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Abstract

This note considers possible arrangements of the sectors of a generalised dartboard.
The sum of the pth powers of the absolute differences of the numbers on adjacent
sectors is introduced as a penalty cost function and a string reversal algorithm is
used to determine all arrangements that maximise the penalty, for any p ≥ 1. The
maximum value of the penalty function for p = 1 is well known in the literature,
and has been previously stated without proof for p = 2. We determine it also for
p = 3 and p = 4.

Introduction

This note considers a combinatorial optimisation problem arising from the design of the
standard dartboard, shown below. The arrangement may be construed as an effort to

∗This paper was researched and prepared while a visitor at Bond University. The author is grateful
for the hospitality shown by all.
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penalise a player’s poor shots. By aiming for a large number (other than the inner bull
worth 50 or the outer bull worth 25) but hitting a small number to one side of it, the
penalty will be incurred. Is it possible for other arrangements to allow greater overall
penalties?
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Several authors have considered this problem, sometimes generalised to a “dartboard”
with n sectors numbered 1, 2, . . . , n, for n ≥ 3, say. A philosophy of maximising some
penalty function seems sensible, and two such functions have received most attention:
the sum of the absolute differences of all pairs of adjacent numbers, and the sum of the
squares of these differences. We shall refer to these criteria as defining the L1 and L2

problems, respectively.
Let A be the set of all permutations of {1, 2, . . . , n} and write

Dp(A) =
n∑

j=1

|ij − ij+1|p,

where A = (i1, i2, . . . , in) ∈ A and in+1 = i1. The problems may be given more generally
as

Lp : Find Â ∈ A such that Dp(Â) = max
A∈A

Dp(A).

For p = 1 and p = 2, the problem seems to have been discussed first by Selkirk [5].
He makes a number of assertions, all of which are correct but none of which are proved.
The concentration of effort by the later writers suggests that the proofs are not as easy
to obtain as Selkirk seems to imply. Eiselt and Laporte [2] formulate L1 and L2 in the
context of a maximum-cost travelling salesman problem, and solve them using a branch-
and-bound algorithm. They only consider the case n = 20. Everson and Bassom [3] give
a direct solution of L1, but do not consider L2.

To our knowledge, the only other published discussion of the design problem is Lynch
[4], who also related it to the travelling salesman problem. With n = 4m, for integer m,
he took as his criterion that adjacent numbers be of opposite parity and have absolute
differences greater than 2m − 2.

Our intention here is to use a string reversal algorithm to solve Lp, for any p ≥ 1.
We refer to the permutation A above as a dartboard arrangement, and write it

more usually as the string A = i1i2 . . . in. We call an arrangement B ∈ A equivalent
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to A if B = iqiq+1 . . . ini1 . . . iq−1 for some q, 1 ≤ q ≤ n (cyclic permutation of A), or
B = irir−1 . . . i1in . . . ir+1 for some r, 1 ≤ r ≤ n (reversed cyclic permutation of A). For
an actual dartboard, these imply that it does not matter which number is uppermost or
whether the board is reflected in a diameter. In this paper, all arrangements are permu-
tations in A, except for a few references to the original dartboard arrangement, which we
refer to as Ad.

We are particularly interested in alternating dartboard arrangements, for which we
must distinguish between even and odd values of n. For n = 2k, let (s1, s2, . . . , sk) be
any permutation of {1, 2, . . . , k}, which we refer to as small numbers, and (l1, l2, . . . , lk)
be any permutation of {k + 1, k + 2, . . . , 2k}, which we refer to as large numbers. The
string s1l1s2l2s3 . . . lk−1sklk of alternately small and large numbers is an alternating ar-
rangement. For n = 2k + 1, let (s1, s2, . . . , sk) be any permutation of {1, 2, . . . , k} and
(l1, l2, . . . , lk) be any permutation of {k + 2, k + 3, . . . , 2k + 1}, and put m = k + 1. The
string ms1l1s2l2s3 . . . lk−1sklk is an alternating arrangement.

Notice that Ad is not alternating.
The following result will be required.

Lemma 1 For any real numbers a < b < c < d, and any p ≥ 1,

(d − a)p + (c − b)p ≥ (c − a)p + (d − b)p,

with equality if and only if p = 1. Also

min{(d − a)p + (c − b)p, (c − a)p + (d − b)p} > (d − c)p + (b − a)p.

Proof: Put α = d − c, β = c − a and γ = c − b, so that α > 0, β > γ > 0 and we are
required to prove first that

(α + β)p − βp ≥ (α + γ)p − γp.

The function f , where f(x) = (α + x)p − xp for x > 0, is easily seen to be increasing, and
strictly so unless p = 1. Then, for p > 1, f(β) > f(γ) as we wished to show.

Put δ = b − a, so δ > 0. We must prove also that

min{(α + γ + δ)p + γp, (α + γ)p + (γ + δ)p} > αp + δp.

