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Abstract

Let T(m,n) denote the number of ways to tile anm-by-n rectangle with dominos. For
any fixedm, the numbersT(m,n) satisfy a linear recurrence relation, and so may be extrap-
olated to negative values ofn; these extrapolated values satisfy the relationT(m,−2−n) =
εm,nT(m,n), whereεm,n = −1 if m≡ 2 (mod 4) andn is odd and whereεm,n = +1 other-
wise. This is equivalent to a fact demonstrated by Stanley using algebraic methods. Here
I give a proof that provides, among other things, a uniform combinatorial interpretation of
T(m,n) that applies regardless of the sign ofn.

1 Introduction

It has undoubtedly been observed many times that the Fibonacci sequence, when run back-
wards as well as forwards from its initial conditions, yields a doubly-infinite sequence that is
symmetrical modulo some minus-signs:

...,−8,5,−3,2,−1,1,0,1,1,2,3,5,8, ...

We will see that this is just one instance of a more general phenomenon involving domino
tilings of rectangles. For positive integersm andn, let T(m,n) denote the number of ways to
cover anm-by-n rectangle with 1-by-2 rectangles (“dominos”) with pairwise disjoint interiors.
Whenm= 2, the valuesT(m,n) form the Fibonacci sequence; more generally, for each fixedm,
the values ofT(m,n) form a sequence satisfying a higher-order linear recurrence relation (see
section 4 for an explanation of why such a recurrence relation must exist).

These recurrences allow one to extrapolateT(m,n) to negative values ofn in a natural
way, for each fixed positive integerm. There are in fact infinitely many recurrences one could
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employ; but, as section 4 explains, the extrapolated values ofT(m,n) do not depend on which
of the recurrence relations is used.

One finds that as long asm is not congruent to 2 (mod 4), the sequence of valuesT(m,n)
(with n varying over the positive and negative integers) exhibits palindromicity:

T(m,−2−n) = T(m,n) for all n.

Whenm is congruent to 2 (mod 4), a modified version of this holds:

T(m,−2−n) = (−1)nT(m,n) for all n.

That is, one observes (and we will in fact show):
THEOREM: For positive integersm and general integersn, T(m,−2− n) = εm,nT(m,n),

whereεm,n = −1 if m≡ 2 (mod 4) andn is odd and whereεm,n = +1 otherwise.
This property of the sequence of valuesT(m,n) can also be expressed in terms of the gener-

ating functionFm(x) = ∑∞
n=0T(m,n)xn, with T(m,0) taken to be 1. This generating function is a

rational function ofx, as a consequence of the recurrence relation governing the valuesT(m,n).
Denote this rational function byPm(x)/Qm(x). Note that the polynomialQm(x) encodes the
recurrence relation that governs the sequence of coefficientsT(m,n), at least eventually; if the
degree ofPm(x) is less than the degree ofQm(x), then the recurrence relation applies to all the
coefficients of the generating function, not just ones withn sufficiently large.

Stanley showed [7] (see parts (d) and (e) of his main Theorem) that form> 1, the degree
of Qm is 2 more than the degree ofPm, Qm(1/x) = Qm(x) whenm≡ 2 (mod 4) andQm(1/x) =
−Qm(x) whenm 6≡ 2 (mod 4). These reciprocity relations, first observed empirically by Klarner
and Pollack [4], can be shown to be equivalent to the claims made earlier about the extrapolated
values ofT(m,n) (see Proposition 4.2.3 of [8]).

Stanley’s proof makes use of algebraic methods; in particular, it relies upon formulas proved
by Kasteleyn [3] and Temperley and Fisher [9] that expressT(m,n) in terms of complex roots
of unity (or, if one prefers, trigonometric functions).

