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Abstract

Bound polysemy is the property of any pair (G1, G2) of graphs on a shared
vertex set V for which there exists a partial order on V such that any pair of
vertices has an upper bound precisely when the pair is an edge in G1 and a
lower bound precisely when it is an edge in G2. We examine several special
cases and prove a characterization of the bound polysemic pairs that illuminates
a connection with the squared graphs.

2000 Mathematics Subject Classification. Primary 05C62, 06A07.

1 Introduction

McMorris and Zaslavsky [9] define an upper bound graph as any graph whose vertices
may be partially ordered in such a way that distinct vertices have an upper bound if
and only if they are adjacent. This class of graphs has been studied widely [1, 2, 3, 4, 8]
since its introduction. An excellent current survey of the field may be found in [7].

It is straightforward to see that the lower bound graphs, defined analogously, con-
stitute precisely the same class. In general, a poset realizes two graphs simultaneously:
one is its upper bound graph and another, its lower bound graph. These graphs may
be thought of as two meanings of the poset, two answers to the question, “What is
this poset trying to tell me?”

We call a pair of graphs G1 = (V,E1) and G2 = (V,E2) on a common vertex
set bound polysemic provided there exists a partial order ≤ on V such that distinct
u, v ∈ V have an upper bound in (V,≤) if and only if uv ∈ E1 and a lower bound if
and only if uv ∈ E2. If such a partial order exists, the poset (V,≤) is called a bound
polysemic realization of (G1, G2).

Polysemic pairs of graphs are introduced in [12], which addresses intersection
polysemy: the pairs of intersection graphs that arise from families of sets and of
those sets’ complements. Notions of polysemy for posets are explored in [11] and [13].

Although they do not highlight the polysemy phenomenon, Lundgren, Maybee,
and McMorris [6] and Bergstrand and Jones [2] investigate a closely related problem.
Call a pair of graphs G1 and G2 for which |V (G1)| = |V (G2)| unlabeled bound pol-
ysemic provided that they are isomorphic, respectively, to graphs H1 and H2 that
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are themselves bound polysemic. A result in [6] amounts to a characterization of the
unlabeled bound polysemic pairs. In some contexts where it is important to contrast
it with unlabeled bound polysemy, we refer to bound polysemy as labeled.

Consider the morphisms that carry adjacency in the graphs to boundedness (above
and below, respectively) in the poset, and assume without loss of generality that the
graphs have the same vertex set. In the case of unlabeled polysemy, the two mor-
phisms are independent of one another, whereas in the labeled case a single morphism
does double duty. We think of the two cases in terms of labeling because if one tagged
the vertices with their images under these morphisms, precisely the labeled case would
result in a consistent assignment of tags.

We present here a characterization of the labeled bound polysemic pairs, which
hints at a connection to the squared graphs. The remainder of this section gives some
basic definitions. Section 2 surveys several results by way of background. Section 3
discusses known results for unlabeled bound polysemy. Section 4 addresses several
special cases of bound polysemy. Section 5 proves more general results, including our
characterization of the bound polysemic pairs. And Section 6 concludes with some
open problems.

All graphs considered here are finite and simple. The open neighborhood of a vertex
v in a graph (V,E) is the set N(v) = {u ∈ V | uv ∈ E}, and the closed neighborhood
is the set N[v] = N(v) ∪ {v}. A clique in a graph is any complete induced subgraph
and need not be maximal with that property. Cliques are often identified with their
vertex sets. A vertex v is simplicial in some graph provided that N(v) is a clique. An
edge clique cover of a graph G is a set E of cliques of G such that every edge uv of
G, seen as a 2-set, is contained in some member of E .

All posets P = (X,≤) considered here are finite and reflexive. Where several
partial orders are being discussed, we sometimes append subscripts to their symbols,
as ≤P , to avoid ambiguity. The height of a poset is the maximum cardinality h of
any chain x1 < x2 < · · · < xh in the poset. A poset is bipartite provided that its
height is at most 2. The upset of an element x in a poset P = (X,≤) is the set
X≥(x) = {y ∈ X | y ≥ x}. The set max(P ) of maximals of P contains precisely those
elements x ∈ X for which X≥(x) = {x}. The downset X≤(x) of x and the minimals
min(P ) of P are defined analogously. An element y of P covers another element x
provided that x < y and there exists no z ∈ X with x < z < y.