But this formulation makes the result obvious.

Solution of Lp

We begin with

Lemma 2 For any p ≥ 1, a necessary property of an arrangement Â that is a solution
of Lp is that Â is alternating.
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Proof: We will describe an algorithm that allows us to transform an arbitrary non-
alternating arrangement A′ ∈ A into an alternating arrangement A in such a manner that
the penalty function is increased at each stage of the process. Then Dp(A) > Dp(A

′), so
a non-alternating arrangement could not be maximal. That will prove the theorem.

We assume first that n is even: n = 2k. Notice in general that two large numbers
appear successively in A′ if and only if elsewhere two small numbers appear successively.
The algorithm is as follows.

Step 1. From an arbitrary fixed number in the string move to the right, say. Identify
the first occurrences of successive small numbers and successive large numbers. Reverse
the substring from the second of the first pair to the first of the second pair, to give a
new arrangement.

Step 2. If the result is an alternating arrangement, the process is complete. Otherwise,
return to Step 1.

Following each application of Step 1, there are two fewer occurrences of successive
small or large numbers, so the process must terminate in an alternating arrangement.

We will illustrate the algorithm with the string

A1 = s1l1s2l2l3l4s3l5l6s4l7s5s6s7s8l8l9s9.

As this is written, moving to the right, the first occurrence of a large pair is l2l3 and the
first occurrence of a small pair is s5s6. Applying the algorithm, we obtain the following
sequence of strings, where the substrings to be reversed have been indicated within square
brackets:

A1 = s1l1s2l2[l3l4s3l5l6s4l7s5]s6s7s8l8l9s9,

A2 = s1l1s2l2s5l7s4l6[l5s3l4l3s6]s7s8l8l9s9,

A3 = s1l1s2l2s5l7s4l6s6l3[l4s3l5s7]s8l8l9s9,

A4 = s1l1s2l2s5l7s4l6s6l3s7l5s3l4s8l8[l9s9],

A5 = s1l1s2l2s5l7s4l6s6l3s7l5s3l4s8l8s9l9,

and A5 is alternating. In A4, note the implied pair s9s1.
At each repetition of Step 1, the value of Dp is increased. To see this, consider the

typical situation

B = . . . l1[l2 . . . s1]s2 . . . ,

C = . . . l1 s1 . . . l2 s2 . . . ,

in which C results from B by application of Step 1. The calculations for the penalty
function take the form

Dp(B) = ∆ + |l1 − l2|p + |s1 − s2|p,
Dp(C) = ∆ + (l1 − s1)

p + (l2 − s2)
p,
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respectively, where ∆ is precisely the same calculation in both sums. In each of the four
possibilities, namely s1 < s2 < l1 < l2, s2 < s1 < l2 < l1, s2 < s1 < l1 < l2 and
s1 < s2 < l2 < l1, the second part of Lemma 1 implies that

|l1 − l2|p + |s1 − s2|p < (l1 − s1)
p + (l2 − s2)

p.

Hence Dp(B) < Dp(C), so we conclude that Dp is maximal for an alternating arrangement.
When n is odd, the median number is treated as a small number if it lies directly

between two small numbers and as a large number if it lies directly between two large
numbers. This of course includes situations such as the string ms1 . . . s2 (in which m is
treated as a small number). The algorithm may then be applied to arrive at an alternating
arrangement, and the penalty function may be shown to increase, as before.

That completes the proof of Lemma 2.
We can now give a particular alternating arrangement that solves Lp. It is presented

in a manner suggested by Brown [1].

Theorem 1 A solution of Lp is given for each value of n (mod 4) as follows. Reading
each as a single string from left to right, we have

1 3 5 . . . 2k − 1 2k 2k − 2 . . . 4 2
4k − 1 4k − 3 . . . 2k + 3 2k + 1 2k + 2 2k + 4 . . . 4k − 2 4k

when n = 4k;

1 3 5 . . . 2k + 1 2k . . . 4 2
4k + 1 4k − 1 . . . 2k + 3 2k + 2 2k + 4 . . . 4k − 2 4k + 2

when n = 4k + 2; and
1 3 5 . . . 2k − 1 2k + 1

2k 2k − 2 . . . 4 2

when n = 2k + 1.
Furthermore, this solution is unique, up to equivalence, when p > 1.

Proof: The above strings may be given equivalently, for all n, as the first row of the
following array:

. . . 5 n − 3 3 n − 1 1 n 2 n − 2 4 n − 4 . . .

. . . 9 7 5 3 1 2 4 6 8 10 . . .

