compresses F . Suppose
that ν(P ′) ≤ ν(P ). Then ν(P ′) = ν(P )− 1.

Proof. Suppose that ν(P ′) = ν(P ). By Proposition 5.1, we have R(M) < 2ν
for all ν-matchings M of P ′. Choose a ν-matching M of P ′ such that |M∩F |
is maximum. Since |M | = ν and |F | = ν + 2 we can choose f ∈ F such that
σ(f) /∈ σ(M). Then R′(M+f) = 2ν+1 ≥ R(M+f), since M is a maximum
matching in P ′. Since P ′ is a switching of P we have R′(A) ≥ R(A) for all
A ⊆ M + f . Since P ′ compresses F it follows that C 6⊆ M + f for all
circuits C of F in P . Let C1 be the unique circuit of M + f in P ′. Then
R′(C1) = |C1| − 1 ≥ R(C1). Let C2 be a circuit of P contained in C1. Then
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C2 ⊆ M + f so R′(C2) ≥ R(C2). Thus C2 6⊆ F and so we may choose
g ∈ C2 − F ⊆ C1 − F . Let M ′ = M − g + f . Then M ′ is a ν-matching in
P ′. Furthermore |M ′ ∩ F | > |M ∩ F |. This contradicts the choice of M and
completes the proof of the proposition. ut

Proposition 5.3 Let P = (U,Ω, R) be a parity system, F be a double flower
in P and P ′ = (U,Ω, R′) be a switching of P which compresses F . Then
ν(P ′) = ν(P )− 1.

Proof. Suppose that the proposition is false. Using condition (a) in the
definition of a switching we have ν(P ′) ≤ ν(P )+1. Using Proposition 5.2 we
deduce that ν(P ′) = ν(P )+1. Let ν(P ) = ν. Choose a (ν+1)-matching M of
P ′ such that |M ∩F | is maximum. Since |M | = ν+1 and |F | = ν+2 we can
choose f ∈ F such that σ(f) /∈ σ(M). Then R′(M+f) = 2ν+3 ≥ R(M+f),
since M is a maximum matching in P ′. Since P ′ is a switching of P we have
R′(A) ≥ R(A) for all A ⊆ M + f . Since P ′ compresses F it follows that
C 6⊆ M + f for all circuits C of F in P . Let C1 be the unique circuit of
M + f in P ′. Then R′(C1) = |C1| − 1 ≥ R(C1). Let C2 be a circuit of P
contained in C1. Then C2 ⊆ M + f so R′(C2) ≥ R(C2). Thus C2 6⊆ F and
so we may choose g ∈ C2−F ⊆ C1−F . Let M ′ = M − g+ f . Then M ′ is a
(ν + 1)-matching in P ′. Furthermore |M ′ ∩ F | > |M ∩ F |. This contradicts
the choice of M and completes the proof of the proposition. ut

6 Sums of two 2-matroids

Let Q1 and Q2 be 2-matroids. When Q1 and Q2 have the same ground-set
and skew classes we shall use Q1 + Q2 to denote the parity system which is
the sum of Q1 and Q2. When Q1 and Q2 have disjoint ground-sets we shall
use Q1 ⊕Q2 to denote the 2-matroid which is the direct sum of Q1 and Q2.

Let Q = (U,Ω, r) be a 2-matroid and v = {t, t̃} be a skew class of Q.
Following [6, Section 5] we define the 2-matroid Qt = (U t,Ωt, rt) by putting
U t = U − v, Ωt = Ω−{v} and rt(A) = r(A+ t)− r(t) for all A ∈ S(Ωt). We
shall use this operation to construct switchings.

Proposition 6.1 Let P = Q1 + Q2 and {t, t̃} be a skew class of P . Let
P ′ = Qt

1 +Qt
2 and P ′′ = Qt̃

1 +Qt
2. Then P ′′ is a switching of P ′.

Proof. Since R′ = rt1 + rt2 and R′′ = rt̃1 + rt2 it suffices to show that:

(a) |rt1(A)− rt̃1(A)| ≤ 1 for all A ∈ S(Ωt). This follows since

r1(A) ≤ rt1(A) ≤ r1(A) + 1 and r1(A) ≤ rt̃1(A) ≤ r1(A) + 1.
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(b) |rt1(A)− rt̃1(A)| ≤ |rt1(B)− rt̃1(B)| for all A ⊆ B ∈ S(Ωt). Suppose this
is false. Then by symmetry we may assume that rt1(B) − rt̃1(B) = 0
and rt1(A)− rt̃1(A) = 1. This implies that r1(B+ t)− r1(B+ t̃) = 0 and
r1(A+ t)− r1(A+ t̃) = 1. Applying the fourth axiom of 2-matroids to
B we deduce that r1(B + t) = r1(B) + 1 = r1(B + t̃). Submodularity
now implies that r1(A + t) = r1(A) + 1 = r1(A + t̃) contradicting the
second previous equality.