I will present a combinatorial way of thinking about the two-sided infinite sequence
(T(m,n))∞

n=−∞. All features of the reciprocity relation — including the factorεm,n — will
have direct combinatorial interpretations. Moreover, the method used here can also be used
to demonstrate similar reciprocity phenomena for three- and higher-dimensional analogues of
domino tiling. For instance, ifT(k,m,n) denotes the number of ways to tile ak-by-m-by-n
box with 1-by-1-by-2 blocks (in any orientation), thenT(k,m,−2− n) = ±T(k,m,n), where
T(k,m,−2−n) is obtained by taking the recurrence relation forT(k,m,n) (with k,m fixed and
n varying) and running it backward. Such higher-dimensional tiling problems are not amenable
to Stanley’s method, since the formulas of Kasteleyn and Temperley and Fisher do not extend
beyond the two-dimensional setting.

It is worth mentioning here that Cohn has proved a different reciprocity theorem for domino
tilings [1]; it is unclear to me whether his Theorem 1 is related to the result treated here.

It is also worth mentioning here that the numbers tabulated in [6] are not entirely correct;
for n = 10 andm= 4, the correct value ofT(m,n) is 18061, not 10861. (I have not checked to
see if there are other mistakes.)
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2 Signed matchings

Instead of using domino-tilings, we will use an equivalent mathematical model: perfect match-
ings of grid-graphs, also known as dimer covers or dimer configurations1. A perfect matching
of a graphG (hereafter called just a matching for short) is a subset of the edge-set ofG such
that each vertex ofG belongs to one and only one edge of the subset. The domino tilings of an
m-by-n rectangle are in obvious bijection with the perfect matchings of a graph withmnvertices
arranged inm rows ofn vertices each, with edges joining horizontal and vertical neighbors. See
Figure 1.

Fig. 1: The graphG (2,5).

Given that some of the extrapolated numbersT(m,n) are negative, it is natural to try to
provide them with a combinatorial interpretation by way of a signed version of graph-matching.
A signed graph is a graph whose edges are labeled+1 and−1, and a matching counts as either
positive or negative according to whether the number of−1 edges is even or odd. (This is a
special case of weighted matching, in which each edge is assigned a weight, and the weight of a
matching is the product of the weights of its edges.) When we count the matchings of a signed
graph, we count them according to sign. For example, the Fibonacci numberT(2,−5) = −3
will arise as the “number” of signed matchings of the signed graph shown in Figure 2.

Fig. 2: The signed graphG (2,−5).

Here the horizontal edges are all+1 edges and the vertical edges are−1 edges (where the
presence of a negative edge is indicated by use of dashed lines). Each of the three matchings of
the graph has an odd number of vertical edges and so counts as a negative matching. Hereafter,
when I refer to the number of matchings of a signed graph, I always mean the number of positive
matchings minus the number of negative matchings.

By a “signed graph of widthm”, I will mean a subgraph of them-by-n grid graph for some
n, with some edges having sign 1 and others having sign−1. We will be pay special attention to
some specific graphsG (m,n), defined form≥ 1 andn an arbitrary integer. Whenn is positive,
G (m,n) is just them-by-n grid graph described above, with all edges having sign 1. Whenn is
less than or equal to zero,G (m,n) is a modified version of the graphG (m,2−n) in which the
rightmost and leftmost flanks of vertical edges have been removed, and all remaining vertical
edges are decreed to have sign−1. Thus Figure 1 shows the graphG (2,5) while Figure 2 shows
the graphG (2,−5).

1The difference between the titles of [7] and [4], compared with the difference in the names of the journals
in which the two articles appear, clarifies the difference between dimers and dominos: Studying configurations of
dimers is applied mathematics. Studying tilings by dominos is not.
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It will emerge that the (signed) number of matchings ofG (m,n) is T(m,n). Note that for
all m, G (m,0) andG (m,−2) each have a unique matching, whose sign is+1. This verifies the
reciprocity theorem in the casen = 0 (and the casen = −1 is trivial). To prove the claim for
other values ofn (it suffices to considern > 0), we must do more work.

3 Adjunction of graphs

The two definitions ofG (m,n) given above (one forn > 0, the other forn ≤ 0) are not just
two distinct combinatorial notions, patched together at 0; they fit “seamlessly”. To make this
clearer, we will situate the graphsG (m,n) in a broader context, in which they function as
building blocks. SupposeG1 andG2 are signed graphs of widthm. Define the “adjoined graph”
G1G2 as the signed graph we get when we placeG1 to the left ofG2 and join the rightmost
vertices ofG1 to the respective leftmost vertices ofG2 usingn edges of type+1. Figure 3 shows
the graphG (2,3)G (2,−3).