Let this string be A, and let A′′ be an arbitrary string in A. By the algorithm in the
proof of Lemma 2, we may transform A′′ into an alternating string A′, and increase the
penalty function. The second row of the preceding array indicates the order in which we
shall move the numbers of A′ to transform it into A, again using string reversal. That is,
we fix 1 in A′, then move n into place to the right of 1, then n − 1 to the left of 1, then
move 2, then 3, then n − 2, . . . . Lemma 1 will imply quickly that the penalty function
Dp is increased with each move, and that implies that A is maximal.

To be specific, consider the intermediate string

. . . l k . . . s n − k + 2 k − 2 . . . 5 n − 3 3 n − 1 1 n 2 n − 2 4 . . . ,
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where it is required now to move the small number k into place. As before, l denotes a
large number and s a small number. Let

B = . . . l [k . . . s] n − k + 2 . . .

C = . . . l s . . . k n − k + 2 . . . ,

where the substring k . . . s in B has been reversed in C. Observe that k < s < l <
n− k + 2, by virtue of the order in which the transformation is taking place. By the first
part of Lemma 1,

(n − 2k + 2)p + (l − s)p ≥ (l − k)p + (n − k + 2 − s)p,

so that Dp(B) ≤ Dp(C), with strict inequality if p > 1. The situation is precisely similar
if k is now a large number to be moved into place, as from

. . . s [k . . . l] n − k k + 2 . . . to . . . s l . . . k n − k k + 2 . . . ,

where n − k < s < l < k. As written, these two cases suggest that k is odd, but the
situation is again precisely similar if k is even.

The conclusion follows, as indicated above, and, except for equivalent arrangements,
the solution will be unique if p > 1.

Further remarks

(1) For L1, we can prove that an alternating arrangement is also sufficient for a solution.
Our method is different from that of Everson and Bassom [3].

Theorem 2 A dartboard arrangement in A is a solution of L1 if and only if it is alter-
nating.

Proof: By Lemma 2, for the proof we need only show that the penalty function D1(A) is
the same for any alternating arrangement A ∈ A.

Suppose n is even, n = 2k. For A = s1l1s2l2s3 . . . lk−1sklk, we have

D1(A) = (l1 − s1) + (l1 − s2) + (l2 − s2) + · · ·+ (lk − sk) + (lk − s1)

= 2(l1 + l2 + · · ·+ lk) − 2(s1 + s2 + · · ·+ sk)

= 2

(
((k + 1) − 1) + ((k + 2) − 2) + ((k + 3) − 3) + · · · + (2k − k)

)
= 2k2.

For n odd, n = 2k + 1, and A = ms1l1s2l2s3 . . . lk−1sklk, it is easy to see that, again,
D1(A) = 2k2.

In summary, for every alternating arrangement A ∈ A, D1(A) = 2[n/2]2, where [ · ] is
the greatest integer function.
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Notice that 2[n/2]2 = 200 when n = 20, whereas D1(Ad) = 198.

(2) Selkirk [5] gives the result

D2(Â) =

{
1
3
n3 − 4

3
n + 2, n even,

1
3
n3 − 4

3
n + 1, n odd,

which may be confirmed from the maximal arrangements given in Theorem 1.
When n = 20, we have D2(Â) = 2642, whereas D2(Ad) = 2374.
We have also obtained the following results:

D3(Â) =

{
1
4
n4 − 2n2 + 3n, n even,

[2]1
4
n4 − 2n2 + 3n − 5

4
, n odd,

D4(Â) =

{
1
5
n5 − 8

3
n3 + 6n2 − 68

15
n + 2, n even,

[2]1
5
n5 − 8

3
n3 + 6n2 − 68

15
n + 1, n odd.

(3) A different criterion has been proposed by Brown [1]. He suggests minimising
∑n

j=1(ij+

ij+1)
2, in the notation of our introduction. Since

n∑
j=1

(ij + ij+1)
2 =

n∑
j=1

i2j +
n∑

j=1

i2j+1 + 2
n∑

j=1

ijij+1 = 2
n∑

j=1

j2 + 2
n∑

j=1

ijij+1

and
n∑

j=1

(ij − ij+1)
2 = 2

n∑
j=1

j2 − 2

n∑
j=1

ijij+1,

we have
n∑

j=1

(ij + ij+1)
2 =

2

3
n(n + 1)(2n + 1) −

n∑
j=1

(ij − ij+1)
2,

so Brown’s approach is seen to be equivalent to the problem L2.

(4) It is apparent that our methods rely on the ordering of the natural numbers. They
may be applied equally to any set of real numbers: rank the numbers in increasing order,
with equal numbers given successive increasing ranks arbitrarily. Then Theorem 1, ap-
plied to the rankings and then interpreted in terms of the original numbers, will give an
arrangement that solves the analogue of Lp, and, for p > 1, the solution will be unique
up to equivalence.

(5) In a private communication, Dr Neil Williams has pointed out to us that string reversal
has been used on a related problem in the 1983 Australian Mathematical Olympiad. We
are grateful for that comment, and also for referring us to the article by Lynch [4].
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