The dual of a poset P = (X,≤) is the poset P d = (X,≥) obtained by reversing
the sense of every comparability of P . Poset duality runs throughout this topic:
pairs of dual concepts include upsets and downsets, minimality and maximality, and
boundedness above and below. And by dualizing posets we obtain an immediate
proof that bound polysemy is a symmetric relation on the graphs with a given vertex
set.

The comparability graph of a poset (X,≤) has vertex set X and an edge xy for
each comparability x < y. A poset is connected precisely when its comparability
graph is connected. A fence is a poset whose comparability graph is a path.
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For further definitions, notation, and background information, see for instance
[14] and [15].

2 Background

Among the previous results that we use are four characterizations of the upper bound
graphs. The first one is an easy observation. The other, more interesting, character-
izations are taken from the literature.

Observation 1 The upper (resp. lower) bound graph of a poset is exactly the inter-
section graph of the upsets (resp. downsets) of the poset.

Theorem 2 (McMorris and Zaslavsky) A graph is an upper bound graph if and
only if it has an edge clique cover E = {Q1, . . . , Qr} for which there exists a system
{v1, . . . , vr} of distinct representatives such that vi ∈ Qj precisely when i = j.

The next characterization makes use of the notion of an ordered edge cover of a
graph G—an edge clique cover {Q1, . . . , Qn} of G together with a labeling {v1, . . . , vn}
of V (G) such that each vi is in Qi and if vi ∈ Qj , then i ≤ j and Qi ⊆ Qj .

Theorem 3 (Lundgren and Maybee [5]) A graph G is an upper bound graph if
and only if it has an ordered edge cover.

The proof of Theorem 2 proceeds by establishing a straightforward identity be-
tween the graph’s distinct representatives and their corresponding cliques on the one
hand, and the poset’s maximals and their respective downsets on the other. In much
the same way, Theorem 3 may be proven [6] by identifying the vertex labeling and
cliques of the graph with a linear extension and all the downsets of the poset.

The third characterization was published independently in [1] and [3].

Theorem 4 (Bergstrand and Jones, Cheston et al.) A graph is an upper bound
graph if and only if each of its edges is in the closed neighborhood of some simplicial
vertex.

Another class of graphs that has been characterized in terms of edge clique covers
is the squared graphs. A graph G = (V,E) is squared provided that there exists a
graph S on V such that u, v ∈ V are adjacent in G if and only if dS(u, v) ≤ 2. Such a
graph S is called a square root of G. This notion of multiplication is motivated by the
identification of a graph with its adjacency matrix. Mukhopadhyay [10] characterized
the squared graphs as follows.

Theorem 5 (Mukhopadhyay) A graph on V = {v1, . . . , vn} has a square root if
and only if it has an edge clique cover E = {Q1, . . . , Qn} with the properties that

1. for 1 ≤ i ≤ n, vi ∈ Qi and

2. for 1 ≤ i < j ≤ n, vi ∈ Qj if and only if vj ∈ Qi.
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3 The Unlabeled Case

Recall that unlabeled bound polysemy consists in a pair of graphs that are isomorphic,
respectively, to the upper and lower bound graphs of a single poset. Lundgren,
Maybee, and McMorris [6] give a characterization of these pairs.

Theorem 6 (Lundgren, Maybee, and McMorris) Given graphs G1 and G2 with
the same number of vertices, the following are equivalent:

1. G1 and G2 are unlabeled bound polysemic.

2. G1 is (isomorphic to) the intersection graph of some ordered edge cover of G2.

3. G2 is (isomorphic to) the intersection graph of some ordered edge cover of G1.

This result follows from Observation 1 and Theorem 3. Its third condition, for in-
stance, translates to the assertion that G1 has an upper bound realization whose
downsets, under intersection, yield G2.