Fig. 3: The signed graphG (2,3)G (2,−3).

Clearly adjunction is an associative operation, so a product of three or more signed graphs of
width m is well-defined.

Let M(G ) denote the (signed) number of matchings of a signed graphG . I can now state
the precise sense in which the two parts of the definition ofG (m,n) fit together:

M(G (m,n1)G (m,n2) · · ·G (m,nk))

= M(G (m,n1+n2+ · · ·+nk))

for all n1, . . . ,nk, regardless of sign.
To indicate why the preceding equation is true, we will prove the casek = 2, which contains

all the essential ideas.
Whenn1 andn2 are positive, we haveG (m,n1)G (m,n2) literally equal to the graphG (m,n1+

n2) by virtue of the definition of adjunction, so this case requires no proof.
Whenn1 andn2 are both non-positive, we get situations like the one shown in Figure 4,

depictingG (2,−2)G (2,−3).
It is a well-known lemma in the theory of matchings that the number of matchings of a

graphG is unaffected if a chain of verticesu,v,w (wherev is connected tou andw but to no
other vertices in the graph) is shrunk down to a single vertex (i.e.,v is removed andu and
w are replaced by a single vertex adjacent to all the vertices other thanv to which u andw
were originally connected). The same observation applies to signed graphs as well if the edges
uv andvw are+1 edges. Applying this lemma toG (2,−2)G (2,−3) twice (once in the top
row and once in the bottom row), we obtain a copy of the graphG (2,−5). More generally,
M(G (m,−a)G (m,−b)) = M(G (m,−(a+b))) whenevera,b≥ 0.

the electronic journal of combinatorics 8 (2001), #R18 4



Fig. 4: The signed graphG (2,−2)G (2,−3).

Whenn1 andn2 are of opposite type (one positive, the other non-positive), we get situations
like the one shown in Figure 3, depictingG (2,3)G (2,−3). If we apply the shrinking lemma in
this case, once in each row, we get the signed graph shown in Figure 5.

+−

Fig. 5:G (2,3)G (2,−3), after shrinking.

Here the edge marked+− is actually two edges, one a+1 edge and the other a−1 edge. Any
signed matching that uses the+1 edge can be paired with a signed matching that uses the−1
edge; these matchings have opposite sign, and so together contribute 0 to the signed number
of matchings. Hence the number of matchings of the graph is unaffected if we remove both of
these edges, obtaining the signed graph shown in Figure 6.

Fig. 6:G (2,3)G (2,−3), reduced toG (2,2)G (2,−2).

But this is justG (2,2)G (2,−2). More generally, applying the “shrinking lemma” toG (m,a)G (m,−b)
yieldsG (m,a−1)G (m,−(b−1)) as long asa,b are both positive. This sets the stage for a proof
by induction, and all that remains is to verify the base case wherea = 0 or b = 0. This is an
easy verification that I leave to the reader. The case ofG (m,−a)G (m,b) is identical.

4 Recurrence relations

We start by showing that for every width-msigned graphH , the sequenceM(H G (m,n)) (with
n= 1,2,3, . . .) satisfies a linear recurrence relation of degree at most 2m that depends only onm,
not onH . (We remind the reader thatM(H G (m,n)) denotes the signed number of matchings
of the graph obtained by adjoiningH with G (m,n).)

LetH be a width-msigned graph. For any sequencec1, . . . ,cm of m bits, and forn≥ 1, let
S(n;c) be the sum of the signs of the matchings of the signed graph obtained fromH G (m,n)
by deleting the subset of the rightmostm vertices specified by the bit-patternc; specifically, we
remove the rightmost vertex in rowi (and all edges incident with it) for precisely thosei with
ci = 0. LetS(n) be the row-vector of length 2m whose components are the numbersS(n;c). Then
(cf. [4] and [6]) there is a 2m-by-2m matrix M such thatS(n+1) = S(n)M. More specifically,
thec,c′ entry ofM gives the number of ways in which each matching counted byS(n;c) can be
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extended to a matching counted byS(n+ 1;c′), adding only horizontal edges between thenth
andn+1st columns and vertical edges in then+1st column. Hence we haveS(n) = S(1)Mn−1.
By the Cayley-Hamilton Theorem, the sequence of powers ofM satisfies the linear recurrence
associated with the characteristic polynomial ofM, and it follows that the sequence of vectors
S(1),S(1)M,S(1)M2, . . . also satisfies this recurrence. In particular, the entry associated with
c = (1,1, . . . ,1) satisfies this recurrence.