(c) (rt1(A)−rt̃1(A))(rt1(B)−rt̃1(B)) ≥ 0 for all A ⊆ B ∈ S(Ω). Suppose this
is false. Then by symmetry we may assume that rt1(B) − rt̃1(B) = −1
and rt1(A) − rt̃1(A) = 1. This implies that r1(B + t) − r1(B + t̃) = −1
and r1(A+ t)− r1(A+ t̃) = 1. Thus r1(B + t) = r1(B) = r1(B + t̃)− 1
and r1(A + t̃) = r1(A) = r1(A + t) − 1. But r1(B + t̃) = r1(B) + 1
implies that r1(A+ t̃) = r1(A) + 1 by submodularity, contradicting the
third previous equality.

ut
We use Q(t) to denote the 2-matroid (U,Ω, r) where U = {t, t̃}, Ω =

{{t, t̃}}, r(t) = 0, and r(t̃) = 1.

Proposition 6.2 Let P = Q1 + Q2. Let {t, t̃} be a skew class of P and let
P ′ = (Qt

1 ⊕Q(t)) +Q2. Then P ′ is a switching of P .

Proof. The proposition can be proved in a similar way to Proposition 6.1. ut

Proposition 6.3 Let P = Q1 + Q2 and v = {t, t̃} be a skew class of P
which is covered by every maximum matching of P . Let P ′ = (Qt

1 ⊕Q(t)) +(
Qt̃

2 ⊕Q(t̃)
)
. Then ν(P ′) < ν(P ).

Proof. Suppose ν(P ′) ≥ ν(P ) = ν, and let M be a matching in P ′ of size ν.
Since R′(t) = 1 = R′(t̃), M does not cover v. Thus

2|M | = R′(M) = r1(M + t)− r1(t) + r2(M + t̃)− r1(t̃).

It follows that r1(M) = |M | = r2(M) and hence M is a matching in P .
This contradicts the fact that all maximum matchings of P cover v. Hence
ν(P ′) < ν(P ). ut

Proposition 6.4 Let P = Q1 + Q2 and D be a nontrivial double circuit of
P . Then ri(D) = |D| − 2 and rj(D) = |D| for some {i, j} = {1, 2}.

Proof. Suppose the proposition is false. Since r1(D) + r2(D) = 2|D| − 2
and ri(D) ≤ |D| for 1 ≤ i ≤ 2, we must have r1(D) = |D| − 1 = r2(D).
Hence D contains a unique circuit Ci of Qi for 1 ≤ i ≤ 2. Furthermore, since
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R(D− t) = R(D)− 1 for all t ∈ D, each element of D belongs to exactly one
of C1 or C2. Thus the elementary partition of D is precisely {C1, C2} and D
is a trivial double circuit of P . ut

7 Tight parity systems

We say that a 2-matroid Q is tight if for all transversals T and all skew
classes v of Q we have r(T ) ≡ r(T∆v) + 1 mod 2. We say that a parity
system P is tight if for all transversals T and all skew classes v of P we have
R(T ) ≡ R(T∆v) mod 2. Thus if P is the sum of two tight 2-matroids then
P is a tight parity system. Furthermore, if P is a tight parity system then
the parity of R(T ) is constant over all transversals T of P . We shall refer to
this value as the sign of the tight parity system and denote it by sgn(P ).

Proposition 7.1 If P is a tight parity system then

ν(P ) ≡ sgn(P ) + |Ω| mod 2.

Proof. Let ν(P ) = ν and M be a maximum matching in P . We shall show
that R(A) = ν + |A| for all subtransversals A of P which contain M . We
use induction on |A−M |. The assertion is true when A = M by the choice
of M . Hence suppose |A−M | > 0 and choose t ∈ A−M . By the inductive
hypothesis R(A− t) = ν + |A| − 1. Thus

ν + |A| − 1 ≤ R(A) ≤ ν + |A|+ 1.

If R(A) = |A|+ν+1 then A would contain a (ν+1)-matching, contradicting
the maximality of ν. If R(A) = ν + |A| − 1 then by the fourth axiom for
parity systems we have R(A− t + t̃) = ν + |A| + 1 and we again contradict
the maximality of ν. Thus R(A) = ν + |A|.