Bergstrand and Jones [2] provide the first examples of graphs that we would
describe as unlabeled bound polysemic with themselves. A representative member G
of one family of such graphs is shown in Figure 1. Any graph in this family consists
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Figure 1: A graph that is unlabeled bound polysemic with itself

of cliques Ku and Kv that intersect in an edge uv and that each have at least one
other vertex, together with |Ku|−3 pendant vertices p1, . . . , p|Ku|−3 adjacent to u and
|Kv| − 3 pendant vertices q1, . . . , q|Kv|−3 adjacent to v. It is clear that G is the upper
bound graph of the poset P in Figure 1b: the annotation in the figure encodes the
morphism carrying adjacency to boundedness above. And since P is isomorphic to
its own dual, we have also that G is isomorphic to the lower bound graph of P . So
P is an unlabeled bound polysemic realization of G.

Although G is unlabeled bound polysemic (with itself), it is not bound polysemic.
To see this, consider any upper bound realization P ′ of G. Each of q1 and q2 must
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have an upper bound in P ′ with v and with no other vertex, so each is comparable
to v and to no other. Thus v <P ′ q1, q2. But then v is a lower bound for q1 and q2.
So every lower bound graph of P ′ must include edge q1q2, which G lacks. It follows
that no upper bound realization of G is also a lower bound realization.

4 Special Cases of Labeled Bound Polysemy

We begin our investigation of (labeled) bound polysemy with results for several special
cases. In contrast to the examples described in Section 3—graphs that are unlabeled
bound polysemic with themselves—our first theorem characterizes the analogous class
in the labeled case. In order to establish that characterization, we use the following
lemma.

Lemma 7 If a connected poset P has the property that any pair of elements has
an upper bound if and only if it has a lower bound, then P has a maximum and a
minimum.

Proof. Note that the connectedness of P implies that for any elements a and b of
P = (X,≤) there is a fence F = (Y,≤F ) induced in P with a and b as its endpoints.
We show by induction on the cardinality of F that there exist αF , ωF ∈ X such that
αF ≤ f ≤ ωF for all f ∈ F . In particular, then, a and b have both an upper and a
lower bound.

The base cases |F | = 0, 1, 2 are trivial. For the inductive step, let |F | > 2 and
assume that b is minimal in F (the dual case may be argued analogously). Let
F ′ = F − b and consider αF ′, ωF ′ ∈ X as are guaranteed to exist by the inductive
hypothesis. Since b <F fi for some fi ∈ Y , we also have b < fi ≤ ωF ′, so b and αF ′
have an upper bound. This means that they also have a lower bound α. So we choose
ωF = ωF ′ and αF = α, and they have the required property.

Thus, every pair of elements of P has both an upper bound and a lower bound,
so P must have a maximum and a minimum.

Theorem 8 A graph is bound polysemic with itself if and only if it is a disjoint union
of cliques.

Proof. It is straightforward to see that any disjoint union G of cliques is bound
polysemic with itself. For each clique, construct a linear order on its vertices. Then
the sum of these chains realizes (G,G).

Conversely, let G = (V,E) be any graph and P be a bound polysemic realization
of (G,G). It is clear that any pair of elements of P has an upper bound if and only
if it has a lower bound, so by Lemma 7 distinct maximals (resp. minimals) must be
in separate components of P . So G must be a disjoint union of cliques.
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Corollary 9 Every edgeless graph is bound polysemic with itself but with no other
graph.

Proof. That G = (V, ∅) is bound polysemic with itself follows immediately from
Theorem 8. In particular, the only upper bound realization of G is the antichain on
V , so it is clear that no graph on V with at least one edge is bound polysemic with
G.

Theorem 10 No graph with more than one vertex is bound polysemic with its com-
plement.

Proof. Let P = (V,≤) be an upper bound realization of a graph G = (V,E) with
n > 1 vertices. If P is an antichain, then E is empty and the conclusion follows from
Corollary 9. On the other hand, if there exist u ≤ v in P , then they have an upper
bound, so uv ∈ E. But they have a lower bound, too, even though uv 6∈ E. So no
upper bound realization of G is also a lower bound realization of G.

Theorem 11 An n-vertex graph G is bound polysemic with Kn if and only if G is
an upper bound graph with a vertex of degree n− 1.