For instance, withm= 2, M is the 4-by-4 matrix



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 1


 ,

where rows and columns are indexed in the order(0,0),(0,1),(1,0),(1,1). The characteristic
polynomial of this matrix isx4−x3−2x2 +x+1, so the one-sided sequence of numbersan =
M(H G (m,n)) (with n going from 1 to∞) must satisfy the recurrencean+4−an+3−2an+2 +
an+1 +an = 0, regardless of the nature of the width-msigned graphH .

I now claim that the two-sided sequence of numbersan (with ngoing from−∞ to ∞) satisfies
this same recurrence relation. If we takeH = G (m,−N) with N large, and use the fact that
M(G (m,−N)G (m,n)) = M(G (m,n−N)) = T(m,n−N), we see that if we take the doubly-
infinite sequence. . . ,T(m,−1),T(m,0),T(m,1), . . . and start it atT(m,−N), we get a singly-
infinite sequence that (as we have shown) must satisfy the Cayley-Hamilton recurrence. Since
N was arbitrary, the two-sided infinite sequence ofan’s satisfies the Cayley-Hamilton recurrence
as well.

Having constructed one recurrence relation satisfied by the doubly-infinite sequencev =
(. . . ,T(m,−1),T(m,0),T(m,1), . . .), or equivalently, one linear operatorA that annihilatesv,
we must now consider others. Could there be a linear operatorB that annihilates the singly-
infinite sequenceT(m,1),T(m,2),T(m,3), . . . but not the doubly-infinite sequencev? If so,
thenB would yield a different extrapolation ofT(m,n) to negative values ofn thanA would.

To show that no such operatorB exists, note thatBA annihilatesv. SinceBA= AB, B must
sendv into something annihilated byA. If B does not itself annihilatev, thenB sendsv into
some other sequence that vanishes for all sufficiently large indices but does not vanish for all
indices. It is easy to show that such a sequence cannot be annihilated byA or indeed by any
linear operator with constant coefficients.

The above arguments show that the numbersT(m,n), defined for non-positive values ofn
as above, are the unique way to extrapolate so that a linear recurrence is satisfied.

5 Reciprocity

With all the ingredients in place, we can now give a very simple explanation of the reciprocity
relation for domino tilings of rectangles of fixed width. For concreteness, we start with the spe-
cial caseT(2,−5). Referring to Figure 2, we see that every matching ofG (2,−5) must contain
the two leftmost horizontal edges and the two rightmost horizontal edges. If we remove these
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edges from the graph (and the vertices incident with those edges, and the edges incident with
those vertices), we get a copy ofG (2,3) in which the vertical edges have sign 1. Since every
matching ofG (2,3) has an odd number of vertical edges, we see thatT(2,−5) = −T(2,3).

More generally, whenn is positive, every matching ofG (m,−2− n) must contain them
leftmost horizontal edges and them rightmost horizontal edges. Removing these edges (and
concomitant vertices and edges) leaves a copy ofG (m,n) in which the vertical edges have sign
1. It is well-known (see e.g. [10]) that every domino-tiling of a rectangle (or indeed more
general regions) can be obtained from every other by means of moves in which a 2-by-2 block
of horizontal dominos is rotated to give a 2-by-2 block of vertical dominos, or vice versa. Since
moves of this kind do not affect the parity of the number of vertical dominos (or, in our terms,
the parity of the number of vertical edges in a matching), we know that that all the signed
matchings of our modified version ofG (m,n) carry the same sign; it remains to determine what
this sign is.