Let T be a transversal of P which contains M . Then by the above we
have R(T ) = ν + |T | = ν + |Ω|. The proposition now follows since P is tight
and hence R(T ) ≡ sgn(P ) mod 2. ut

Corollary 7.2 Let P be the sum of a tight 2-matroid Q and its converse.
Then ν(P ) is even.

Proof. Let T be a transversal of Ω. Since Q is tight we have

r(T ) ≡ r(T̃ ) + |Ω| mod 2.

Thus R(T ) = r(T ) + r(T̃ ) ≡ |Ω| mod 2. Hence sgn(P ) ≡ |Ω| mod 2 and the
corollary follows by applying Proposition 7.1. ut
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8 Sums of linear 2-matroids

Let Q be a 2-matroid. We say that Q is linear if there exists a base T of
Q and a symmetric or skew-symmetric matrix M with rows and columns
indexed by T such that for each subtransversal A we have

r(A) = rk(M [Ã1, T − A2]) + |A2|

where A1 = A − T , A2 = A ∩ T , M [X,Y ] is the submatrix of M with rows
indexed by X and columns indexed by Y , and rk denotes the matrix rank
function. We will refer to M as the matrix representing Q with respect to
T . We will denote the row and column spaces of M by spR(M) and spC(M),
respectively. It follows from [3] that a linear 2-matroid is tight if it can be
represented by a skew-symmetric matrix. Though it is not known whether
the converse is true, we shall reserve the expression linear tight 2-matroid for
a 2-matroid representable by a skew-symmetric matrix. Proposition 4.3.3 of
[3] implies that such a 2-matroid can be represented by a skew-symmetric
matrix with respect to every base.

Proposition 8.1 Let Q be a linear 2-matroid, M be a matrix representing
Q with respect to some base T and t ∈ T . Then M ′ = M [T − t, T − t] is a
matrix representing Qt with respect to the base T ′ = T − t.

Proof. Let A be a subtransversal in Qt. Put A1 = A − T and A2 = A ∩ T .
Then r(t) = 1 since t ∈ T and

rt(A) = r(A+ t)− 1 = rk(M [Ã1, T − A2 − t]) + |A2 + t| − 1

= rk(M ′[Ã1, T
′ − A2]) + |A2|.

Thus M ′ represents Qt with respect to T ′. ut

Proposition 8.2 Let Q be a linear 2-matroid and D be a subtransversal such
that r(D) = |D| − 2 and r(D̃) = |D|. Let {D1, D2, . . . , Dm} be a partition of
D such that Ci = D−Di is a circuit of Q for all 1 ≤ i ≤ m. Let T be a base
of Q which contains D̃ and M be a matrix representing Q with respect to T .
Let Ki = spR(M [C̃i, T ]). If m ≥ 3 then ∩mi=1Ki contains a nonzero vector.

Proof. We use an elementary result from linear algebra given in [14, Lemma
11.3.3]

dim(∩mi=1Ki) ≥
m∑
i=1

dim(Ki)− (m− 1)dim(∪mi=1Ki).

Since Ci is a circuit of Q contained in T̃ , we have

dim(Ki) = rk(M [C̃i, T ]) = r(Ci) = |Ci| − 1.
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Also
dim(∪mi=1Ki) = dim(spR(M [D,T ])) = r(D) = |D| − 2.

Thus

dim(∩mi=1Ki) ≥
m∑
i=1

(|Ci| − 1)− (m− 1)(|D| − 2) = m− 2 ≥ 1,

since m ≥ 3. ut
Henceforth we will only consider parity systems P which can be expressed

as Q+Q̃, where Q is a linear tight 2-matroid. Recall that, if Q = (U,Ω, r) is a
2-matroid, then Q̃ = (U,Ω, r̃), where r̃ is defined by the relation r̃(A) = r(Ã),
for every subtransversal A of Ω.

Proposition 8.3 Let Q = (U,Ω, r) be a linear tight 2-matroid and P =
Q+ Q̃. If P has a nontrivial double flower F , then there exists a linear tight
2-matroid Q′ such that P ′ = Q′ + Q̃′ can be obtained from P by a sequence
of two switchings and ν(P ′) = ν(P )− 2.