Proof. Suppose G and Kn to be bound polysemic. We show that ∆(G) = n − 1.
Any lower bound realization of Kn has a minimum, since distinct minimals of a poset
cannot have a lower bound and thus cannot be adjacent in a lower bound graph. But
a minimum of a poset has an upper bound with every element, so the minimum of
any realization of (G,Kn) has degree n− 1 in G.

Conversely, let G be an upper bound graph and suppose there exists a vertex v
of degree n− 1 in G. If G ∼= Kn, then the result follows from Theorem 8. Otherwise,
v is not simplicial, so by Theorem 4 there exists an upper bound realization P ′ of
G − v. Then the poset P obtained from P ′ by adding v as a minimum is an upper
bound realization of G. And since v is a lower bound for every pair of elements, P is
also a lower bound realization of Kn.

Theorem 12 A graph G = (V,EG) is bound polysemic with a tree T = (V,ET ) if
and only if G is complete and T is a star.

Proof. Let T be a star and select v ∈ V with degree ∆(T ). Then the poset P for
which min(P ) = {v} and max(P ) = V \ {v} is an upper bound realization of T . In
the trivial case of |V | = 2, P and P d are the only upper bound realizations of T .
For |V | 6= 2, P itself is the only upper bound realization of T . This follows from the
facts that no distinct x, y ∈ V \{v} can even have an upper bound—so they certainly
cannot be comparable—and that if any x were incomparable to v, then x and v would
have some upper bound y 6= v, which would imply xy ∈ E(G). Note too that the
lower bound graph of P , and of P d in the case |V | = 2, is the complete graph on V .
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Conversely, suppose T is not a star. Then |V | = n ≥ 4, so T has a leaf u, and
the neighbor v of u has degree strictly less than n− 1. Thus there exists w ∈ V not
adjacent to v and the u-w path has length at least 4, so T contains an induced P4.
But neither vertex of the internal edge e of an induced P4 can be simplicial, and T is
K3-free. So e is not in the closed neighborhood of any simplicial vertex, and it follows
from Theorem 4 that T is not an upper bound graph.

5 General Results

In their proof of Theorem 2, McMorris and Zaslavsky use a construction that demon-
strates that any upper bound realization may be assumed without loss of generality to
be bipartite. When we consider bound polysemy, the situation becomes only slightly
more complicated. To begin with, take the example illustrated in Figure 2. It may
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Figure 2: A bound polysemic pair with no bipartite realization

easily be verified that the poset P in Figure 2c is a bound polysemic realization of
(G1, G2), the pair in Figure 2a and b. How much flexibility does one have in con-
structing a realization of G1 and G2? Since neither c nor e is adjacent to a in G1 and
c is not adjacent to e in G2, {a, c, e} must be an antichain. Furthermore, b must have
lower bounds with each of a, c, and d, and it is the only element that can possibly
be comparable to a. So b must be below the other three. Dually, d is the only ele-
ment that can be comparable to e, and must be above b, c, and e. Thus, P is the
unique bound polysemic realization of (G1, G2), and, in particular, G1 and G2 have
no bipartite realization.

Our next two results show that, while bound polysemic realizations of height less
than 3 are something of a special case, height at most 3 may always be assumed.

Theorem 13 A bound polysemic pair has a bipartite realization if and only if no
triple of vertices induces a triangle in both graphs. Furthermore, if no such triple
exists, then every realization is bipartite.
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Proof. Let G1 = (V,E1) and G2 = (V,E2) be bound polysemic. It is a simple
matter to verify that if some distinct u, v, w ∈ V induce a triangle in both graphs,
then no realization of (G1, G2) is bipartite. Contrapositively, if they have a bipartite
realization, then no such triple exists.

On the other hand, if any realization P = (V,≤) has height at least 3, then
there exist u < v < w in V , so {u, v, w} induces a triangle in each graph and every
realization has height at least 3.

Theorem 14 For any poset P = (X,≤), let P ′ = (X,≤′) be the height-3 poset for
which

≤′ =
⋃

y∈max(P )

{(x, y) | x ≤ y} ∪
⋃

y∈min(P )

{(y, x) | x ≥ y}.

Then P and P ′ have the same upper bound graph and the same lower bound graph.