If one is willing to appeal to the invariance-of-parity result mentioned in the preceding
paragraph, it is simple to evaluate the common sign of all the matchings by considering the
all-horizontal matching or the all-vertical matching. But in the interests of making the article
self-contained, I give a direct argument (of a fairly standard kind). Say we have a matching
of G (m,n) that involveski vertical edges joining rowi and rowi + 1, for i ranging from 1 to
m−1. When these edges and their vertices are removed from the graph, along with all other
edges joining rowi and rowi +1, our graph splits into two subgraphs, each of which must have
an even number of vertices (since we are assuming that we have a matching). Henceni−ki and
n(m− i)−ki must be even. Using the congruenceki ≡ ni (mod 2), we find thatk1+ · · ·+km−1,
the number of vertical edges, must be congruent ton(1+ 2+ · · ·+ (m− 1)) = n(m− 1)m/2
(mod 2). If m is congruent to 0 or 1 (mod 4),(m−1)m/2 is even, so the number of vertical
edges is even. Ifm is congruent to 3 (mod 4), then (in order for a matching to exist)n must be
even, so thatn(m−1)m/2 is even. However, ifm is congruent to 2 (mod 4), then(m−1)m/2
is odd, so thatn(m−1)m/2 is even or odd according to the parity ofn.

Hence, if we defineεm,n to be−1 whenm is congruent to 2 (mod 4) andn is odd, and+1
otherwise, we have

T(m,−2−n) = εm,nT(m,n)

as claimed.

6 Motivation

The definition ofG (m,n) for n < 0 arose not by ad hoc insight but by a view of combinatorics
(a certain portion of it, at least) as a specialized form of algebra. Under this view, a collection of
combinatorial objects ought to be represented by a multivariate polynomial whose coefficients
are all equal to 1, where the individual terms represent the combinatorial objects themselves in
some fashion.

In the case of matchings ofG (2,n) with n > 0, we assign a formal variable (or “weight”) to
each edge, define the weight of a matching as the product of the weights of its constituent edges,
and define the polynomialM(G (m,n)) as the sum of the weights of all the matchings. This is a
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polynomial in which every coefficient equals 1, and in which the constituent monomials encode
the respective matchings of the graph. If we think ofG (2,n) as being embedded inG (2,n+1)
as the induced subgraph on the leftmostn columns, we find that the edge-variables occurring in
M(G (2,n)) form a subset of the edge-variables occurring inM(G (2,n+ 1)), and that indeed,
there is a recurrence expressingM(G (2,n+1)) in terms ofM(G (2,n)) andM(G (2,n−1)):

M(G (2,n+1)) = yn+1M(G (2,n))+wnxnM(G (2,n−1)),

whereyn+1 is the weight of the rightmost vertical edge ofG (2,n+ 1) andwn andxn are the
weights of the rightmost horizontal edges ofG (2,n+1).

We can run this recurrence backward, obtaining in succession some rational functions of the
variableswn,xn,yn with n negative. These rational functions are in fact Laurent polynomials;
moreover, all the coefficients of these Laurent polynomials are±1. Just as the monomials of
M(G (2,n)) with n > 0 encode the matchings ofG (2,n), one might assume that the monomials
in the extrapolated Laurent polynomials “M(G (2,n))” with n≤ 0 encode combinatorial objects
that will yield a combinatorial interpretation of the extrapolated valuesT(2,n) with n≤ 0. The
monomials lead one to matchings of the graphsG (2,n) with n < 0, and once one has this
signed-matching model, the idea is readily extended toT(m,n) for all m.

It is worth remarking that the reciprocity theorem satisfied by the Laurent polynomials
M(G (m,n)) is a bit more complicated than the reciprocity theorem satisfied by the numbers
T(m,n); in addition to the sign-factorεm,n, there is also a monomial factor involving the vari-
ables. A comprehensive reciprocity theorem for domino tilings of rectangles would take this
into account. I intend to write a longer article that treats these issues, and also applies them
to other models, such as matchings of honeycomb hexagons (see [2]). I expect that algebraic
recurrences for sequences of Laurent polynomials will also shed light on the issues raised in
Problem 32 (the last problem) in [5].
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