Proof. Let D be the nontrivial double circuit in F . Using Proposition 6.4
and symmetry we may suppose that r(D) = |D|−2 and r(D̃) = |D|. Let the
principal partition of D be {D1, D2, . . . , Dm}. Let T be a base of Q which
contains D̃. Since Q is a linear tight 2-matroid, there exists a skew-symmetric
matrix M representing Q with respect to T . Let Ki = spR(M [Ci, T ]). Using
Proposition 8.2 we deduce that ∩mi=1Ki contains a nonzero vector d. Let M1

be the matrix obtained from M by adding a new first row equal to (0, d) and
a new first column equal to (0,−d). Extend the indexing of M with T by
indexing the new row and column with d. Then M1 is a linear representation
of a tight 2-matroid Q1 = (U1,Ω1, r1) with respect to a base T1 = T+d where
U1 = U ∪ {d, d̃}, Ω1 = Ω ∪ {{d, d̃}} and for each subtransversal A of Ω1 we
have r1(A) = rk(M1[Ã1, T1 − A2]) + |A2| for A1 = A− T1 and A2 = A ∩ T1.

Using Proposition 8.1, we have Q = Qd
1 and hence P = Qd

1 + (Q̃1)d̃. Let

P ∗ = Qd̃
1 + (Q̃1)d̃, and P ′ = Qd̃

1 + (Q̃1)d. Then by Proposition 6.1, P ∗ is a
switching of both P and P ′.

Since d is not the zero vector, r1(d̃) = rk(M1[d, T1]) = 1, and hence we
can find a basis for Q1 which contains d̃. Choosing a skew-symmetric matrix
representing Q1 with respect to this basis, we deduce from Proposition 8.1
that Q′ = Qd̃

1 is linear and tight. Thus P ′ = Q′ + Q̃′ is linear and tight.
We shall show that P ∗ compresses F in P . Let C be a circuit of P

contained in F . Then C ⊆ T̃ and

R(C)−R∗(C) = rd1(C)− rd̃1(C) = r(C)− rd̃1(C).
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Now

rd̃1(C) = r1(C + d̃)− r1(d̃)

= rk(M1[C + d, T1])− rk(M1[d, T1])

= rk(M [C, T ])− 1

= r(C)− 1, (5)

since d is a nonzero vector in spR(M [C, T ]) and M is skew-symmetric. Thus
R(C) < R∗(C) and P ∗ compresses F . Using Proposition 5.3 we deduce that
ν(P ∗) = ν(P )− 1.

Set P1 = Q1 + Q̃1. We next show that ν(P1) ≤ ν(P ). Let M be a
maximum matching in P1. Then M̃ is also a maximum matching in P1, and
so, by replacing M with M̃ if necessary, we may assume that d /∈ M . If
d̃ /∈M then

R∗(M) = rd̃1(M) + rd1(M̃) ≥ R1(M)− 2 = 2|M | − 2.

Thus ν(P ∗) ≥ ν(P1) − 2. Since ν(P ∗) < ν(P ) we have ν(P ′) ≤ ν(P ) + 1.
Using Corollary 7.2 we deduce that ν(P1) ≤ ν(P ). If, on the other hand,
d̃ ∈M then putting M∗ = M − d̃ we have,

R∗(M∗) = rd̃1(M∗) + rd1(M̃∗)

= r1(M∗ + d̃)− r1(d̃) + r1(M̃∗ + d)− r1(d)

= (r1(M)− 1) + (r1(M̃)− 1) = 2|M∗|.

Thus ν(P ∗) ≥ ν(P1)− 1 and we deduce as above that ν(P1) ≤ ν(P ).
We next show that F is a nontrivial double flower in P1, with the same

principal partition as in P . Let B be any subtransversal of P . Then

R(B) = rd1(B) + rd1(B̃)

= r1(B + d)− r1(d) + r1(B̃ + d)− r1(d)

≤ r1(B) + r1(B̃) = R1(B).

Furthermore, it follows from the above inequalities and the submodularity of
r1 that if R(B) = R1(B), then R(A) = R1(A) for all subtransversals A of P
with A ⊆ B. Taking B to be a maximum matching of P , we deduce that B
is a matching in P1, and hence ν(P1) ≥ ν(P ). Thus ν(P1) = ν(P ). Taking
B = F , we have R1(F ) ≥ R(F ) = 2|F | − 2. Strict inequality cannot occur
since otherwise P1 would have a matching of size |F | − 1 = ν(P ) + 1. Thus
R1(F ) = 2|F | − 2 and F is a double flower in P1. Furthermore if A ⊆ F ,
then since R1(F ) = R(F ) we have R1(A) = R(A). Thus F has the same
principal partition in P1 as in P .
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Our next step is to show that

P ∗1 =
(
Qd̃

1 ⊕Q(d̃)
)

+ Q̃1

is a switching of P1 which compresses F . The fact that P ∗1 is a switching of
P1 follows from Proposition 6.2. Let C be a circuit of P1 contained in F .
Then

R1(C)−R′1(C) = r(C)− rd̃1(C) > 0

by (5). Thus P ∗1 compresses F in P1. Hence, by Proposition 5.3, ν(P ∗1 ) <
ν(P1).