Proof. It is clear that if a, b ∈ X have an upper bound in P , then they have one
that is maximal, so they also have an upper bound in P ′. Conversely, any upper
bound for elements a and b of P ′ is also an upper bound of a and b in P . So the two
posets have the same upper bound graph and, dually, the same lower bound graph.

We now present our main result—a characterization of the bound polysemic pairs
that blends the flavors of Theorems 2 and 5.

Theorem 15 Graphs G1 = (V,E1) and G2 = (V,E2) are bound polysemic if and only
if there exist edge clique covers E1 = {Q1,1, . . . , Q1,r} of G1 and E2 = {Q2,1, . . . , Q2,s}
of G2 and disjoint systems R1 = {v1,1, . . . , v1,r} and R2 = {v2,1, . . . , v2,s} of distinct
representatives of E1 and E2, respectively, with the properties that

1. vk,i ∈ Qk,j precisely when i = j,

2.
r⋃
i=1

Q1,i =
s⋃
i=1

Q2,i, and

3. Q1,i ∩Q2,j is nonempty only if v1,i ∈ Q2,j and v2,j ∈ Q1,i.

Proof. Property 1 is simply the necessary and sufficient condition in Theorem 2
for G1 and G2 to be (upper or lower) bound graphs, independent of one another.
Properties 2 and 3 together with the requirement that the two systems R1 and R2 be
disjoint give us the polysemy, as we now prove. Our approach is similar to the one
used for Theorems 2 and 3—we establish for some poset P = (V,≤) the following
identity:

R1 ↔ max(P ) \min(P )
Q1,i ↔ V≤(v1,i)
R2 ↔ min(P ) \max(P )
Q2,i ↔ V≥(v2,i)

. (1)
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We begin by showing that the conditions are necessary for any realization P .
Define E1, E2, R1, and R2 as in (1). It is clear that R1 and R2 are disjoint. It also
follows immediately, since ≤ is reflexive and no maximal (resp. minimal) can be in
the downset (resp. upset) of any other, that property 1 holds. Furthermore, v ∈ V
is in some downset in E1 (resp. upset in E2) only if v is not isolated in P , which, in
turn, is the case only if v is in one of the upsets in E2 (resp. downsets in E1). So
property 2 holds. And finally, if there exists any v ∈ Q1,i ∩Q2,j , then v2,j ≤ v ≤ v1,i;
so property 3 holds by transitivity.

Conversely, suppose the edge clique covers E1 and E2 and their respective sys-
tems R1 and R2 of distinct representatives exist. We construct a bound polysemic
realization P = (V,≤) of (G1, G2) by defining

≤ =
r⋃
i=1

{(v, v1,i) | v ∈ Q1,i} ∪
s⋃
i=1

{(v2,i, v) | v ∈ Q2,i}

∪ {(v, v) | v ∈ V \ (R1 ∪R2)}.
(2)

It is clear from its definition and property 1 that ≤ is reflexive. Property 1 also
ensures that if u ≤ v and either u ∈ R1 or v ∈ R2, then u = v. So if both u ≤ v
and v ≤ u, then u = v. In other words, ≤ is antisymmetric. Is it transitive? If
there exist distinct u, v, w ∈ V with u ≤ v and v ≤ w, then w ∈ R1 and u ∈ R2. So
v ∈ Q1,i ∩Q2,j , where w = v1,i and u = v2,j. But then it follows from property 3 that
w ∈ Q2,j and u ∈ Q1,i, and either one of these memberships ensures that u ≤ w. So
≤ is a partial order.

It remains to demonstrate that G1 and G2 are the upper and lower bound graphs
of P , respectively. We prove the case for G1—the other may be obtained from a
dual argument. As a preliminary step, we prove that max(P ) \ min(P ) ⊆ R1. The
opposite containment is immediate, so the two sets are in fact equal. To see this,
consider any nonminimal maximal v. There must exist u 6= v for which (u, v) is a
member of the first or second term of (2). If the comparability is in the first term,
then v ∈ R1 trivially. If the comparability appears in the second term only, then v is
in some Q2,i, so it follows from property 2 that v is also in some Q1,j , and thus, from
property 1 that v = vi,j ∈ R1.