Let

P ′1 =
(
Qd̃

1 ⊕Q(d̃)
)

+
(
(Q̃1)d ⊕Q(d)

)
= P ′ ⊕

(
Q(d̃) +Q(d)

)
.

Since R′1(d) = 1 = R′1(d̃), we have ν(P ′1) = ν(P ′). We shall show that
ν(P ′1) ≤ ν(P ∗1 ). Suppose ν(P ′1) > ν(P ∗1 ) and let M be matching of size
ν(P ∗1 ) + 1 in P ′1. Since R′1(d) = 1 = R′1(d̃), M does not cover {d, d̃}. Thus

2|M | = R′1(M) = rd̃1(M) + rd̃1(M̃) = rd̃1(M) + r1(M̃ + d̃)− r1(d̃)

and rd̃1(M) = |M | = r1(M̃). This would imply that M is a matching of size
ν(P ∗1 )+1 in P ∗1 . Thus ν(P ′1) ≤ ν(P ∗1 ) < ν(P1). Since P ′1 and P1 are both tight,
it follows from Corollary 7.2 that ν(P ′1) ≤ ν(P1)−2. Since ν(P1) = ν(P ) and
ν(P ′1) = ν(P ′), we have ν(P ′) ≤ ν(P )− 2. Since P ′ can be obtained from P
by a sequence of two switchings, the proposition follows. ut

We are now ready to prove our main result.

Theorem 8.4 Let Q be a a linear tight 2-matroid and P = Q + Q̃. Then
there exists a linear tight 2-matroid Q′ and a partition {V1, V2, . . . , Vm} of V
such that

(a) P ′ = Q′ + Q̃′ can be obtained from P by a sequence of 2k switchings,

(b) ν(P ) = ν(P ′) + 2k,

(c) ν(P ′) =
∑m
i=1 ν(P ′[Vi]), and

(d) ν(P ′[Vi]) = |Vi| − 1 = ν(P ′[Vi − v]) for all v ∈ Vi and 1 ≤ i ≤ m.

Proof. We use induction on ν(P ). If ν(P ) = 0 then the theorem is valid
taking k = 0, P ′ = P , and Vi = {vi} for each vi ∈ V . Hence suppose that
ν(P ) > 0. We apply Theorem 4.3 to P . If P satisfies alternative (a) of
Theorem 4.3 then the theorem is valid with P ′ = P .
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Suppose that P satisfies alternative (b) of Theorem 4.3. Then by Propo-
sition 6.3 there exists a linear tight 2-matroid Q′ such that P ′ = Q′+ Q̃′ can
be obtained from P by a sequence of two switchings and ν(P ′) < ν(P ). (To
see this we use the fact that Q is linear and tight if and only if it can be
represented by a skew-symmetric matrix M . The operation used in Proposi-
tion 6.3 is equivalent to replacing the ‘t’-th row and column of M by a zero
row and column. Hence the resulting matrix will again be skew-symmetric.)
Thus P ′ is the sum of a linear tight 2-matroid and its converse and by Corol-
lary 7.2 we have ν(P ) and ν(P ′) are both even. Since P ′ can be obtained
from P by two switchings, we have ν(P ′) ≥ ν(P )−2. Thus ν(P ′) = ν(P )−2.
The theorem now follows by applying the inductive hypothesis to P ′.

Finally we suppose that P satisfies alternative (c) of Theorem 4.3. Then
by Proposition 8.3 there exists a linear tight 2-matroid Q′ such that P ′ =
Q′+ Q̃′ can be obtained from P by a sequence of two switchings and ν(P ′) =
ν(P )−2. The theorem now follows by applying the same argument as in the
previous paragraph. ut
Note
Theorem 8.4 implies that ν(P ) = |V | −m+ 2k. Unfortunately, the theorem
is not strong enough to yield a good characterization for this fact since it
does not provide a certificate that ν(P ′[Vi]) ≤ |Vi| − 1. A result which is
similar to Theorem 8.4 but which does give a good characterization for ν(P )
has recently been obtained by Geelen, Iwata and Murota [10]. The proof
technique they use is to adapt the algorithm for solving the matroid parity
problem of Gabow and Stallman [9] to delta matroids. Thus their approach
is to a large extent independent of ours.
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