Finally, is G1 indeed the upper bound graph of P ? Any edge uv of G1 is in at least
one cliqueQ1,i ∈ E1. As a result, u and v have v1,i as an upper bound in P . Conversely,
if distinct u, v ∈ V have an upper bound, then there exists w ∈ max(P )\min(P ) = R1,
say w = v1,i, such that u ≤ w and v ≤ w. If the comparability (u, w) is a member
of the first term of (2), then u ∈ Q1,i. Otherwise, the comparability is in the second
term, so u = v2,j for some j and w ∈ Q1,i ∩ Q2,j. Thus, by property 3, u is again in
Q1,i. By a parallel argument, v, too, is in Q1,i, so u and v are adjacent in G1.

The similarity of the statements of Theorems 15 and 5 suggests that bound poly-
semy and squared graphs are related concepts. The connection between these concepts
is captured in the following theorem.
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Theorem 16 If graphs G1 = (V,E1) and G2 = (V,E2) have a bound polysemic
realization P that is bipartite, then G3 = (V,E1∪E2) is a squared graph with a square
root equal to the underlying graph of the Hasse diagram of P .

Proof. We may call G3 the either bound graph of P , since any distinct elements of
V are adjacent in G3 if and only if they have either an upper or a lower bound in P .
It is immediate for any poset, regardless of height, that its comparability graph is a
square root of its either bound graph. It only remains to demonstrate that the extra
condition that P be bipartite is sufficient to ensure that the underlying graph H of
the Hasse diagram of P is also a square root of G3.

Note that the closed neighborhood in H of any w ∈ V is

NH [w] =

{
V≤(w), w ∈ max(P )
V≥(w), w ∈ min(P )

.

Note too that dH(u, v) ≤ 2 if and only if either (1) u and v are comparable, (2) they
are minimals below some common maximal, or (3) they are maximals above some
common minimal. But these three cases are equivalent, respectively, to (1′) u and v
have both an upper and a lower bound, (2′) they have an upper bound, and (3′) they
have a lower bound.

The following theorem is a further parallel to a result from [9]. It shows that
the bound polysemic pairs—like the upper bound graphs—cannot be characterized
in terms of forbidden subgraphs.

Theorem 17 For any graphs G1 = (V,E1) and G2 = (V,E2) on a common vertex
set, there exists a bound polysemic pair {G′1, G′2} such that G1 is an induced subgraph
of G′1 and G2 is an induced subgraph of G′2.

Proof. For any edge clique covers E1 = {Q1,1, . . . , Q1,r} ofG1 and E2 = {Q2,1, . . . , Q2,s}
of G2, we enlarge our set of vertices to

V ′ = V ∪ {q1,1, . . . , q1,r} ∪ {q2,1, . . . , q2,s},

where none of the qk,i is in V . Next we define a partial order P = (V ′,≤), in which
{q1,1, . . . , q1,r}, V , and {q2,1, . . . , q2,s} are antichains and every v ∈ V is covered by
exactly those q1,i for which v ∈ Q1,i and covers exactly those q2,i for which v ∈ Q2,i.
Finally, let G′1 and G′2 be the upper and lower bound graphs, respectively, of P . Then
G′1 and G′2 are bound polysemic by construction and each Gk is the subgraph of G′k
induced by V .

6 Open Problems

We have seen that ((V, ∅), (V, ∅)), (K1,n−1, Kn), and the pair in Figure 2 each have
a unique bound polysemic realization. Other such pairs may be obtained from the
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graphs with unique upper bound realizations, which are characterized by McMorris
and Myers [8]. It remains an open problem to completely characterize all the bound
polysemic pairs that have unique representations.

An interesting algorithmic problem is the recognition of bound polysemy. Al-
though Theorem 17 precludes one line of attack, Bergstrand and Jones [1] overcame
an analogous situation, using Theorem 4 to obtain an O(n3) algorithm to recognize
upper bound graphs.

Another open problem is the extension of our results by generalizing the posets
to directed graphs. The analog of a poset’s upper (resp. lower) bound graph is
a digraph’s competition (resp. common enemy) graph. It would be interesting to
investigate what one might call competition polysemy.
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